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It is well known that the standard (linear) knapsack problem can be solved exactly by dynamic programming
in O4nc5 time, where n is the number of items and c is the capacity of the knapsack. The quadratic knapsack

problem, on the other hand, is NP -hard in the strong sense, which makes it unlikely that it can be solved in
pseudo-polynomial time. We show, however, that the dynamic programming approach to the linear knapsack
problem can be modified to yield a highly effective constructive heuristic for the quadratic version. In our
experiments, the lower bounds obtained by our heuristic were consistently within a fraction of a percent of
optimal. Moreover, the addition of a simple local search step enabled us to obtain the optimal solution of all
instances considered.
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1. Introduction
The quadratic knapsack problem (QKP), introduced by
Gallo et al. (1980), is an optimisation problem of the
following form:

max
n
∑

i=1

n
∑

j=1

qijxixj (1)

s.t.
n
∑

i=1

wixi ≤ c1 (2)

x ∈ 80119n0 (3)

Here, n is the number of items, c is the (positive and
integral) capacity of the knapsack, wi are the (posi-
tive and integral) weights of the items, and qij are the
(nonnegative and integral) profits. For i = 11 0 0 0 1n, the
binary variable xi takes the value 1 if and only if
the ith item is inserted into the knapsack.

Note that, because x2
i = xi for all i, one can easily

incorporate linear terms by adjusting the qii. Indeed,
the QKP reduces to the standard (linear) knapsack
problem (KP) when qij = 0 for all i 6= j . In terms of
computational complexity, however, the QKP is more
complex than the KP. Indeed, although the KP is NP-
hard, as shown by Karp (1972), it is possible to solve
it in O4nc5 time using dynamic programming (DP),
as shown by Bellman (1957). The QKP, on the other
hand, is known to be NP-hard in the strong sense (see,
e.g., Caprara et al. 1999), which makes it unlikely that
a pseudo-polynomial time algorithm exists. In fact,
there is evidence that, even in the special case where

wi = 1 for all i, one cannot even approximate the opti-
mal profit within a constant factor in polynomial
time (e.g., Khot 2006). Even for this special case, the
best approximation factor obtained to date is O4n1/45
(Bhaskara et al. 2010).

The QKP is a well-studied combinatorial optimisa-
tion problem with a variety of important applications,
for example in the location of satellites, airports, rail-
way stations, or freight terminals. A variety of bound-
ing procedures, heuristics, and exact algorithms are
available for it. For details, we refer the reader to
Kellerer et al. (2004, Ch. 12), and the more recent sur-
vey by Pisinger (2007). One of the most effective exact
algorithms for the QKP is that of Caprara et al. (1999),
which is based on Lagrangian relaxation, subgradi-
ent optimisation, and branch and bound. Recently,
this algorithm was made even more effective by
Pisinger et al. (2007), using several powerful reduc-
tion techniques.

The purpose of this paper is to show that the DP
approach to the KP can be modified to yield an
effective heuristic for the QKP. In the basic form of
our heuristic, one simply uses the same stages and
states as in the standard DP recursion for the KP,
but uses a quadratic objective in place of a linear
objective. This heuristic already performs surprisingly
well, but it can be significantly enhanced with lit-
tle additional effort. Specifically, we found that if the
items are ordered appropriately, and ties are broken
in an intelligent way, then one can consistently obtain
lower bounds that are within 0005% of optimality.
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Moreover, when we applied a simple local search step
to the solutions generated by the enhanced version of
our heuristic, we obtained the optimal solution of all
instances considered.

The paper is structured as follows: In §2 we review
the relevant literature on the KP and QKP. In §3, the
new heuristic is described, and it is shown how to
implement it to use O4n2c5 time and O4nc5 memory
space. In §4 we present the abovementioned ordering
and tie-breaking rules, and show that they consider-
ably enhance the performance of the heuristic. In §5
we present extensive computational results obtained
with the enhanced version of our heuristic, along
with ones obtained with the additional local search
step. Finally, some concluding remarks are presented
in §6.

2. Literature Review
Because the literature on knapsack problems is vast,
we do not attempt to cover it all here. Instead, we
refer the reader to books by Kellerer et al. (2004),
Martello and Toth (1990), and the survey by Pisinger
(2007). Nevertheless, there are certain key concepts
from the literature that are vital to what follows
and are therefore covered in the following four
subsections.

2.1. The Continuous Relaxation of the KP
The continuous relaxation of the KP is defined as
follows:

max
{ n
∑

i=1

qiixi2 w
T x ≤ c1x ∈ 60117n

}

0

Dantzig (1957) showed that this relaxation can be
solved quickly, in O4n logn5 time, as follows:

1. Temporarily set xi to 0 for all i.
2. Sort the items in nonincreasing order of profit-to-

weight ratio qii/wi.
3. Iteratively set variables to one in the given

order, as long as this can be done while maintaining
feasibility.

4. Set the next variable to the largest possible (typ-
ically fractional) value that it can take, while main-
taining feasibility.

In Balas and Zemel (1980) it is shown that, in fact,
no sorting is necessary, and one can solve the continu-
ous relaxation of the KP in O4n5 time, using advanced
median-finding techniques.

2.2. The Classical Dynamic Programming
Approach to the KP

Next, we recall the classical DP approach to the KP.
For any k ∈ 811 0 0 0 1n9 and r ∈ 801 0 0 0 1 c9, let f 4k1 r5 be
the maximum profit obtainable by packing a selection

of the first k items whose total weight is equal to r .
That is, let

f 4k1 r5

=max
{ k
∑

i=1

pixi2
k
∑

i=1

wixi =r1xi ∈80119 4i=110001k5
}

1

where pi = qii.
If no such packing exists, then let f 4k1 r5 = −�.

