
Vehicle Routing on Road Networks:

How Good is Euclidean Approximation?

Burak Boyacı∗ Thu Huong Dang† Adam N. Letchford∗

To appear in Computers & Operations Research

Abstract

Suppose that one is given a Vehicle Routing Problem (VRP) on a
road network, but does not have access to detailed information about
that network. One could obtain a heuristic solution by solving a mod-
ified version of the problem, in which true road distances are replaced
with planar Euclidean distances. We test this heuristic, on two differ-
ent types of VRP, using real road network data for twelve cities across
the world. We also give guidelines on the kind of VRP for which this
heuristic can be expected to give good results.

Keywords: vehicle routing problems, traveling salesman problem,
road networks, combinatorial optimisation.

1 Introduction

Vehicle Routing Problems (VRPs) are an important family of combinatorial
optimisation problems, and there is a huge literature on them (see, e.g.
the books [4, 25, 26, 40]). In most existing VRP models, the customers and
depot(s) are represented by nodes in a complete graph, and it is assumed
that the distance between each pair of nodes is known. In practice, however,
VRPs are often defined on road networks (e.g. [20,28,33]). We follow [17,29]
in calling these Steiner VRPs.

If one has access to detailed road network data, it is usually possible
to transform a Steiner VRP into a standard VRP, by solving a series of
shortest-path problems (see, e.g., [17,20]). When the road network is huge,
however, the shortest-path computations themselves may consume a signif-
icant amount of time and memory. Moreover, for a given pair of nodes, it
may happen that the cheapest, shortest and quickest paths are not the same.

∗Department of Management Science, Lancaster University, Lancaster LA1 4YX, UK.
E-mail: {B.Boyaci,A.N.Letchford}@lancaster.ac.uk

†STOR-i Centre for Doctoral Training, Lancaster University, Lancaster LA1 4YR, UK.
E-mail: T.H.Dang@lancaster.ac.uk

1

Thus, when a Steiner VRP involves more than one feature (cost, distance
and time, respectively), such a transformation may not be possible. In that
case, specialised approaches are needed (e.g. [7, 22,28]).

A related issue is that some VRP heuristics are explicitly designed to
work on “planar Euclidean” instances, in which the depot and customer
nodes have known coordinates. Examples include the classical “sweep” and
“petal” heuristics [21,24], and variations of them (e.g., [38]).

Another related stream of literature is concerned with the difference
between distances in road networks and Euclidean distances (e.g. [5,8,9,13,
14,30,31,37]). It is known that the distance between two random points in
a road network is typically around 30% larger than the Euclidean distance
[14,30], though this varies from country to country [5,8]. On the other hand,
the correlation between true and Euclidean distances is typically very high,
at over 0.98, for most cities and countries [30, 37]. This suggests that, for
Steiner VRPs, Euclidean distances multiplied by 1.3 could be a reasonable
surrogate for true distances.

The above considerations suggest the following three-phase heuristic ap-
proach to Steiner VRPs: (1) Create an approximation of the given instance,
by replacing true distances with Euclidean distances multiplied by 1.3 (or
some other suitable constant); (2) Solve the approximated instance, either
exactly or heuristically, and (3) attempt to convert the solution into a fea-
sible solution to the original instance. A natural question is whether this
heuristic scheme can lead to solutions of reasonable quality in practice. To
address this, we conduct extensive computational experiments, using real
road network data. Specifically, we construct 96 instances of the Steiner
versions of the Travelling Salesman Problem (TSP) and Capacitated VRP
(CVRP), using road network data for twelve cities across the world. For
the Steiner TSP, we are able to compare optimal solutions of the original
problem with optimal solutions of the Euclidean version. For the Steiner
CVRP, we compare heuristic solutions obtained using road and Euclidean
distances, using the same heuristic in both cases.

The experimental results show that Euclidean approximation can work
surprisingly well in some cities. The results also enable us to give guidelines
concerning the kind of Steiner VRP for which Euclidean approximation can
be expected to perform well (or badly).

The paper has the following structure. Section 2 contains a brief liter-
ature review. Section 3 explains how we extracted our road network data
and created our test instances. Sections 4 and 5 present the computational
experiments for the Steiner TSP and Steiner CVRP, respectively. Section 6
presents the guidelines and contains some concluding remarks.

2

2 Literature Review

We now briefly review the relevant literature. We cover the Steiner TSP in
Subsection 2.1, other Steiner VRPs in Subsection 2.2, the planar Euclidean
TSP in Subsection 2.3, and studies of road distances in Subsection 2.4.

2.1 The Steiner TSP

In the Steiner TSP, we are given a connected undirected graph G = (V,E),
a positive cost ce for each e ∈ E, and a set VR ⊆ V of required vertices. The
task is to find a minimum-cost closed walk that visits each required vertex
at least once. Edges may be traversed more than once if desired.

Cornuéjols et al. [17] defined the Steiner TSP and presented some poly-
hedral results for it. In the same year, Fleischmann [20] proposed a cutting-
plane algorithm for the Steiner TSP and obtained encouraging results. Some
additional computational results are given in [16].

Interest in the Steiner TSP was revived by Letchford et al. [29], who
explored several integer programming formulations. Xia et al. [41] proposed
to solve the problem with branch decomposition and dynamic programming
instead. A specialised branch-and-cut algorithm was given in Rodŕıguez-
Pereira et al. [39]. Álvarez-Miranda and Sinnl [1] proposed instead to convert
Steiner TSP instances to standard TSP instances, and then use a state-of-
the-art TSP solver like CONCORDE [2].

