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Abstract

Chv(atal–Gomory and Gomory fractional cuts are well-known cutting planes for pure integer programming problems.
Various methods for strengthening them are known, for example based on subadditive functions or disjunctive techniques.
We present a new and surprisingly simple strengthening procedure, discuss its properties, and present some computational
results. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of valid linear inequalities as cutting planes
is now a well-established, and powerful, tool in integer
programming and combinatorial optimization (see for
example [16,1]). Broadly speaking, valid inequalities
are of two types. There are those which are tailored
to particular problems, typically derived via polyhe-
dral techniques; and there are those which are (more
or less) general purpose, derived by algorithmic or
algebraic techniques. In this second class we >nd,
for example, the fractional and mixed-integer cuts of
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Gomory [10,11], theChv(atal–Gomory cuts of Chv"atal
[7], the disjunctive cuts of Balas [2] and others, and
the lift-and-project cuts of Lov"asz and Schrijver [15]
and Balas et al. [4].
This paper is concerned with a new and surpris-

ingly simple technique for strengthening the Chv"atal–
Gomory cuts (and the closely-related Gomory frac-
tional cuts). In Section 2 we de>ne these cuts and re-
view some of the known procedures for strengthen-
ing them. In Section 3, we give the new procedure.
Computational results given in Section 4 illustrate the
improvements which can be gained by using the new
inequalities in place of the original ones.
Throughout the paper the following notation is used.

An Integer Linear Program (ILP) with n variables
and m constraints is a problem of the form

min{cTx: Ax6 b; x∈Zn
+}; (1)

where A∈Zm×n; b∈Zm and c∈Rn. Associated with
any ILP are the two polyhedra
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• P:={x∈Rn
+: Ax6 b} (the feasible region of the

linear programming relaxation of the problem), and
• PI:=conv{x∈Zn

+: Ax6 b} (the convex hull of
feasible integer solutions).

For any r ∈R, �r� denotes the lower integer part of
r, that is, the largest integer not exceeding r. Also,
f(r) denotes r − �r�, the so-called fractional part
of r. We also apply the same operators to vectors
(component-wise).

2. Known results

2.1. Gomory fractional cuts and variants

The original cutting plane algorithm, due to Gomory
[10], works as follows. Insert slack variables into the
ILP (1) to obtain a system of the form

min{cTx: (A; I)x = b; x∈Zn+m
+ } (2)

and >nd a basic optimal solution x∗ to the LP relax-
ation by the simplex method. If x∗ is integral, it is
also optimal. If not, pick a variable xj such that x∗j is
fractional and consider the corresponding row of the
simplex tableau:

xj +
∑
i∈Q

�ixi = x∗j ; (3)

where Q is the set of indices associated with the
non-basic variables.

Proposition 1 (Gomory [10]). The inequality∑
i∈Q

f(�i)xi¿f(x∗j ) (4)

is violated by x∗; yet satis>ed by all non-negative
integer solutions to (3); and therefore by all solutions
to (2).

The cutting plane (4), which has come to be known
as a Gomory fractional cut [16], can then be added
to the LP relaxation.
In practice, Gomory fractional cuts tend to be rather

weak. However, there are several methods in the liter-
ature for strengthening them. The >rst two are in fact
due to Gomory himself:

Fig. 1. The subadditive function f(r).

Proposition 2 (Gomory [10]). For any integer t; the
cut∑
i∈Q

f(t�i)xi¿f(tx∗j ) (5)

is satis>ed by all non-negative integer solutions to
(3); and therefore by all solutions to (2). Moreover;
if f(x∗j )¡

1
2 ; t is positive and

1
2 6 t f(x∗j )¡ 1; then

the cut (5) dominates the original fractional cut (4).

Proposition 3 (Gomory [11]). The cut

∑
i∈Q

min

{
f(�i); f(x∗j )

(1− f(�i)
(1− f(x∗j ))

}
xi¿f(x∗j )

(6)

is valid and stronger than the original cut (4).