Also, by convention, let f 40105= 0. Now observe that

f 4k1 r5=











max8f 4k− 11 r51 f 4k− 11 r −wk5+ pk9

if r ≥wk1

f 4k− 11 r5 otherwise.
(4)

This is a classic dynamic programming recur-
sive function, which indicates that the KP obeys
the so-called “principle of optimality” of Bellman
(1957). It enables us to compute the f 4k1 r5 using
Algorithm 1.

Algorithm 1 (The classical DP algorithm)

Initialise f 40105 to 0 and f 4k1 r5= −� for all
other k1 r .

for k = 11 0 0 0 1n do
for r = 01 0 0 0 1 c do

if f 4k− 11 r5 > f 4k1 r5 then
Set f 4k1 r5 2= f 4k− 11 r5.

end if
if r +wk ≤ c and f 4k− 11 r5+ pk > f 4k1 r +wk5

then
Set f 4k1 r +wk5 2= f 4k− 11 r5+ pk.

end if
end for

end for
Output max0≤r≤c f 4n1 r5.

This algorithm clearly runs in O4nc5 time. Note that
it outputs only the optimal profit. If you want the
optimal solution itself, you have to “trace back” the
path from the optimal state to the initial state f 40105.
The time taken to do this is negligible.

We remark that some problems that are intermedi-
ate in generality between the KP and the QKP can
also be solved exactly in pseudo-polynomial time via
dynamic programming. Examples include the edge
series-parallel QKP (Rader and Woeginger 2002) and
symmetric QKP (Kellerer and Strusevich 2010).

2.3. Upper Planes for the QKP
Now we move on to the QKP itself.

Gallo et al. (1980) say that a vector � ∈ �n
+

is an
upper plane if the following holds:

�T x ≥

n
∑

i=1

n
∑

j=1

qijxixj1 ∀x ∈ 80119n0
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Given an upper plane �, one can compute an upper
bound for the QKP by solving the following (lin-
ear) KP:

max8�T x2 wT x ≤ c1 x ∈ 80119n90 (5)

Gallo et al. (1980) proposed four different upper
planes, �11 0 0 0 1�4. These are defined by setting, for
all i,

�1
i =

n
∑

j=1

qij1

�2
i = qii + max

{

∑

j 6=i

qijxj 2
n
∑

j=1

xj ≤m1 x ∈ 80119n
}

1

�3
i = qii + max

{

∑

j 6=i

qijxj 2 w
T x ≤ c1 x ∈ 60117n

}

1

�4
i = qii + max

{

∑

j 6=i

qijxj 2 w
T x ≤ c1 x ∈ 80119n

}

0

The quantity m appearing in the definition of �2
i is the

maximum number of items that can be fitted into
the knapsack. This can be computed by sorting the
items in nondecreasing order of their weights, and
then inserting the items into the knapsack in the given
order, until no more can be inserted.

Clearly, for any i, we have �1
i ≥ �2

i ≥ �4
i and �1

i ≥

�3
i ≥ �4

i . On the other hand, for any i, the quanti-
ties �1

i and �2
i can be computed easily in O4n5 and

O4n logn5 time, respectively, whereas computing �4
i

amounts to solving a (linear) KP, could be time con-
suming. As for �3

i , it is possible to compute it in O4n5
time as well, using the median-finding technique of
Balas and Zemel (1980), mentioned in §2.1.

According to Gallo et al. (1980), using �3
i gives the

best trade-off between bound strength and computing
time.

2.4. Improved Upper Planes for the QKP
Caprara et al. (1999) noted that one can slightly
improve the upper planes �2

i , �3
i , and �4

i by replacing
them with the following:

�̃2
i = qii+max

{

∑

j 6=i

qijxj 2
∑

j 6=i

xj ≤m−11xj ∈80119 4j 6= i5

}

1

�̃3
i = qii+max

{

∑

j 6=i

qijxj 2
∑

j 6=i

wjxj ≤c−wi1

0≤xj ≤1 4j 6= i5

}

1

�̃4
i = qii+max

{

∑

j 6=i

qijxj 2
∑

j 6=i

wjxj ≤c−wi1

xj ∈80119 4j 6= i5

}

0

They also show that one can obtain even stronger
bounds using either linear programming or Lagrang-
ian relaxation. These upper bounds, along with others
based on linear programming, Lagrangian decomposi-
tion, and semidefinite programming, are surveyed and
compared in Kellerer et al. (2004) and Pisinger (2007).

2.5. Heuristics for the QKP
We close this section by mentioning some heuristics
that have been proposed for the QKP. Gallo et al.
(1980) noted that, for any given upper plane �, the
solution to the KP (5) is also feasible for the QKP, and
therefore yields a lower bound. They also proposed
to improve such solutions using a simple local search
procedure called “fill-up-and-exchange.” In each iter-
ation of this procedure, either one item is added to the
knapsack, or one item in the knapsack is exchanged
for one item outside.

Chaillou et al. (1983) presented a greedy construc-
tive heuristic, in which all items are initially placed in
the knapsack, and then items are iteratively removed
until feasibility is achieved. The criterion for deciding
which item to remove in a given iteration is as fol-
lows: For each item i currently in the knapsack, let �i

be the decrease in the profit that would be incurred if
item i were removed. The item to be removed is the
one that minimises the “loss-to-weight” ratio �i/wi.

Billionet and Calmels (1996) produced a hybrid
method, where the method of Chaillou et al. (1983) is
used to form an initial solution, and then the fill-up-
and-exchange procedure of Gallo et al. (1980) is used
to improve that solution. Their computational results
demonstrate that this is a highly effective approach.