2.2 Other Steiner VRPs

Apart from the Steiner TSP, the Steiner VRPs that have received most
attention are Arc Routing Problems (ARPs). An ARP is a VRP in which
demands are located along the edges or arcs of a network, rather than at
nodes. In the literature on ARPs, it is common to model problems directly
on road networks, rather than on a complete graph (see, e.g. the books
[15,18]).

Outside the ARP literature, a key paper is Garaix et al. [22]. They
pointed out that, in a road network, the shortest and quickest paths be-
tween two vertices may differ. This led them to propose a specialised exact
algorithm for the Steiner VRP with time windows, based on a data structure
called a multi-graph. Letchford et al. [28] proposed an alternative algorithm
that works on the original road network rather than the multi-graph. How-
ever, Ben Ticha et al. [7] showed that, in practice, the multi-graph approach
usually works better.

Another work worth mentioning, which however was never published, is
Fleischmann [19]. Fleischmann defined a “Steiner” version of the CVRP, in
which a node in V is designated the depot, and there is a fleet of identical

3

vehicles, each of capacity Q, located at the depot. He also discussed various
integer programming formulations of the problem.

Finally, we mention that Letchford et al. [29] presented integer program-
ming formulations of some other Steiner VRPs, in addition to the Steiner
TSP.

2.3 The planar Euclidean TSP

In the planar Euclidean TSP, we are given the coordinates of some points
in the plane, and the cost of travel between any two points is equal to the
Euclidean distance between them. The goal is to find a minimum-cost tour
that passes through each point exactly once. The planar Euclidean TSP is a
special case of the so-called metric TSP, in which the costs obey the triangle
inequality.

Unfortunately, the planar Euclidean TSP is strongly NP-hard [23]. On
the other hand, there is some evidence that it is a ‘relatively easy’ special
case of the TSP:

• The metric TSP is APX-hard [35], but there is a polynomial-time
approximation scheme for the planar Euclidean TSP [3].

• The fastest known exact algorithm for the TSP takes O
(
n22n

)
time

[27], but the planar Euclidean TSP can be solved in O
(
2
√
n
)

time [10].

• Large-scale planar Euclidean instances can often be solved to proven
optimality in a reasonable amount of time by branch-and-cut [2, 34].

2.4 Road distances versus Euclidean distances

Cole & King [14] defined the “deviation factor” of a road network as the
average, over all pairs of nodes, of the ratio between the road distance and
the Euclidean distance. They stated that, for most cities and countries, the
deviation factor ranges from 1.2 to 1.4.

Love & Morris [30, 31] proposed some more complex functions, based
on `p norms, to estimate road distances from planar coordinates. Unfortu-
nately, as pointed out by Berens & Körling [8,9], the Love–Morris functions
involve parameters that must be estimated, and the optimal parameter val-
ues can vary significantly from city to city.

Brimberg & Love [13] presented an alternative function, based on a linear
combination of `1 and `2 distances. Again, however, the best parameters
vary from city to city.

Phibbs & Luft [37] computed the correlation between road distances
and Euclidean distances for several cities, using real data. The average
correlation coefficient was remarkably high at 0.987. Interestingly, however,
this reduced to 0.826 when the data was restricted to pairs of points that
are no more than 15 miles apart in terms of Euclidean distance.

4

More recently, Ballou et al. [5] computed the deviation factor for several
cities and countries across the world. They found that it ranged from 1.2 to
1.6, with mountains and rivers being the main cause of large values.

3 Data Collection and Instance Creation

In this section, we explain how we gathered our road network data, report
some simple statistics for our selected road networks, and explain how we
created our test instances.

3.1 Data collection

The first step was to select twelve cities from across the world. We selected
London, Paris, Madrid, Barcelona, Moscow, Istanbul, New York, Mexico
City, Hanoi, Seoul, Karachi and Johannesburg. Comprehensive data on the
road networks of each of these cities are available from OpenStreetMap [32].
Road junctions and key landmarks are represented by nodes, and roads (or
road segments) are represented by edges. The position of each node is given
by its latitude and longitude, and the length of each road (or road segment)
is given in kilometres.

We used the Python package OSMnx [12] to extract and process data
from OpenStreetMap. For each city, we selected a key landmark as a “town
centre”, and then computed the size of the smallest square, with the given
centre, that contained 2500 nodes. We then stored those nodes, together
with all edges that connected pairs of the selected nodes. For a given city,
we let V denote the set of 2500 nodes, E the set of edges and G the graph.

For reasons which will become clear, for each city, we also computed a
smaller square, centred on the same point, that contained only 2000 nodes.

Table 1 gives the following for each of the twelve cities mentioned above:
the length (and therefore also width) of the two squares, in metres; the name
of the chosen town centre in OpenStreetMap; and the number of edges in E.

Figure 1 shows the maps for Paris, London and Mexico City, for the
smaller squares (with 2000 nodes). These maps are based on the so-called
Universal Transverse Mercator projection, which is the default projection
in OSMNX. The two “holes” in the London map are caused by Buckingham
Palace and two nearby parks, which more or less divide the given part of
London into two districts. (A similar phenomenon occured with Madrid.)
The “holes” in the Mexico City map are caused by sports facilities.

Now, let V ′ denote the set of 2000 nodes for each city, and note that
V ′ ⊂ V . For each pair {u, v} ⊂ V ′, we computed the Euclidean distance (in
metres) between u and v, and the length (in metres) of the shortest path
in G between u and v. We denote these quantities by δ(u, v) and ∆(u, v),
respectively. To determine the ∆ values, we used Dijkstra’s single-source
shortest-path algorithm.