The inequality (6) is a special case of the Gomory
mixed-integer cut. As the name suggests, it can be
generalized to mixed-integer linear programs.
Note that both of these procedures can be applied

consecutively. That is, for any t, the cut:

∑
i∈Q

min

{
f(t�i); f(tx∗j )

(1− f(t�i)
(1− f(tx∗j ))

}
xi¿f(tx∗j )

(7)

is valid and stronger than the cut (5).
In 1972, Gomory and Johnson [12,13] made an in-

teresting series of observations. Consider the function
f(·), displayed in Fig. 1, mapping the coeHcients in
(3) onto the coeHcients in (4). This function is sub-
additive, i.e., for any r1; r2 ∈R, f(r1 + r2)6f(r1)+
f(r2). Moreover, the more complicated function map-
ping the coeHcients in (3) onto the coeHcients in
(6), displayed in Fig. 2 for the case x∗j = 2

3 , is also
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Fig. 2. The subadditive function g2=3(r):=min{f(r); 2(1−f(r))},
obtained when x∗j = 2

3 .

subadditive. This led Gomory and Johnson to derive
the following result:

Proposition 4 (Gomory and Johnson [12,13]). Let
g(·) be any subadditive function with domain [0; 1)
such that:

• g(0) = 0;
• g(x∗j ) = f(x∗j ); and
• g(r + 1) = g(r) for all r ∈R.

Then the cut∑
i∈Q

g(x∗i )xi¿f(x∗j ) (8)

is satis>ed by all non-negative integer solutions to
(3). Moreover; the non-dominated cuts of this type
are obtained when g(r) + g(1− r) = 1 for all r.

In fact, Gomory and Johnson showed the following
much stronger result:

Proposition 5 (Gomory and Johnson [12,13]). Any
non-dominated valid inequality which is implied only
by the Eq. (3) and the fact that the variables are
non-negative integers can be derived by a subadditive
function of the type mentioned in Proposition 4.

The catch of course is that constructing the required
subadditive function is diHcult in general. However,
procedures for constructing some useful continuous
subadditive functions of this type can be found in
[12,13].
Stronger cuts can of course be obtained by us-

ing more of the information in the ILP. Burdett
and Johnson [5] obtain such cuts by using subaddi-
tive functions of more than one variable. See also

Balas [2] and Balas and Jeroslow [3], where stronger
cuts are obtained using disjunctive methods.

2.2. Chv(atal–Gomory cuts and variants

In the previous subsection, we relied on the addition
of slack variables to the ILP. In fact the slack vari-
ables are not needed and it is possible to work with
the system Ax6 b directly. This was >rst noticed by
Chv"atal [7] in 1973.

Proposition 6 (Chv"atal [7]). Given an ILP of the
form (1) and any vector �∈Rm

+; the inequality

��TA�x6 ��Tb� (9)

is valid for PI (though in general not for P).

It is well-known (see, e.g. [16]) that any frac-
tional cut of the form (4) is equivalent to a cut of
the form (9). The reverse is also true (with some
quali>cations—see Cornu"ejols and Li [8]).
For this reason the cuts (9) have come to be known

as Chv(atal–Gomory cuts, or CG cuts for short.
The components of � are called CG multipliers. As

noted in [7], one can assume without loss of general-
ity that all CG multipliers are rational and less than
1. Moreover, it is easy to show that any CG cut can
be generated using a � which has at most min{m; n}
strictly positive coeHcients. This implies that the coef-
>cients in a CG cut will be ‘reasonably small’ integers
whenever the coeHcients in A and b are ‘reasonably
small’.
CG cuts may induce facets of PI in certain cases

(see for example Caprara et al. [6]). However, just
as with the fractional cuts, in general they are weak
and it is desirable to strengthen them. The known
strengthening procedures are essentially analogues of
the above-mentioned procedures for strengthening the
fractional cuts. For example, the analogue of Proposi-
tion 2 is:

Proposition 7 (Chv"atal [7]). If f(�Tb)¡ 1
2 and t is

any positive integer such that 1
2 6 t f(�Tb)¡ 1; then

replacing � by f(t�) yields a stronger (or equivalent)
CG cut.

To state the equivalent of Proposition 3, it is helpful
to introduce some further notation. Let N ={1; : : : ; n}
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and a0 = �Tb and, for i∈N , let ai equal the ith com-
ponent of the row vector �TA. Then, the obvious valid
inequality

∑
i∈N (�

TA)xi6 �Tb can be written as∑
i∈N

aixi6 a0 (10)

and the CG cut (9) can be written as∑
i∈N

�ai�xi6 �a0�: (11)

Using this notation, the analogue of Proposition 3 is:

Proposition 8 (Burdett and Johnson [5]). The
inequality∑
i∈N

(
�ai�+max

{
0;

f(ai)− f(a0)
1− f(a0)

})
xi6 �a0�

(12)

is valid and dominates the CG cut (11).