Some other, more complex heuristics have been
proposed, for example based on Lagrangian relax-
ation (Caprara et al. 1999) and tabu search (Glover
and Kochenberger 2002). For details, we refer the
reader to Pisinger (2007).

3. Description of the DP Heuristic
Consider what will happen if we attempt to adapt the
classical dynamic programming algorithm (see Algo-
rithm 1) to the QKP. We can define f 4k1 r5 in a natural
way, as

max
{ k
∑

i=1

k
∑

j=1

qijxixj 2
k
∑

i=1

wixi = r1 xi ∈ 80119

4i = 11 0 0 0 1 k5
}

0

The problem is that there is no analogue of the recur-
sive Equation (4). Indeed, the Bellman principle of
optimality (Bellman 1957) does not hold for the QKP.
The following simple example makes this clear.
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Example. Suppose that n = 3, c = 2, and w1 = w2 =

w3 = 1, and suppose that the profit matrix is

Q =





10 0 0
0 1 10
0 10 1



 0

We have f 42115 = 10, which corresponds to inserting
item 1 into the knapsack, and we have f 42125 = 11,
which corresponds to inserting items 1 and 2. On the
other hand, we have f 43125 = 22, which corresponds
to inserting items 2 and 3. Note that item 1 is inserted
in the first two cases, but not in the third case. There is
therefore no recursive formula that can express f 43125
in terms of f 42115 and f 42125. (This is of course to be
expected, given that the QKP is NP-hard in the strong
sense.)

The main point of this paper, however, is to
show that one can devise an effective heuristic using
dynamic programming. To do this, it is helpful to
redefine f 4k1 r5 as the profit of the best packing found by
the heuristic that uses a selection of the first k items
and whose total weight is equal to r . It is also help-
ful to define S4k1 r5 as the set of items (viewed as a
subset of 811 0 0 0 1 k9) that gives the profit f 4k1 r5. Our
heuristic then performs as described in Algorithm 2.

Algorithm 2 (Dynamic programming for the QKP)

Initialise f 40105 to 0, and f 4k1 r5 to −�

for all other k1 r .
Initialise S4k1 r5= � for all k1 r .
for k = 11 0 0 0 1n do

for r = 01 0 0 0 1 c do
if f 4k− 11 r5 > f 4k1 r5 then

Set f 4k1 r5 2= f 4k− 11 r5 and
S4k1 r5 2= S4k− 11 r5.

end if
if r +wk ≤ c then

Let � be the profit of S4k− 11 r5∪ 8k9.
if �> f 4k1 r +wk5 then

Set f 4k1 r +wk5 2= �,
Set S4k1 r +wk5 2= S4k− 11 r5∪ 8k9.

end if
end if

end for
end for
Let r∗ = arg max0≤r≤c f 4n1 r5.
Output the set S4n1 r∗5 and the associated

profit f 4n1 r∗5.

Note that the quantity � used in Algorithm 2 can
be computed in linear time, using the identity

�= f 4k− 11 r5+ qkk + 2
∑

i∈S4k−11r5

qik0

The heuristic therefore runs in O4n2c5 time.

Table 1 Dynamic Programming Computations for the Small Example

k = 1 k = 2 k = 3

� f 411 r 5 S411 r 5 � f 421 r 5 S421 r 5 � f 431 r 5 S431 r 5

r = 0 0 0 � 0 0 � 0 0 �

r = 1 10 10 819 1 10 819 1 10 819
r = 2 ∗ −� � 11 11 81129 11 11 81139

Example (Continued). Applying our heuristic to
the small example given earlier, we obtain the results
shown in Table 1. In this table, the values f 4k1 r5 and
the sets S4k1 r5 are the ones obtained at the end of the
iteration, for the given k and r . The asterisk on the
lower left is to indicate that � is not computed when
k = 1 and r = 2. The maximum of f 431 r5 over all r
is 11, so r∗ = 2 and S431 r∗5= 81139. The heuristic finds
the solution 81139, with a profit of 11. On the other
hand, the optimal solution is 82139, with a profit of 22.

A drawback of Algorithm 2 is that it takes O4n2c5
space, because, for all k and r , we are storing the set
S4k1 r5. Our preliminary computational experiments
indicated that Algorithm 2 can only handle problem
instances of moderate size because of this large mem-
ory requirement.

It is, however, possible to reduce the memory
requirement to O4nc5, without any worsening of the
running time, by exploiting the fact that all of the
computations that take place in a given stage depend
only on the values that were computed in the pre-
ceding stage. Effectively, this enables us to drop the
index k from the f 4k1 r5 array.

The details are as follows: For r ∈ 801 0 0 0 1 c9, let f 4r5
denote the current value of the most profitable pack-
ing found so far, regardless of the stage k, having
a total weight of r . Also, for r ∈ 801 0 0 0 1 c9 and i =

11 0 0 0 1n, let B4r1 i5 be a Boolean variable taking the
value 1 if item i is currently in the set of items whose
profit is f 4r5, and 0 otherwise. The heuristic can then
be implemented as described in Algorithm 3.

Algorithm 3 (Dynamic programming for the QKP
with reduced memory)

Initialise f 4r5 to 0 for r = 01 0 0 0 1 c.
Initialise B4r1 i5 to 0 for all r = 01 0 0 0 1 c

and i = 11 0 0 0 1n.
for k = 11 0 0 0 1n do
for r = c to 0 (going down in steps of 1) do
if r ≥wk then

Let � be the profit of S4k− 11 r −wk5∪ 8k9.
if �> f 4r5 then

Set f 4r5 2= �,
Set B4r1 k5 2= 1.

end if
end if

end for
end for
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Let r∗ = arg max0≤r≤c f 4r5.
Compute the final set of items S4n1 r∗5.
(This can be done in O4n5 time using the

B4r∗1 i5 values.)
Output S4n1 r∗5 and the associated profit f 4r∗5.