5

City Len 1 Len 2 Centre |E|

London 1644.5 1896.3 Mayfair 5339
Paris 2135.0 2396.0 Eiffel 4932

Madrid 1845.4 2226.1 Puente de Vallecas 5093
Barcelona 1912.5 2205.0 Sant Gervasi - Galvany 4652
Moscow 3060.5 3608.5 Red Square 4929
Istanbul 1527.0 1743.7 Metrogarden Centre 7102

New York 3025.6 3301.6 Korean Town 5122
Mexico City 1637.3 1831.0 Granjas México 6146

Hanoi 1730.4 1959.5 National Cinema Center 5828
Seoul 1787.3 2095.5 The Plaza 6836

Karachi 1553.0 1814.5 Jinnahabad 7189
Jo’burg 2282.3 2670.0 Hillbrow 6037

Table 1: Extraction of twelve road networks with |V | = 2500

(a) Paris (b) London (c) Mexico City

Figure 1: Maps of smaller square regions

6

City DF r Slope Constant

Paris 1.174 0.989 1.094 129.126
Barcelona 1.201 0.986 1.119 112.312
Karachi 1.201 0.986 1.125 92.129
Moscow 1.255 0.983 1.124 292.372
London 1.268 0.976 1.200 79.442
Jo’ burg 1.283 0.975 1.215 106.805
Istanbul 1.302 0.975 1.171 149.319
Madrid 1.306 0.944 1.265 37.712

New York 1.340 0.864 1.258 218.977
Hanoi 1.346 0.972 1.161 228.002
Seoul 1.358 0.954 1.189 191.468

Mexico City 1.403 0.966 1.188 272.295

Table 2: Euclidean distances versus true road distances for nodes
in V ′.

The reason for computing δ and ∆ values for nodes in V ′, rather than V ,
is as follows. In the real road network, there exist many roads that connect
nodes in V \V ′ with nodes outside of V . These roads are not included in E.
Thus, if we computed shortest paths in G between nodes in V \ V ′, there is
a risk that the resulting ∆ values would be over-estimates of the true road
distances.

When computing the δ values, we regarded the latitude and longitude
of each point as its horizontal and vertical coordinate, respectively. This
induces some distortion in the computation of the δ values, given that the
Earth is spherical. Fortunately, it can be shown that the distortion is less
than 0.1% for each of our chosen cities.

3.2 Road distances versus Euclidean distances

The next step was to compare road distances with Euclidean distances, for
each city. Following Cole & King [14], we computed the deviation factor
(DF) for each city, which we define as:(

|V ′|
2

)−1 ∑
{u,v}⊂V ′

∆(u, v)

δ(u, v)
.

We also performed a linear regression, comparing the ∆ values with the δ
values, again only for pairs of nodes in V ′. Table 2 shows, for each city, the
DF, the Pearson correlation coefficient, and the slope and constant in the
regression. The cities are sorted in increasing order of DF.

Note that, in every case, the slope in the regression is less than the DF,
and the constant term is positive. This suggests that the ratio between

7

1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

6000

Euclidean distance

Tr
ue

 D
is

ta
nc

e

(a) Paris

1000 2000 3000 4000

0

1000

2000

3000

4000

5000

Euclidean distance

Tr
ue

 D
is

ta
nc

e

(b) London

1000 2000 3000 4000

1000

2000

3000

4000

5000

Euclidean distance

Tr
ue

 D
is

ta
nc

e

(c) Mexico City

Figure 2: Scatterplots of road distance versus Euclidean distance

∆(u, v) and δ(u, v) tends to decrease as δ(u, v) increases. This is confirmed
by the scatterplots in Figure 2.

Note that the scatterplot for Paris is very “smooth”, as one might ex-
pect from the very high correlation coefficient. The scatterplots for London
and Mexico City, on the other hand, are remarkably “spread out”. This is
probably due to the presence of “holes”, that we mentioned above.

3.3 Creation of Steiner TSP instances

Next, we explain how we created our Steiner TSP instances. For each of the
twelve cities, we constructed four instances, as follows. We took the corre-
sponding graph G = (V,E), and set |VR| to a value in {125, 250, 500, 1000}.
To do this, we simply set VR to a random subset of V ′ with the desired
cardinality. (The reason for selecting required nodes from V ′ rather than
V was to avoid over-estimation of the ∆ values between pairs of required
nodes; see Subsection 3.1.) The cost of each edge e ∈ E was set to the
length of the corresponding road, rounded to the nearest metre.

Figure 3 shows the instances for Paris and Mexico City, for the case
|VR| = 125. To aid visibility, only nodes in V ′ are displayed. The nodes in
VR and V ′ \ VR are represented by solid and hollow circles, respectively. (In
the online version of the paper, the required nodes are in red and the others
in green.)

For each city, we created an additional four instances, by setting V ′ to
the 1000 closest nodes to the centre, instead of the 2000 closest nodes. The
effect of this is that, for those instances, the required nodes become much
closer together. This led to eight instances per city, i.e., 96 in total.

3.4 Creation of Steiner Capacitated VRPs

We also created 96 instances of the Steiner CVRP. To do this, we simply
took each of the Steiner TSP instances, set the demand of each required
node to one, and set the vehicle capacity Q to |VR|/5. The node closest
to the centre of the square was selected to be the depot. The objective
function is to minimise the total distance travelled, and there is no limit on

8

446000 447000 448000 449000 450000

54
10

00
0

54
11

00
0

54
12

00
0

54
13

00
0

54
14

00
0

(a) Paris

487500 488000 488500 489000 489500 490000 490500

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

(b) Mexico

Figure 3: Location of 125 required nodes for two cities

the number of vehicles used. (Of course, at least five vehicles are needed in
any feasible solution.)