Again, both of the procedures can be applied to-
gether; that is, one may replace � by f(t�) and then
generate the strengthened inequality of the form (12).
Finally, note that the Noor function �·� is superaddi-

tive. That is, for any r1; r2 ∈R, �r1�+�r2�6 �r1+r2�.
The same is true for the function mapping coeHcients
in (10) onto coeHcients in (12). The equivalent of
Propositions 4 and 5 are, respectively:

Proposition 9 (Burdett and Johnson [5]). Let g(·) be
any non-decreasing superadditive function such that
g(0) = 0. The cut∑
i∈Q

g(ai)xi6 g(a0) (13)

is satis>ed by all non-negative integer solutions to
(10).

Proposition 10 (Burdett and Johnson [5]). Any non-
dominated valid inequality which is implied only by
the inequality (10) and the fact that the variables are
non-negative integers can be derived by a superaddi-
tive function of the type mentioned in Proposition 9.

3. A new strengthening procedure

In this section, we present a new strengthening pro-
cedure. First we express it in terms of CG cuts.

Theorem 1. Consider the inequality (10) once
more. Suppose that f(a0)¿ 0 and let k¿ 1 be the
unique integer such that 1=(k + 1)6f(a0)¡ 1=k.
Partition N into classes N0; : : : ; Nk as follows.
Let N0 = {i∈N : f(ai)6f(a0)} and; for p =
1; : : : k; let Np = {i∈N : f(a0) + (p − 1)(1 −
f(a0))=k ¡f(ai)6f(a0) + p(1 − f(a0))=k}. The
inequality

∑
i∈N0

(k + 1)�ai�xi +
k∑

p=1

∑
i∈Np

((k + 1)�ai�+ p)xi

6 (k + 1)�a0� (14)

is valid for PI and dominates the CG cut (11).

Proof. To show dominance; simply divide (14) by
k+1 and compare it with (11). To prove validity;mul-
tiply the valid inequality (10) by k and apply integer
rounding to obtain the CG cut

k−1∑
p=0

∑
i∈N :p=k6f(ai)¡(p+1)=k

(k�ai�+ p)xi6 k�a0�:

(15)

Then let �¿ 0 be a small real number such that 1 −
�¿f(a0)=f(ai) for all i∈N \ N0. It is easy to show
that (1− �)=f(a0) and 1 + (1− (1− �)=f(a0))=k are
non-negative. Thus; we can multiply (10) by (1 −
�)=f(a0) and multiply (15) by 1+(1−(1−�)=f(a0))=k
and sum the two resulting inequalities together to ob-
tain the valid inequality

k−1∑
p=0

∑
i∈N :p=k6f(ai)¡(p+1)=k

((k + 1)�ai�+ p

+
(1− �)(f(ai)− p=k)

f(a0)
+ p=k

)
xi

6 (k + 1)�a0�+ (1− �): (16)

Now; it is easy to check that the term ((1− �)(f(ai)−
p=k))=f(a0) + p=k on the left-hand side of (16) is
non-negative but less than 2 and that it exceeds 1
if and only if f(ai)¿f(a0) + p(1 − f(a0))=k.
Applying integer rounding to (16) (i.e.; replacing each
coeHcient by its lower integer part) and rearranging
gives (14).
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We will call an inequality of the form (14) a strong
CG cut.

Example 1. Let P={x∈R2
+: 6x1+4x26 9} and �=

{1=6}. The CG cut for PI is x16 1 and the cut (12)
is x1 + 1

3x26 1. However; in Theorem 1 we have k =
1; N0 = {1} and N1 = {2}. Thus we obtain the strong
CG cut 2x1 + x26 2.

Note that, in this example, the strong CG cut dom-
inates the cut (12) as well as the ordinary CG cut. In
general, however, there is no dominance relationship
between the cuts (12) and the strong CG cuts.
One advantage of strong CG cuts over cuts of the

form (12) is that the coeHcients are integral. More-
over, provided that k is not ‘too large’, the coeH-
cients will be ‘reasonably small’ integers. If k is too
large (because f(a0) is close to 0), the coeHcients
in (14) may be very large. In such a case, it is bet-
ter to strengthen (11) in two steps: in step (i), apply
the strengthening procedure mentioned in Proposition
7 to produce a CG cut with f(a0)¿ 1

2 . Then, in step
(ii), produce the strong version of this second CG cut.
Now k will be equal to 1, so that the strong CG cut
will have small coeHcients.
This ‘two step’ procedure is illustrated in the fol-

lowing example.