Note that in Algorithm 3, the quantity � can still be
computed in linear time, using the identity

�= f 4r −wk5+ qkk + 2
k−1
∑

i=1

B4r −wk1 i5qik0

Therefore, Algorithm 3 also runs in O4n2c5 time.
The reason that we iteratively decrease r , instead of

increasing it, is that the value f 4r5 at a given stage k
depends on the values of f 4r5 and f 4r −wk5 from the
previous stage, but does not depend on the value of
f 4r ′5 from the previous stage, for any r ′ > r .

4. Enhancements
To gain a feeling for the potential of our DP heuristic,
we performed some experiments on randomly gen-
erated QKP instances. These instances all had n= 50,
and were created succeeding the following scheme,
which is standard in the literature (Billionet and
Calmels 1996, Caprara et al. 1999, Gallo et al. 1980,
Michelon and Veilleux 1996, Pisinger et al. 2007). For
a given density ã%, each profit qij is zero with proba-
bility 4100 −ã5%, and uniformly distributed between
1 and 100 with probability ã%. Each weight wi is uni-
formly distributed between 1 and 50. The capacity c
is uniformly distributed between 50 and

∑n
i=1 wi.

For each instance, we computed the average per-
centage gap between the lower bound found by our
heuristic and the optimal profit. The average gap over
100 instances was 0026% for ã= 100% and 16074% for
ã = 25%. This is very good for the dense instances,
but disappointing for the sparse ones. In the following
two sections, two simple enhancements to our heuris-
tic are presented that, in combination, drastically
improve the quality of the lower bounds obtained,
especially for the sparse instances.

4.1. Ordering the Items
Consider again the small example with n = 3, pre-
sented in the previous section. Observe that if we had
reordered the items so that either item 2 or 3 came
first, the DP heuristic would have found the optimal
solution. So, it is natural to consider the devising of
some intelligent way to order the items. Following
the papers of Gallo et al. (1980) and Caprara et al.
(1999) mentioned in §§2.3 and 2.4, it is natural to
consider sorting the items in nonincreasing order of
one of the values �1

i 1 0 0 0 1�
4
i , or one of the values

�̃2
i 1 0 0 0 1 �̃

4
i . This gives seven values in total. Moreover,

following the idea behind the greedy algorithm for

Table 2 Average Percentage Gaps for Various Bounds When ã= 100%

�1
i �̃2

i �2
i �̃3

i �3
i �̃4

i �4
i

UB UP 226024 34001 36050 13054 15024 13013 14084
LB UP 0087 0097 1002 0029 0036 0032 0035
LB DP 0019 0025 0025 0017 0029 0017 0035
LB DP/W 0005 0006 0006 0005 0005 0004 0004

the linear KP, mentioned in §2.1, it is also natural to
consider sorting the items in nonincreasing order of
any of these seven values divided by the weight wi.
This gives 14 different possible ordering rules in total.

Accordingly, for each of the 200 random instances
mentioned earlier, we computed 14 different upper
bounds. Moreover, for comparison purposes, we also
computed the corresponding seven upper bounds and
seven lower bounds obtained from the upper-planes
approach (i.e., by solving the knapsack problem (5)).

Tables 2 and 3 display the results obtained. Table 2
is concerned with dense instances and Table 3 with
sparse ones. The rows labelled “UB UP” and “LB
UP” give the average percentage gaps for the upper
and lower bounds obtained from the upper-planes
approach, respectively. The row labelled “LB DP”
gives the gaps for the lower bounds obtained from
our DP heuristic, when the various different � values
are used to sort the items. Finally, the row labelled
“LB DP/W” gives the same, when the � values
divided by the weights wi are used to sort the items.

It is clear that the upper bounds from the upper-
plane approach are rather poor in all cases. The
corresponding lower bounds are surprisingly good,
especially for dense instances. For our heuristic, the
lower bounds for dense instances are very good, espe-
cially when the � values are divided by the weights.
On the other hand, the various orderings do not help
at all for sparse instances. Moreover, bizarrely, divid-
ing the � values by the weights seems to make things
worse. This anomalous behaviour is rectified by the
second enhancement, described next.

4.2. Breaking Ties Intelligently
When inspecting the solutions obtained by the var-
ious algorithms on the sparse instances, we noticed
an interesting phenomenon. The optimal solution to
such instances almost always inserted more items into

Table 3 Average Percentage Gaps for Various Bounds When ã= 25%

�1
i �̃2

i �2
i �̃3

i �3
i �̃4

i �4
i

UB UP 203023 52070 52084 40061 40075 39070 40086
LB UP 4006 4001 4001 3039 3042 3033 3043
LB DP 16047 14063 14063 13079 14012 13056 13090
LB DP/W 25054 25013 25013 24042 24061 24038 24051
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Table 4 Average Percentage Gaps Obtained When Using the
Tie-Breaking Rule

�1
i �̃2

i �2
i �̃3

i �3
i �̃4

i �4
i

LB DP (ã= 100%) 0.19 0.25 0.25 0.17 0.29 0.17 0.35
LB DP/W (ã= 100%) 0.05 0.06 0.06 0.05 0.05 0.04 0.04
LB DP (ã= 25%) 1.50 1.61 1.61 1.42 1.72 1.62 1.63
LB DP/W (ã= 25%) 0.37 0.41 0.41 0.30 0.30 0.30 0.30

the knapsack than the DP heuristic did. This sug-
gests adjusting the DP heuristic slightly so that it
gives a preference for (partial) solutions with more
items. More precisely, suppose that, for a given k
and r in Algorithm 3, we find that � = f 4r5. Then,
if �S4k − 11 r − wk5� + 1 > �S4k1 r5�, we set S4k1 r5 =

S4k− 11 r −wk5∪ 8k9.
We call this enhancement the tie-breaking rule. When

this rule is used on its own, without any reorder-
ing of the items, the average percentage gap over the
same instances previously mentioned was 0026% for
ã = 100% and 3093% for ã = 25%. This represents a
substantial improvement for the sparse instances, but
has little or no effect on the dense instances.