4 Experiments with the Steiner TSP

In this section, we describe our experiments with the Steiner TSP. For all
experiments, we used a computer with an i5-8250U processor, running under
Windows 10 at 1.6 GHz with 16GB of RAM.

4.1 Solution of Steiner TSP instances

The first step was to solve the Steiner TSP instances to optimality. Recall
that an instance is given by a graph G = (V,E) with |V | = 2500, a set of
required nodes VR, and a cost vector c ∈ RE

+. To solve it, we considered two
options:

1. Use the “single-commodity flow” approach [29] to formulate the in-
stance as an MILP with O

(
|E|
)

variables and constraints, and then
feed that MILP into CPLEX.

2. Convert the Steiner instance into a standard TSP instance with |VR|
nodes, in which the cost of travel between nodes u and v is ∆(u, v).
Then feed that TSP instance into CONCORDE [2].

We found that, for the instances considered, the second approach was faster.
From now on, for a given Steiner TSP instance, we let “OPT” denote

the cost of the optimal solution (which is measured in metres).

4.2 The heuristic

The next step was to run the heuristic for each of the instances. In more
detail, we did the following for each instance:

9

1. Construct a planar Euclidean TSP instance with |VR| nodes, in which
the cost of travel between nodes u and v is δ(u, v). Then feed that
TSP instance into CONCORDE.

2. Store the optimal TSP tour and let L be its cost.

3. Select an arbitrary starting node, and traverse the tour. Let vk be the
kth node visited in the tour, where k ranges from 1 to |VR|.

4. For k = 1, . . . , |VR|−1, run Dijkstra’s algorithm to compute a shortest
path in G from vk to vk+1. Also compute a shortest path from v|VR|
to v1.

5. Replace each edge of the TSP tour with the corresponding shortest
path, to obtain a heuristic solution to the original Steiner TSP in-
stance.

6. Let U be the length of the heuristic solution, i.e., the sum of the lengths
of the |VR| shortest paths.

We now make three remarks about this procedure:

• The shortest-path phase in step 3 takes very little time in practice,
since vk tends to be very close to vk+1 in G, and we abort the Dijkstra
call as soon as the distance label for vk+1 becomes permanent.

• Let t(e) denote the number of times that edge e is traversed in the
heuristic solution. If t(e) > 2, the solution can be improved as follows:
if t(e) is even, set t(e) to 2, otherwise, set it to 1. We let U− denote
the cost of the improved solution.

• For any given Steiner TSP instance, we have L ≤ OPT ≤ U− ≤ U .

4.3 Results

Table 3 shows, for each of combination of |V ′| and |VR|, the average value
of several ratios of interest. More details can be found in A.

An inspection of the ratios U/OPT and U−/OPT reveals that, on the
whole, Euclidean approximation performs reasonably well. In particular, in
most cases, those ratios are much smaller than the corresponding DFs that
we presented in Table 2.

On the other hand, both OPT/L and U/L tend to be larger than the
corresponding DF. A possible explanation for this is the following two facts:
(a) consecutive required nodes in an optimal Euclidean TSP solution tend to
be close together and (b) as mentioned in Subsection 3.2, the ratio between
∆(u, v) and δ(u, v) tends to be higher when δ(u, v) is small.

It is also apparent that U/OPT, U−/OPT, U/L and U−/L tend to
increase as |VR| increases, but decrease as |V ′| increases. Closer examination

10

|V ′| |VR| OPT/L U/OPT U−/OPT U/L U−/L

1000 125 1.403 1.092 1.078 1.538 1.518
1000 250 1.403 1.156 1.114 1.630 1.568
1000 500 1.391 1.207 1.136 1.815 1.676
1000 1000 1.315 1.353 1.183 1.799 1.562
2000 125 1.394 1.064 1.058 1.484 1.476
2000 250 1.417 1.106 1.082 1.571 1.535
2000 500 1.416 1.179 1.131 1.675 1.605
2000 1000 1.388 1.275 1.165 1.780 1.621

Table 3: Average ratios for Steiner TSP instances.

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

|V′|/ |VR|

U
− /O

P
T

1 2 4 8 16

Barcelona
Hanoi
Istanbul
Jo' Burg
Karachi
London
Madrid
Mexico
Moscow
New York
Paris
Seoul

Figure 4: Scatterplot between |V ′|/|VR| and U−/OPT.

revealed that the quantity |V ′|/|VR| plays a key role. For example, Figure
4 shows a scatterplot between U−/OPT and |V ′|/|VR| with different colors
for different cities. It is apparent that the heuristic gets better as |V ′|/|VR|
increases. An explanation for this is that as |V ′|/|VR| increases, the average
distance between consecutive required nodes in the optimal Euclidean TSP
solution increases. This in turn causes the average ratio between ∆(u, v)
and δ(u, v) to decrease.

In Figure 5, we show the following for the Paris instance with |VR| = 125
and |V ′| = 1000: the optimal Steiner TSP solution, the optimal solution to
the corresponding planar Euclidean TSP instance, and the Steiner TSP so-
lution from the heuristic. As before, nodes in VR and V ′\VR are represented
by solid and hollow circles, respectively. It is clear that the heuristic solution
is of excellent quality.

Figure 6 shows the same for the corresponding Mexico City instance.
In this case, the tour found by the heuristic is of poor quality and passes
through many nodes in V \ V ′. (For this reason, in Figure 6(c), some nodes

11

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

(a) Steiner TSP solution (b) Euclidean TSP solution (c)Solution from heuristic

Figure 5: Paris with |V ′| = 1000 and |VR| = 125

488000 488500 489000 489500 490000

21
44

50
0

21
45

00
0

21
45

50
0

21
46

00
0

21
46

50
0

488000 488500 489000 489500 490000

21
44

50
0

21
45

00
0

21
45

50
0

21
46

00
0

21
46

50
0

488000 488500 489000 489500 490000

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

(a) Steiner TSP solution (b) Euclidean TSP solution (c)Solution from heuristic

Figure 6: Mexico with |V ′| = 1000 and |VR| = 125

in V \V ′ are included. In the online version, they are cadet blue). In Figure
4, the solutions found by Euclidean approximation for Mexico City are the
worst.