Example 2. Let P = {x∈R2
+: 6x1 + 4x26 9} as

before; but let � = {4=7}. The CG cut for PI is
3x1 + 2x26 5; the cut (12) is 3 2

21x1 + 2 5
42x26 5 and

the strong CG cut is 19x1 + 13x26 35. The strong
CG cut has large coeHcients because f(a0) = 1

7
and k = 6. A suitable scaling parameter t is 4;
because f(ta0) = 4

7 ¿
1
2 . Thus; we change � to

f(4 × 4
7 ) = f( 167 ) =

2
7 and step (i) of the strength-

ening procedure yields the CG cut x1 + x26 2. In
step (ii) we generate the corresponding strong CG cut
(with k = 1); 3x1 + 2x26 4. This has small integer
coeHcients and is stronger than any of the other cuts
mentioned in this example.

Next, we make a comment aboutChv(atal rank. The
proof of Theorem 1 shows that strong CG cuts can
be obtained from the original formulation by applying
the integer rounding procedure at most twice. In the
terminology of [7], this shows that the Chv(atal rank
of any given strong CG cut is at most 2. In fact, we

now show that the Chv"atal rank of the strong CG cut
obtained in Example 1 is exactly 2.

Proposition. In Example 1; the strong CG cut 2x1 +
x26 2 has Chv(atal rank 2.

Proof. Hartmann et al. [14] showed that an inequality
with integral coeHcients; valid for PI; has Chv"atal rank
¿ 1 if the following conditions hold:

• PI is full-dimensional;
• The inequality induces a facet of PI;
• The left-hand side coeHcients in the inequality have
no common factors;

• The optimal objective value of a certain linear pro-
gramming problem exceeds the right-hand side of
the inequality by at least 1.

It is easy to check that the >rst three conditions are
satis>ed in the example. As for the fourth condition;
the LP in question is

max{2x1 + x2: 6x1 + 4x26 9; x1¿ 0; x2¿ 0}:

The optimal solution is x1= 3
2 ; x2=0;with an objective

value of 3. Since the right-hand side of the inequality
is 2; the fourth condition is also satis>ed. Therefore the
Chv"atal rank of the inequality is ¿ 1. But we already
know that the Chv"atal rank of the inequality is not
¿ 2.

When the conditions mentioned in the proof of the
above proposition do not hold, one can no longer de-
termine the Chv"atal rank by solving a linear program.
Indeed, it was recently shown by Eisenbrand [9] that
testing if an inequality has Chv"atal rank one is strongly
NP-complete.
We can also apply the strengthened integer round-

ing argument of Theorem 1 to derive a new strength-
ened version of the fractional cut (4). This is shown
explicitly in the following theorem.

Theorem 2. Suppose thatf(x∗j )¿ 0 and let k¿ 1 be
the unique integer such that 1=(k+1)6f(x∗j )¡ 1=k.
Partition Q into classes Q0; : : : ; Qk as follows. Let
Q0={i∈N : f(�i)6f(x∗j )} and; for p=1; : : : ; k; let
Qp={i∈Q: f(x∗j )+(p−1)(1−x∗j )=k ¡f(�i)6 x∗j +
p(1− f(x∗j ))=k}. The following strong fractional cut
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Fig. 3. The subadditive function h2=3(r) leading to the strong
fractional cut in the case where x∗j = 2

3 .

is valid for PI:∑
i∈Q0

f(�i)xi +
k∑

p=1

∑
i∈Qp

(f(�i)− p=(k + 1))xi

¿f(x∗j ): (17)

Proof. Relax the Eq. (3) to an inequality of ‘6’ form
and apply the strengthened integer rounding procedure
of Theorem 1; to obtain

(k + 1)xj +
k∑

p=1

∑
i∈Qp

((k + 1)��i�+ p)xi

6 (k + 1)�x∗j �: (18)

Divide (18) by k +1; and subtract it from (3) to yield
(17).