The really interesting results, however, are obtained
when reordering and tie breaking are used in com-
bination. Table 4 shows the results obtained when
using this option. By comparing Table 4 with Tables 2
and 3, it is apparent that the addition of tie breaking
improves the performance dramatically for the sparse
instances, without having any effect on the perfor-
mance for the dense instances.

All things considered, the best option seems to be
to order the items in nonincreasing order of �3

i /wi,
�̃3

i /wi, �4
i /wi, or �̃4

i /wi, and to use the tie-breaking
rule. This gives an average percentage error of 0005 or
less for the dense instances, and 0030 or less for the
sparse instances.

5. Additional Computational Results
In this section, we present more extensive compu-
tational results. In §5.1, we present detailed results
for the four best variants of our heuristic. In §5.2,
we compare the best variant of our heuristic with
some other heuristics.

All routines were coded in the C language, com-
piled with gcc 40401 of Code::Blocks 10005, and run on a
Dell desktop, with a 3.10 GHz processor and 4 GB of
RAM, under the Windows 7 operating system.

5.1. Detailed Results for the Four Best Variants
We present here results for the four most promising
variants mentioned in §4.2, i.e., the ones in which the
tie-breaking rule is used and the items are consid-
ered in nonincreasing order of �3

i /wi, �̃3
i /wi, �4

i /wi,
or �̃4

i /wi. The instances were generated using the
scheme described at the start of §4, but this time we

Table 5 Average Percentage Gaps When Items Are Sorted According
to �3

i /wi

Instances DP heuristic UP Improvement

ã Avg. Std. Avg. Avg. Std. Avg. Perf
4%5 n gap dev. time gap dev. time (%)

100 20 00002 0001 0.003 0030 0061 0.000 71020
40 00000 00000 0.007 1005 1040 0.000 100000
60 0001 0003 0.047 0008 0013 0.001 78036
80 0003 0009 0.079 0008 0011 0.002 62033
100 0001 0004 0.176 0010 0019 0.005 86060
120 0002 0005 0.244 0012 0018 0.010 83026
140 0004 0012 0.120 0015 0036 0.011 68026
160 00002 00007 0.805 0010 0019 0.016 97082
180 00005 0001 0.521 0006 0007 0.020 91067
200 00002 00006 0.862 0005 0004 0.027 94066
220 00006 0001 1.090 0003 0005 0.035 82079
240 0001 0003 1.910 0007 0013 0.044 74087
260 0004 0015 1.440 0009 0018 0.055 50073
280 00009 0001 2.793 0003 0004 0.069 77032
300 00005 0001 6.142 0008 0014 0.140 93099
320 00006 00009 4.040 0005 0004 0.100 87085
340 0001 0001 1.268 0010 0004 0.114 89035
360 00003 00005 5.647 0004 0004 0.140 93010
380 00004 00003 6.673 00009 00003 0.163 54038

75 20 0021 0042 0.002 0063 1021 0.000 66044
40 0003 0007 0.009 0032 0057 0.000 88070
60 0017 0062 0.019 0086 1014 0.001 79031
80 0001 0003 0.045 0036 0038 0.002 95021
100 0001 0003 0.076 0030 0049 0.004 94029
120 0004 0012 0.135 0040 0055 0.006 89022
140 0001 0002 0.270 0027 0053 0.010 96033
160 0002 0005 0.425 0021 0026 0.014 89022
180 0001 0002 0.510 0018 0021 0.020 93056
200 0003 0005 0.700 0023 0028 0.026 86099

50 20 0049 1060 0.002 2018 4010 0.000 77029
40 0016 0036 0.008 1008 1077 0.000 84049
60 0009 0019 0.021 1017 1097 0.001 92003
80 0005 0016 0.046 0073 1017 0.002 92052
100 0001 0002 0.071 0089 0081 0.004 98083
120 0006 0013 0.149 0074 1017 0.006 90090
140 0006 0016 0.203 0046 0064 0.009 85066
160 0002 0007 0.387 0040 0027 0.014 92059

25 20 0015 0047 0.002 3098 5060 0.000 96015
40 0055 1051 0.008 4004 5003 0.000 86031
60 0024 0054 0.018 2091 3028 0.001 91068
80 0028 0039 0.043 2014 2029 0.002 86052
100 0029 0039 0.074 2071 2081 0.003 89024
120 0019 0028 0.123 2012 2050 0.006 91002
140 0014 0021 0.231 1078 1070 0.009 92007

generated 20 instances for n ∈ 8201401 0 0 0 13809 and for
ã% ∈ 825%150%175%1100%9.