For completeness, we also present some results concerned with running
times. (We emphasise, however, that our goal in this paper is to deter-
mine the loss of solution quality incurred by using Euclidean approximation,
rather than to argue for the use of specific heuristics.) Table 4 shows the
average running time, for each combination of |V ′| and |VR|, taken for (a)
computing shortest paths between all required nodes (TS), (b) solving the
TSP in CONCORDE (TC), (c) solving the Euclidean TSP in CONCORDE (T ′C)
and (d) computing shortest (s, t)-paths between consecutive nodes in the
Euclidean TSP solution (T ′S). More details can be found in A.

Note that CONCORDE tends to solve the Euclidean instances more quickly
than the non-Euclidean ones. Moreover, T ′S tends to be less than TS . This
is because consecutive nodes in the Euclidean TSP solution tend to be close
together, and we abort each Dijkstra call as soon as the target node has
been labelled permanently.

5 Experiments with the Steiner CVRP

In this section, we describe our experiments with the Steiner CVRP. We
continued to use the same computer as described in Section 4.

12

|V ′| |VR| TS TC T ′C T ′S

1000 125 0.219 0.294 0.510 0.325
1000 250 0.513 1.138 1.738 0.667
1000 500 1.502 17.553 13.034 1.371
1000 1000 4.408 8005.008 910.473 2.372
2000 125 0.441 0.343 0.147 0.276
2000 250 1.014 2.456 3.010 0.509
2000 500 2.632 27.858 11.641 1.016
2000 1000 5.215 276.058 103.762 1.563

Table 4: Average running time (in seconds) for Steiner TSP in-
stances.

5.1 Heuristics

Since current exact CVRP algorithms tend to struggle when instances have
more than 200 customers [36], we used heuristics both for the Steiner CVRP
and for the Euclidean approximation. To make the comparison fair, we used
exactly the same heuristic for both variants. In particular, we used a route-
first cluster-second heuristic (see Beasley [6], Bodin [11]). In our experience,
this kind of heuristic gives a good balance between solution quality and
running time, while being easy to implement.

First we explain how the heuristic works when Euclidean approximation
is not used. The first step is to solve (optimally) the Steiner TSP on the
set VR, using the same method that we used in Subsection 4.1. This yields
a “giant tour” that passes through all nodes in VR. The next step is to
run Dijkstra’s algorithm one more time, to compute shortest paths from the
depot to each node in VR.

Now, let vk be the kth required node visited in the giant tour, where k
ranges from 1 to |VR|. For each pair 1 ≤ i < j ≤ m, we create a trip that
travels from the depot to vi via a shortest path, then travels to vi+1, . . . , vi+j ,
and then returns to the depot. If the trip is feasible, we store it in memory.
We then use the standard method (see again [6]) to find the best CVRP
solution that uses only trips that are in memory. Apart from the solution of
the TSP in CONCORDE, the whole approach takes O

(
|V ||VR| log |V |

)
time. We

let T be the total running time, and U denote the resulting upper bound.
For the Euclidean approximation, we proceed as follows. We solve the

planar Euclidean TSP on the set VR using CONCORDE. This gives a “giant
tour” on VR. We then use the standard method to convert the giant tour
into a feasible solution to the planar Euclidean CVRP. Finally, we solve
a series of (s, t)-path problems in G to convert the CVRP solution into a
Steiner CVRP solution. Apart from the solution of the TSP in CONCORDE,
the whole approach takes O

(
|V ||VR| log |V |

)
time. We let TE denote the

13

|V | |VR| UE/U TE/T U ′E/U T ′E/T

1000 125 1.088 0.554 1.080 0.566
1000 250 1.131 1.338 1.106 1.340
1000 500 1.208 2.321 1.157 2.321
1000 1000 1.314 0.588 1.206 0.588
2000 125 1.055 1.446 1.050 1.457
2000 250 1.087 1.879 1.076 1.882
2000 500 1.163 0.952 1.141 0.953
2000 1000 1.243 0.859 1.174 0.859

Table 5: Average results for Steiner CVRP instances.

1.
0

1.
1

1.
2

1.
3

U
′ E

/U

Barcelona
Hanoi
Istanbul
Jo' Burg
Karachi
London
Madrid
Mexico
Moscow
New York
Paris
Seoul

1 2 4 8 16

Figure 7: A scatterplot between |V ′|/|VR| and U ′E/U

total running time, and UE denote the resulting upper bound.
As in the case of the Steiner TSP, we can often improve UE by checking

if any of the vehicles traverse any edges more than twice. We denote the
improve bound by U ′E . Note that U ≤ U ′E ≤ UE .

5.2 Results

Table 5 shows, for each of combination of |V ′| and |VR|, the average value
of several ratios of interest. More details can be found in B.

An inspection of the ratios UE/U and U ′E/U reveals that, on the whole,
Euclidean approximation performs reasonably well. As in the case of the
Steiner TSP, it seems that the quality of approximation improves as |V ′|/|VR|
increases; see also the scatterplot in Figure 7. As for running times, there
is no obvious pattern.