It is easy to show that the strong fractional cut (17)
dominates the ordinary fractional cut (4) but that there
is no dominance relation in general between the strong
fractional cut and the mixed-integer cut (6).
Moreover, consider the function mapping the coef-

>cients of (3) onto the coeHcients in the strong frac-
tional cut (17). This function, displayed in Fig. 3 for
the case where x∗j = 2

3 , can be shown to be subaddi-
tive. It also meets the other conditions of Proposition
4. However, it diPers from the subadditive functions
given in [12,13] in that it is discontinuous.

4. Computational experiments

In this section, we report the results of some com-
putational experiments to see whether the above the-
oretical results might also be useful in practice. We

implemented a cutting plane algorithm with Gomory
cuts, using the CPLEX 7.0 callable library of ILOG.
To avoid problems with rounding errors, we converted
all Gomory cuts into CG cuts with integer coeHcients,
and a similar conversion was carried out with the other
cuts. As mentioned in Section 3, the strong CG cuts
can have large coeHcients if k is large. Hence, we
applied the following procedure: (i) the row of the
simplex tableau corresponding to a fractional variable
is multiplied by −1 so that the fractional part of the
right-hand side becomes ¿ 1

2 by construction; then,
(ii) the new strengthening operation can be applied
with k = 1.
It is easy to see that step (i) corresponds to us-

ing t = −1 in Propositions 2 and 7, but note that
there is no dominance relation between the cuts ob-
tained from the original row and the modi>ed one
since t is negative. In other words, the above proce-
dure is a heuristic version of the strengthening opera-
tion described in those propositions, and we illustrate
its own ePectiveness in Tables 1–3 by referring to it
as ‘strengthening 1’. Moreover, as mentioned, this is
also used as step (i) of our new strengthening proce-
dure, called ‘strengthening 2’ in the tables, and both
procedure are compared within the same cutting plane
framework with the original CG cuts (‘original’ in
tables).
In particular, we tested the strengthening pro-

cedures on a set of 50 multi-dimensional 0–1
knapsack problems, i.e., problems of the form
max{cTx: Ax6 b; x∈{0; 1}n}, where c∈Zn

+; A∈
Zm×n
+ and b∈Zm

+, which were randomly generated as
follows. For any pair (n; m) with n∈{5; 10; 15; 20; 25}
and m∈{5; 10}, we constructed 5 random instances
whose objective function coeHcients are integers
generated uniformly between 1 and 10. Moreover,

• For the instances with m = 5, the left-hand side
coeHcients are also integers generated uniformly
between 1 and 10;

• For the instances with m = 10, the left-hand side
coeHcients have a 50% chance of being an integer
generated uniformly between 1 and 10, but also
have a 50% chance of being zero. That is, these
instances are sparse.

In all cases the right-hand side of each constraint was
set to half the sum of the left-hand side coeHcients.
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Table 1
Average %Gap of the cutting plane algorithms

m n Original Strengthening 1 Strengthening 2

1 R. 10 R.s 25 R.s 1 R. 10 R.s 25 R.s 1 R. 10 R.s 25 R.s

%Gap %Gap %Gap %Gap %Gap %Gap %Gap %Gap %Gap

5 42.85 95.26 100.00 54.08 100.00 100.00 77.24 100.00 100.00
10 28.12 79.54 91.86 26.66 80.34 95.66 35.72 86.71 96.15

5 15 16.04 70.20 81.04 21.20 75.25 82.98 25.15 80.52 85.84
20 24.22 58.29 63.41 25.93 73.53 88.77 36.34 76.37 86.66
25 13.47 62.64 73.80 20.39 75.68 81.82 32.33 79.35 83.12

5 29.19 100.00 100.00 31.56 99.34 99.34 37.84 100.00 100.00
10 15.95 55.82 67.33 15.04 60.84 76.88 18.08 67.14 81.01

10 15 8.13 26.76 36.36 14.28 32.61 35.18 17.41 38.54 42.59
20 11.77 30.56 32.15 11.94 32.14 38.58 14.84 37.61 44.07
25 4.02 20.54 21.81 3.94 24.61 29.30 6.59 29.62 32.07