The results for the four variants are shown in
Tables 5–8. It will be seen that, for each value of ã%,
the range of n varies. This is because we had to solve
each instance to proven optimality to compute the
percentage gaps, but this was possible only for cer-
tain values of ã and n. (To solve the instances to
optimality, we used the code of Caprara et al. 1999,
which was kindly given to us by the late Alberto
Caprara.)
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Table 6 Average Percentage Gaps When Items Are Sorted According
to �̃3

i /wi

Instances DP heuristic UP Improvement

ã Avg. Std. Avg. Avg. Std. Avg. Perf
4%5 n gap dev. time gap dev. time (%)

100 20 0008 0022 0.001 0059 0099 0.000 85029
40 00002 0001 0.008 0053 0069 0.000 99052
60 0001 0003 0.047 0008 0013 0.001 78036
80 0003 0009 0.080 0011 0018 0.002 73017
100 0001 0004 0.176 0010 0019 0.005 86060
120 0002 0005 0.252 0012 0018 0.007 83060
140 0004 00012 0.464 0011 0030 0.011 56096
160 00002 00007 0.803 0010 0019 0.017 97082
180 00005 0001 0.510 0006 0007 0.020 91067
200 00001 00006 0.899 0005 0004 0.027 94074
220 00005 00007 1.030 0003 0005 0.035 85087
240 0002 0003 1.500 0008 0014 0.045 74050
260 0004 0015 1.533 0009 0018 0.055 50073
280 00009 0001 2.607 0003 0004 0.069 77032
300 00005 0001 6.094 0008 0014 0.093 93099
320 00006 0001 3.364 0006 0006 0.099 88095
340 0001 0001 1.355 0010 0004 0.113 89035
360 00004 00007 5.487 0004 0003 0.140 89093
380 00004 00003 6.316 00009 00006 0.163 54038

75 20 0021 0042 0.002 0063 1021 0.000 66044
40 0003 0007 0.008 0025 0047 0.000 85042
60 0018 0062 0.021 0079 1003 0.001 77040
80 0001 0003 0.045 0036 0038 0.002 95049
100 0007 0026 0.076 0034 0056 0.004 74014
120 0004 0012 0.132 0040 0055 0.006 89054
140 0001 0002 0.275 0027 0053 0.010 96033
160 0002 0005 0.420 0021 0028 0.015 89044
180 0001 0002 0.504 0018 0021 0.019 92021
200 0003 0005 0.640 0023 0028 0.026 86093

50 20 0055 1057 0.002 1068 3036 0.000 67020
40 0009 0018 0.008 1020 1090 0.000 92034
60 0009 0019 0.021 1039 2005 0.001 93031
80 0005 0016 0.046 0073 1017 0.002 92049
100 0001 0002 0.072 1004 1033 0.003 99099
120 0006 0013 0.149 0072 1016 0.006 91065
140 0006 0016 0.200 0046 0064 0.009 85066
160 0002 0007 0.380 0038 0027 0.014 92036

25 20 0015 0047 0.002 3054 4047 0.000 95068
40 0055 1051 0.008 3086 5011 0.000 85065
60 0021 0053 0.017 2081 3021 0.001 92032
80 0028 0039 0.045 2069 4013 0.002 89028
100 0029 0039 0.074 2074 2081 0.003 89032
120 0019 0027 0.126 2000 2048 0.006 90041
140 0014 0021 0.227 1078 1070 0.009 92007

For each chosen pair of ã and n, the tables give
the average percentage gap from the optimum, the
standard deviation of this gap, and the time taken
to compute the bound (in seconds), for both the DP
heuristic and the upper-planes heuristic. Also, the last
column displays what we call the “performance” of
the DP heuristic, which is defined as

Avg. Gap from UP − Avg. Gap from DP
Avg. Gap from UP

× 100%0

These results clearly demonstrate the excellent
quality of the DP heuristic, because the average gap

Table 7 Average Percentage Gaps When Items Are Sorted According
to �4

i /wi

Instances DP heuristic UP Improvement

ã Avg. Std. Avg. Avg. Std. Avg. Perf
4%5 n gap dev. time gap dev. time (%)

100 20 0008 0022 0.004 0043 0081 0.000 79076
40 00000 00000 0.012 0061 0079 0.005 100000
60 0001 0004 0.093 0007 0012 0.048 76022
80 0003 0009 0.159 0008 0012 0.082 64053
100 0001 0004 0.351 0010 0019 0.179 86060
120 0002 0005 0.488 0012 0018 0.253 82014
140 0004 0012 0.910 0011 0030 0.445 56025
160 00002 00007 1.568 0010 0019 0.742 97082
180 00005 0007 0.996 0007 0049 0.496 92003
200 00002 00006 1.666 0005 0004 0.810 95066
220 00006 0001 2.000 0003 0005 0.953 82041
240 0001 0003 3.160 0008 0014 1.297 78084
260 0004 0015 2.775 0009 0018 1.298 50035
280 00009 0001 4.822 0003 0004 1.988 77032
300 00005 0001 10.96 0008 0014 6.065 93099
320 00005 00009 6.498 0005 0004 2.475 90007
340 0001 0001 2.320 0010 0004 1.216 88051
360 00003 00005 9.199 0004 0004 3.549 93003
380 00004 00003 10.71 00009 00003 4.191 54038

75 20 0021 0042 0.003 0063 1021 0.000 66044
40 0003 0007 0.014 0033 0060 0.006 89010
60 0015 0048 0.040 0083 1014 0.019 80086
80 0002 0004 0.087 0036 0038 0.045 94036
100 0007 0026 0.150 0032 0051 0.077 76083
120 0003 0012 0.259 0034 0041 0.132 88067
140 0001 0002 0.538 0027 0053 0.271 96021
160 0001 0005 0.830 0021 0026 0.411 91004
180 0001 0002 1.004 0018 0021 0.511 93056
200 0002 0005 1.296 0023 0028 0.610 90045

50 20 0048 1056 0.003 2037 4008 0.001 79048
40 0016 0036 0.015 0089 1050 0.007 81015
60 0011 0020 0.040 1017 1097 0.020 89084
80 0005 0016 0.089 0073 1017 0.046 92048
100 0001 0003 0.144 1004 1033 0.073 98019
120 0006 0013 0.287 0074 1017 0.146 90090
140 0006 0016 0.167 0046 0064 0.199 85045
160 0002 0007 0.766 0040 0027 0.375 92095