In Figures 8 and 9, we show, for the Paris instances with |VR| = 125, the
solutions that correspond to U and UE . It is clear that, for these instances,
Euclidean approximation yields solutions that are very close to the ones

14

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

(a) U (b) UE

Figure 8: Paris with |V ′| = 1000

446000 447000 448000 449000 450000

54
10

00
0

54
11

00
0

54
12

00
0

54
13

00
0

54
14

00
0

446000 447000 448000 449000 450000

54
10

00
0

54
11

00
0

54
12

00
0

54
13

00
0

54
14

00
0

(a) U (b) UE

Figure 9: Paris with |V ′| = 2000

obtained without it.
Figures 10 and 11 show the same for the corresponding Mexico City

instances. In this case, the solutions found by Euclidean approximation are
noticeably different to (and worse than) the ones obtained without it. It is
also comfirmed by Figure 7.

6 Concluding Remarks

We have seen that, on the whole, using Euclidean distances instead of real
road distances gives acceptable results for the Steiner TSP and Steiner
CVRP. This is especially true when only a small proportion of nodes re-
quire service, which is the case in almost all real-life applications.

We believe that Euclidean approximation would also work well for some
more complex Steiner VRPs, for example with split deliveries, backhauls,
multiple depots, and/or demands located on edges as well as nodes. We are
currently working on the use of Euclidean approximation to compute fast

15

488000 488500 489000 489500 490000

21
44

00
0

21
45

00
0

21
46

00
0

488000 488500 489000 489500 490000
21

44
00

0
21

45
00

0
21

46
00

0
21

47
00

0

(a) U (b) UE

Figure 10: Mexico with |V ′| = 1000

487000 488000 489000 490000

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

487000 488000 489000 490000

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

(a) U (b) UE

Figure 11: Mexico with |V ′| = 2000

16

upper bounds for arc routing problems.
It would be hard, however, to adapt the approach to problems with time

windows. This is because a route that is feasible for the planar Euclidean
version may become infeasible when the edges in the route are replaced
with shortest paths in the road network. This difficulty could be alleviated
somewhat by multiplying the Euclidean distances by 1.3 (or some other
suitable constant, see Subsection 2.4) before solving the planar Euclidean
version. Nevertheless, even if this is done, there is still a chance of obtaining
routes that are infeasible for the original instance, especially if the time
windows are narrow.

Acknowledgement: The second author gratefully acknowledges financial
support from the EPSRC through the STOR-i Centre for Doctoral Training
under grant EP/L015692/1.

References

[1] E. Álvarez-Miranda & M. Sinnl (2019) A note on computational aspects
of the Steiner traveling salesman problem. Int. Trans. Oper. Res., 26,
1396–1401.

[2] D. Applegate, R. Bixby, V. Chvátal & W. Cook (2006) The Traveling
Salesman Problem: A Computational Study. Princeton NJ: Princeton
University Press.

[3] S. Arora (1998) Polynomial-time approximation schemes for Euclidean
TSP and other geometric problems. J. of the ACM, 45, 753–782.

[4] M.O. Ball, T.L. Magnanti, C.L. Monma & G.L. Nemhauser (eds.)
(1995) Network Routing. Handbooks in Operations Research and Man-
agement Science, vol. 8. Elsevier.

[5] R.H. Ballou, H. Rahardja & N. Sakai (2002) Selected country circuity
factors for road travel distance estimation. Transp. Res. A, 36, 843–848.

[6] J.E. Beasley (1983) Route first–cluster second methods for vehicle rout-
ing. Omega, 11, 403–408.

[7] H. Ben Ticha, N. Absi, D. Feillet & A. Quilliot (2018) Vehicle routing
problems with road network information: state of the art. Networks,
72, 393–406.

[8] W. Berens (1988) The suitability of the weighted `p-norm in estimating
actual road distances. Eur. J. Oper. Res., 34, 39–43.

[9] W. Berens & F.J. Körling (1985) Estimating road distances by mathe-
matical functions. Eur. J. Oper. Res., 21, 54–56.

17

[10] M. de Berg, H.L. Bodlaender, S. Kisfaludi-Bak & S. Kolay (2018) An
ETH-tight exact algorithm for Euclidean TSP. In Proc. FOCS 2018,
pp. 450–461. IEEE Computer Society.

[11] L.D. Bodin (1975) A taxonomic structure for vehicle routing and
scheduling problems. Comput. Urban Soc., 1, 11–29.

[12] G. Boeing (2017) OSMnx: new methods for acquiring, constructing,
analyzing, and visualizing complex street networks. Comput. Environ.
& Urban Systems, 65, 126–139.

[13] J. Brimberg & R.F. Love (1992) A new distance function for modeling
travel distances in a transportation network. Transp. Sci., 26, 129–137.

[14] J.P. Cole & C.A.M. King (1968) Quantitative Geography. London: Wi-
ley.

[15] Á. Corberán & G. Laporte (eds.) (2014) Arc Routing: Problems, Meth-
ods, and Applications. Philadelphia, PA: SIAM.

[16] Á. Corberán, A.N. Letchford & J.M. Sanchis (2001) A cutting plane
algorithm for the general routing problem. Math. Program., 90, 291–
316.

[17] G. Cornuéjols, J. Fonlupt & D. Naddef (1985) The travelling salesman
problem on a graph and some related integer polyhedra. Math. Pro-
gram., 33, 1–27.

[18] M. Dror (ed.) (2000) Arc Routing: Theory, Solutions and Applications.
Dordrecht: Kluwer.

[19] B. Fleischmann (1982) Linear programming approaches to traveling
salesman and vehicle scheduling problems. Presented at the XIth In-
ternational Symposium on Mathematical Programming, Bonn.

[20] B. Fleischmann (1985) A cutting plane procedure for the traveling sales-
man problem on a road network. Eur. J. Opl Res., 21, 307–317.