Table 2
Number of optimal solutions and branch-and-bound nodes

m n Original Strengthening 1 Strengthening 2

1 R. 10 R.s 25 R.s 1 R. 10 R.s 25 R.s 1 R. 10 R.s 25 R.s

Opt N Opt N Opt N Opt N Opt N Opt N Opt N Opt N Opt N

5 0 0 4 0 5 0 1 0 5 0 5 0 1 0 5 0 5 0
10 0 9 3 1 4 9 0 9 3 5 4 4 1 13 2 12 4 0

5 15 0 21 1 7 3 18 0 25 2 12 3 4 0 30 3 10 3 2
20 0 30 1 64 2 59 0 34 2 32 3 35 0 27 3 27 3 31
25 0 167 2 133 2 122 0 118 2 82 2 78 0 118 3 40 3 57

5 0 0 5 0 5 0 0 0 4 0 4 0 0 0 5 0 5 0
10 0 0 2 0 2 0 0 0 2 0 3 1 0 3 2 1 3 1

10 15 0 28 0 14 0 38 0 34 0 17 0 29 0 47 1 30 1 12
20 0 19 0 11 0 22 0 33 0 13 0 29 0 38 0 31 0 33
25 0 266 0 206 0 212 0 213 0 211 0 216 0 197 0 215 0 203

Total 0 540 18 440 23 485 1 467 20 377 24 401 2 474 24 371 27 344

Table 3
Cutting plane with just one cut at a time

m n Original Strengthening 1 Strengthening 2

Opt # cutsa %Gap Opt # cutsa %Gap Opt # cutsa %Gap

5 5 20 674 88.86 21 148 93.89 21 153 95.52
10 5 10 836 57.93 18 389 77.80 18 294 82.08

aThis is the overall number of cuts needed by the algorithms to solve the 20 (resp. 10) instances which can be solved in the
case ‘original’.
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(This is well-known to lead to non-trivial instances of
the multi-dimensional 0–1 knapsack problem.)
In Table 1 we report the average (for each pair

(n; m)) percentage gap closed (%Gap) by three ver-
sions of a standard cutting plane algorithm exploiting
the original, strengthened and strong CG cuts. In par-
ticular, these gaps are computed as

(first lp value − last lp value)=

(first lp value − opt value) · 100;
where last lp value is the LP value after the addi-
tion of 1, 10 and 25 rounds of the corresponding CG
cuts (columns 1 R., 10 R.s and 25 R.s, respectively).
By a round of cuts, we mean (as in [4]) that one
cutting plane is generated for each fractional vari-
able, the cuts are added to the LP, and the LP is re-
optimized.
The results shown in Table 1 are satisfactory:

both strengthening operations prove to be ePective
in closing the integrality gap, and in particular the
strong fractional cuts close a larger amount of this
gap.
Table 2 completes the results given in Table 1 by

reporting for each cutting plane version (i.e., type of
cut and number of rounds) and each pair (n; m), the
number of instances solved to optimality over 5 (Opt),
and the overall number of nodes (N ) required by the
standard branch-and-bound of CPLEX 7.0 to obtain
the optimal solution (when the cutting plane was not
able to prove optimality). The last line of the table
indicates the total number of both optimal solutions
and branch-and-bound nodes.
In general, the use of strong fractional cuts results

in fewer branch-and-bound nodes being needed, and
the number of problems that are solved to optimality
is always consistently larger. However, the number of
required nodes can largely vary for the same problem
(or pair (n; m)), and strange situations occur: a larger
amount of nodes is needed when passing from 10
to 25 rounds in both ‘original’ and ‘strengthening 1’
cases.
The last set of experiments was performed by gen-

erating 20 additional instances with n=5, and testing
the resulting 50 instances (25 with n = m = 5 and 25
with n=5; m=10) by using the original cutting plane
algorithm of Gomory, i.e., a cutting plane in which
just one cut at a time is added. In particular, we select

in all cases the CG cut with smallest absolute value
of the right-hand side to keep control of the numerical
problems.
In Table 3 we report for each cutting plane ver-

sion (i.e., type of cuts) the number of instances solved
to optimality (Opt) within a time limit of 15 CPU
seconds on a Digital Alpha 533 MHz, the number of
cuts needed (# cuts), and the average percentage gap
(%Gap).
It can be clearly seen that the cutting plane algo-

rithm using strong CG cuts can solve more instances
with a smaller number of cuts and that, even when it
fails to solve an instance, it closes a larger proportion
of the integrality gap.
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