25 20 0005 0025 0.003 3098 5060 0.000 98054
40 0055 1052 0.013 4004 5003 0.006 86017
60 0022 0053 0.032 2091 3028 0.016 91026
80 0028 0039 0.083 2014 2029 0.042 86069
100 0031 0040 0.074 2043 2032 0.071 86088
120 0019 0028 0.240 2004 2022 0.121 90053
140 0014 0021 0.457 1078 1070 0.230 92007

is a fraction of 1% in all cases. They also demonstrate
the superiority of the DP heuristic over the upper-
planes heuristic, because the “performance” is almost
always well above 80%. Moreover, the running times
are quite reasonable, despite the fact that the heuristic
runs in pseudo-polynomial time, rather than polyno-
mial time.

Observe that the running times are slightly larger
in Tables 7 and 8 than in Tables 5 and 6. This is
because 0-1 KP instances must be solved to com-
pute the upper planes �4 and �̃4, whereas only the
continuous relaxations must be solved to compute �3
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Table 8 Average Percentage Gaps When Items Are Sorted According
to �̃4

i /wi

Instances DP heuristic UP Improvement

ã Avg. Std. Avg. Avg. Std. Avg. Perf
4%5 n gap dev. time gap dev. time (%)

100 20 0011 0026 0.005 1000 1024 0.001 89000
40 00000 00000 0.010 0046 0049 0.005 100000
60 0001 0004 0.093 0003 0009 0.047 66066
80 0004 0009 0.156 0007 0009 0.080 42085
100 0002 0005 0.217 0009 0008 0.106 77077
120 0001 0001 0.496 0007 0005 0.256 85071
140 00006 00009 0.896 0002 0003 0.436 70000
160 00001 00003 1.502 0017 0025 0.738 99041
180 00004 00007 0.965 0008 0009 0.483 95000
200 00001 00003 1.687 0004 0003 0.793 97050
220 00008 0001 1.907 0004 0006 0.932 80000
240 0002 0003 2.879 0011 0019 1.273 81081
260 0002 0020 2.772 0013 0024 1.268 84061
280 00008 0001 4.907 0005 0005 1.964 84000
300 00001 0002 12.05 0004 0003 5.334 97050
320 00007 0001 4.245 0004 0006 1.881 82050
340 0001 0001 2.302 0011 0004 1.182 90090
360 00004 00007 7.095 0004 0004 3.121 90000
380 00004 00003 9.982 0009 0006 3.953 93003

75 20 0029 0053 0.005 1004 1065 0.002 72011
40 0004 0007 0.014 0020 0028 0.006 80000
60 0006 0009 0.039 0060 0090 0.019 90000
80 0002 0005 0.087 0029 0031 0.044 93010
100 0002 0004 0.149 0021 0025 0.075 90047
120 00008 0001 0.255 0041 0052 0.129 98004
140 0001 0002 0.523 0034 0062 0.264 97005
160 0001 0002 0.826 0015 0013 0.405 93033
180 0001 0002 1.020 0009 0012 0.499 88088
200 0003 0005 1.241 0017 0016 0.598 82035

50 20 0029 0041 0.003 2048 3093 0.001 88030
40 0007 0016 0.015 0084 1033 0.007 91060
60 0009 0021 0.040 2079 0068 0.020 96077
80 0001 0003 0.089 1012 1042 0.045 99010
100 0002 0003 0.139 1051 0070 0.071 98067
120 0004 0007 0.285 0077 1046 0.144 94080
140 0001 0002 0.381 0024 0016 0.194 95083
160 00007 0001 0.729 0035 0028 0.370 98000

25 20 0011 2026 0.003 3073 4069 0.000 97005
40 0099 2003 0.003 3081 4062 0.000 74001
60 0034 0071 0.032 3017 3097 0.000 89027
80 0034 0040 0.083 2089 2088 0.040 88023
100 0022 0036 0.140 3001 3041 0.069 92069
120 0029 0030 0.236 2068 2060 0.118 89017
140 0014 0021 0.444 1078 1070 0.224 92013

and �̃3. On the other hand, there does not appear to
be any significant difference between the percentage
gaps obtained by the four variants of the heuristic.

We remark that, whereas the exact algorithm could
not be applied to larger instances without running
into time and memory difficulties, the DP heuristic
can be applied to much larger instances without any
difficulty at all, provided that the knapsack capacity
c is not excessively large.

5.2. Comparison with Other Heuristics
In this section, we compare our heuristic with
the heuristics of Chaillou et al. (1983) (CHM) and

Billionet and Calmels (1996) (BC) described in §2.5.
We also examine the effect of applying the fill-up-
and-exchange procedure of Gallo et al. (1980), also
described in §2.5, to the solutions generated by our
heuristic. For brevity, we consider only one ordering
rule: the one given by �̃3

i /wi.
Table 9 presents, for each pair ã and n, the aver-

age percentage gap and average running time of four
heuristics. The first is the abovementioned variant
of our heuristic. (The results in the corresponding
two columns are taken from Table 6.) The second is
the same variant of our heuristic, followed by the
fill-up-and-exchange (FE) procedure. The third is the
heuristic of Chaillou et al. (1983), and the fourth is
that of Billionet and Calmels (1996). (Recall that the
fourth heuristic consists of the third heuristic, fol-
lowed by FE.)

Three things are clear from this table: First, the DP
heuristic gives significantly better solutions than the
CHM heuristic, but with comparable running times.
Second, the addition of the fill-up-and-exchange step
leads to significant improvements in the solutions,
though at the cost of additional running time. Third,
and most surprising of all, the addition of the fill-
up-and-exchange step to the DP heuristic leads to the
optimal solution in all cases considered.