[21] B.A. Foster & D.M. Ryan (1976) An integer programming approach to
the vehicle scheduling problem. J. Oper. Res. Soc., 27, 367–384.

[22] T. Garaix, C. Artigues, D. Feillet & D. Josselin (2010) Vehicle routing
problems with alternative paths: An application to on-demand trans-
portation. Eur. J. Oper. Res., 204, 62–75.

[23] M.R. Garey, R.L. Graham & D.S. Johnson (1976) Some NP-complete
geometric problems. In Proc. of the 8th ACM STOC, pp. 10–22.

18

[24] B.E. Gillett & L.R. Miller (1974) A heuristic algorithm for the vehicle-
dispatch problem. Oper. Res., 22, 340–349.

[25] B.L. Golden & A. Assad (eds.) (1988) Vehicle Routing: Methods and
Studies. Amsterdam: North-Holland.

[26] B. Golden, S. Raghavan & E. Wasil (eds.) (2008) The Vehicle Routing
Problem: Latest Advances and New Challenges. Boston, MA: Springer.

[27] M. Held & R. Karp (1962) A dynamic programming approach to se-
quencing problems. SIAM Journal, 10, 196–209.

[28] A.N. Letchford, S.D. Nasiri & A. Oukil (2014) Pricing routines for
vehicle routing with time windows on road networks. Comput. & Oper.
Res., 51, 331–337.

[29] A.N. Letchford, S.D. Nasiri & D.O. Theis (2013) Compact formulations
of the Steiner traveling salesman problem and related problems. Eur.
J. Oper. Res., 228, 83–92.

[30] R.F. Love & J.G. Morris (1972) Modelling inter-city road distances by
mathematical functions. Oper. Res. Quart., 23, 61–71.

[31] R.F. Love & J.G. Morris (1979) Mathematical models of road travel
distances. Mgmt. Sci., 25, 130–139.

[32] OpenStreetMap available at http://wiki.openstreetmap.org

[33] C.S. Orloff (1974) A fundamental problem in vehicle routing. Networks,
4, 35–64.

[34] M. Padberg & G. Rinaldi (1991) A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems. SIAM
Rev., 33, 60–100.

[35] C.H. Papadimitriou & M. Yannakakis (1993) The traveling salesman
problem with distances one and two. Math. Oper. Res., 18, 1–11.

[36] D. Pecin, A. Pessoa, M. Poggi & E. Uchoa (2017) Improved branch-cut-
and-price for capacitated vehicle routing. Math. Program. Comput., 9,
61–100.

[37] C.S. Phibbs & H.S. Luft (1995) Correlation of travel times on roads
versus straight line distance. Med. Care Res. Rev., 52, 32–42.

[38] J. Renaud, F. F. Boctor & G. Laporte (1996) An improved petal heuris-
tic for the vehicle routeing problem, J. Oper. Res. Soc., 47, 329-336.

19

http://wiki.openstreetmap.org

[39] J. Rodŕıguez–Pereira, E. Fernández, G. Laporte, E. Benavent & A.
Mart́ınez–Sykora (2019) The Steiner traveling salesman problem and
its extensions. Eur. J. Oper. Res., 278, 615–628.

[40] P. Toth & D. Vigo (eds.) (2014) Vehicle Routing: Problems, Methods
and Applications. Philadelphia, PA: SIAM.

[41] Y. Xia, M. Zhu, Q. Gu, L. Zhang & X. Li (2016) Toward solving
the Steiner travelling salesman problem on urban road maps using the
branch decomposition of graphs. Infor. Sci., 374, 164–178.

A Steiner TSP Results

Tables A1 and A2 give results for the 96 Steiner TSP instances. They
show the following for each instance: the number of required nodes, the
length of the optimal Steiner TSP solution in metres, and various ratios
of interest. Dashes indicate instances for which U− is the same as U . In
the column headed “TU/TOPT ”, TU and TOPT denote the total time taken
by the heuristic and exact methods, respectively. The cities are sorted in
increasing order of DF.

B Steiner CVRP Results

Tables B1 and B2 give results for the 96 Steiner CVRP instances.

20

City |VR| OPT TOPT U/OPT U−/OPT OPT/L U/L TU/TOPT

125 30096 0.354 1.024 1.024 1.286 1.317 1.056
Paris 250 40152 1.275 1.080 1.059 1.270 1.372 0.623

500 53942 26.041 1.088 1.069 1.208 1.315 1.200
1000 71682 331.798 1.178 1.119 1.198 1.411 0.072

125 26744 0.561 1.027 1.027 1.264 1.298 0.462
Barcelona 250 39568 1.209 1.065 1.058 1.323 1.409 0.442

500 52218 12.175 1.124 1.081 1.244 1.398 1.107
1000 70638 5046.630 1.175 1.109 1.154 1.357 0.082

125 25988 0.381 1.046 1.037 1.266 1.324 1.919
Karachi 250 35786 3.121 1.106 1.106 1.265 1.399 0.494

500 46272 12.742 1.112 1.099 1.247 1.387 1.270
1000 58323 247.505 1.181 1.128 1.187 1.401 5.142

125 50085 0.384 1.081 1.060 1.493 1.614 1.594
Moscow 250 66486 0.779 1.211 1.148 1.400 1.695 2.338

500 90680 2.755 1.326 1.202 2.440 3.236 1.187
1000 114911 147.940 1.530 1.267 1.351 2.066 3.184

125 21736 1.034 1.038 1.028 1.319 1.368 0.548
London 250 35164 0.771 1.081 1.060 1.432 1.547 1.791