6. Concluding Remarks
We have shown that the classical dynamic program-
ming approach to the standard (linear) knapsack
problem can be modified to yield an effective heuris-
tic for the quadratic version. Specifically, our compu-
tational results demonstrate that, provided the items
are ordered correctly and the tie-breaking rule is
incorporated, one can consistently compute lower
bounds that are within 0005% of optimal. We are not
aware of any other constructive heuristic for the QKP
that is capable of consistently finding solutions of
such high quality. This high performance is especially
remarkable in light of the inapproximability result of
Khot (2006), mentioned in §1. Another surprising fact
is that the addition of a simple local search step to
our heuristic led to the optimal solution being found
for all instances considered.

On the other hand, because our heuristic runs in
O4n2c5 time and takes O4nc5 space, it could not be
used for instances with very large values of c. A pos-
sible way to proceed when c is large is to divide the
weights wi and the knapsack capacity c by a con-
stant, round up each weight to the nearest integer,
and round down the capacity. This could cause some
feasible solutions to be lost, but would make the run-
ning time more manageable.

Another possible approach worth exploring is
the following: A folklore trick in the literature
on the standard KP (see, e.g., §§2.3 and 2.6 of
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Table 9 DP Heuristic with �̃3
i /wi Compared to Other Heuristics

Instance DP DP with FE CHM BC

ã4%5 n Avg. gap Avg. time Avg. gap Avg. time Avg. gap Avg. time Avg. gap Avg. time

100 20 0008 00001 0.000 00006 4.59 0.000 2.03 0.000
40 00002 00008 0.000 00015 2.37 0.002 0.46 0.003
60 0001 00047 0.000 00157 2.13 0.016 0.63 0.010
80 0003 00080 0.000 00166 1.19 0.042 0.22 0.043
100 0001 00176 0.000 00267 1.26 0.061 0.34 0.092
120 0002 00252 0.000 00583 0.57 0.146 0.12 0.228
140 0004 00464 0.000 10221 1.32 0.228 0.12 0.347
160 00002 00803 0.000 10879 1.11 0.241 0.54 0.524
180 00005 00510 0.000 10561 0.63 0.565 0.10 1.091
200 00001 00899 0.000 20325 0.61 0.778 0.08 1.406
220 00005 10030 0.000 30017 0.57 1.567 0.16 2.165
240 0002 10500 0.000 40396 1.29 1.896 0.54 2.542
260 0004 10533 0.000 40086 0.69 2.532 0.26 4.557
280 00009 20607 0.000 70797 0.39 2.812 0.09 5.147
300 00005 60094 0.000 14001 0.81 4.641 0.31 6.692
320 00006 30364 0.000 13076 0.49 2.235 0.14 11.07
340 0001 10355 0.000 90721 0.37 9.402 0.07 16.83
360 00004 50487 0.000 12044 0.30 14.28 0.05 19.84
380 00004 60316 0.000 16011 0.14 9.322 0.03 15.57

75 20 0021 00002 0.000 00007 7.58 0.000 2.94 0.000
40 0003 00008 0.000 00018 4.59 0.001 1.69 0.002
60 0018 00021 0.000 00044 2.80 0.005 0.84 0.014
80 0001 00045 0.000 00098 2.57 0.033 1.05 0.044
100 0007 00076 0.000 00178 2.17 0.084 0.62 0.104
120 0004 00132 0.000 00356 1.27 0.128 0.33 0.227
140 0001 00275 0.000 00579 0.84 0.291 0.17 0.331
160 0002 00420 0.000 10015 0.57 0.314 0.06 0.594
180 0001 00504 0.000 10621 0.65 0.622 0.24 1.123
200 0003 00640 0.000 20216 0.81 0.922 0.28 1.582

50 20 0055 00002 0.000 00005 4.34 0.000 0.00 0.000
40 0009 00008 0.000 00017 6.37 0.000 2.29 0.002
60 0009 00021 0.000 00043 3.54 0.011 1.26 0.013
80 0005 00046 0.000 00095 4.26 0.029 1.33 0.040
100 0001 00072 0.000 00185 2.59 0.069 0.52 0.111
120 0006 00149 0.000 00333 2.43 0.137 0.29 0.189
140 0006 00200 0.000 00571 3.52 0.268 1.67 0.381
160 0002 00380 0.000 00991 1.59 0.472 0.38 0.597

25 20 0015 00002 0.000 00003 5.44 0.000 1.41 0.000
40 0055 00008 0.000 00010 5.60 0.001 0.26 0.003
60 0021 00017 0.000 00038 2.11 0.009 0.59 0.013
80 0028 00045 0.000 00085 3.29 0.034 1.72 0.058
100 0029 00074 0.000 00173 6.78 0.069 1.69 0.103
120 0019 00126 0.000 00331 4.32 0.106 0.58 0.212
140 0014 00227 0.000 00604 1.25 0.227 0.58 0.377

Kellerer et al. 2004) is to define the following function:

f ′4k1 r5 = min
{ k
∑

i=1

wixi2
k
∑

i=1

pixi ≥ r1 xi ∈ 80119

4i = 11 0 0 0 1 k5
}

0

Using a modified dynamic programming recursion,
one can compute f ′4n1 r5 for k = 11 0 0 0 1n and r =

01 0 0 0 1 p∗, where p∗ is the optimal profit of the KP
instance. The running time then becomes O4np∗5
rather than O4nc5. It may be possible to adapt this idea
to the QKP, and thereby obtain a DP heuristic that is

suitable for instances where the capacity c is large but
the profits qij are small.
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