500 46528 19.245 1.165 1.105 1.408 1.640 0.135
1000 62671 860.181 1.309 1.171 1.351 1.768 0.751

125 37002 0.327 1.058 1.050 1.430 1.512 1.719
Jo’ Burg 250 48524 2.170 1.144 1.114 1.395 1.595 2.169

500 67491 36.416 1.256 1.197 1.388 1.743 0.416
1000 85686 26315.294 1.369 1.218 1.335 1.828 0.001

125 24609 0.375 1.167 1.154 1.399 1.633 1.552
Istanbul 250 31669 1.110 1.222 1.184 1.316 1.608 7.094

500 43777 38.501 1.435 1.238 1.353 1.942 0.576
1000 55225 40683.340 1.453 1.227 1.273 1.850 0.001

125 25726 0.468 1.094 1.064 1.469 1.607 0.983
Madrid 250 36843 0.792 1.108 1.074 1.428 1.583 5.880

500 43777 27.846 1.249 1.160 1.362 1.702 0.728
1000 61255 1655.390 1.264 1.183 1.300 1.642 0.016

125 38188 0.496 1.088 1.088 1.254 1.364 1.746
New York 250 48556 4.919 1.056 1.047 1.209 1.276 0.241

500 65166 6.318 1.085 1.064 1.161 1.260 4.085
1000 81534 12353.004 1.145 1.087 1.119 1.281 0.625

125 30949 0.820 1.160 1.149 1.704 1.977 0.491
Hanoi 250 43837 1.007 1.160 1.100 1.806 2.094 0.982

500 57353 14.019 1.299 1.198 1.663 2.160 0.305
1000 78770 612.035 1.494 1.202 1.714 2.559 0.431

125 21633 0.464 1.094 1.087 1.392 1.523 8.931
Seoul 250 30088 1.040 1.127 1.092 1.422 1.602 1.263

500 39855 12.489 1.211 1.099 1.375 1.665 0.953
1000 52281 1537.915 1.310 1.151 1.318 1.728 0.008

125 31055 0.499 1.224 1.174 1.565 1.915 0.924
Mexico 250 41187 1.620 1.330 1.509 1.574 2.093 1.273

500 55464 20.106 1.560 1.317 1.492 2.327 0.322
1000 71650 6321.966 1.826 1.336 1.480 2.703 0.006

Table A1: Results for Steiner TSP instances with |V ′| = 1000.

21

City |VR| OPT TOPT U/OPT U−/OPT OPT/L U/L TU/TOPT

125 45523 0.527 1.046 1.045 1.282 1.341 0.767
Paris 250 64232 6.741 1.064 1.060 1.292 1.375 0.124

500 85955 41.998 1.079 1.069 1.295 1.398 0.141
1000 112237 182.721 1.126 1.099 1.246 1.403 0.099

125 43880 0.381 1.019 1.019 1.306 1.332 0.591
Barcelona 250 57636 3.106 1.044 1.040 1.326 1.384 0.599

500 79516 8.290 1.104 1.090 1.321 1.459 0.545
1000 113157 72.104 1.176 1.129 1.307 1.538 0.680

125 34876 0.479 1.031 1.028 1.305 1.345 1.054
Karachi 250 49319 6.494 1.050 1.040 1.330 1.396 0.147

500 65688 7.234 1.124 1.089 1.290 1.450 0.542
1000 87759 200.307 1.138 1.115 1.238 1.409 2.604

125 74460 0.490 1.053 1.051 1.432 1.508 0.902
Moscow 250 104426 2.048 1.157 1.114 1.496 1.731 1.490

500 131120 4.272 1.217 1.184 1.424 1.733 5.212
1000 182210 46.094 1.341 1.216 1.460 1.959 1.051

125 37193 0.428 1.026 1.025 1.376 1.411 0.871
London 250 49487 0.939 1.054 1.044 1.416 1.492 1.167

500 68414 13.314 1.099 1.086 1.365 1.501 0.144
1000 89623 340.684 1.206 1.110 1.374 1.656 0.133

125 54215 0.874 1.096 1.071 1.387 1.520 0.523
Jo’ Burg 250 74904 7.781 1.102 1.087 1.475 1.626 2.495

500 95815 4.048 1.150 1.123 1.386 1.594 1.120
1000 130495 579.892 1.242 1.147 1.378 1.711 0.007

125 38105 0.636 1.111 1.092 1.458 1.620 0.619
Istanbul 250 47075 1.956 1.112 1.093 1.362 1.514 2.327

500 67996 231.774 1.190 1.138 1.440 1.714 0.100
1000 87435 130.098 1.350 1.201 1.352 1.825 1.345

125 35963 0.512 1.036 1.032 1.323 1.372 1.082
Madrid 250 56481 2.596 1.181 1.144 1.464 1.729 1.291

500 78007 10.522 1.363 1.198 1.458 1.987 0.244
1000 101852 424.388 1.402 1.211 1.414 1.983 0.100

125 61746 0.497 1.099 1.095 1.422 1.563 0.948
New York 250 76981 1.753 1.108 1.089 1.333 1.476 2.315

500 105543 7.706 1.108 1.092 1.295 1.436 2.845
1000 137741 378.269 1.150 1.099 1.231 1.415 0.167

125 45157 0.706 1.065 1.061 1.589 1.692 0.467
Hanoi 250 61001 3.184 1.141 1.090 1.577 1.798 0.456

500 86562 17.374 1.201 1.125 1.683 2.021 0.809
1000 117795 455.635 1.299 1.189 1.677 2.178 0.038

125 30619 0.694 1.051 1.049 1.367 1.437 0.520
Seoul 250 46969 3.065 1.084 1.055 1.477 1.601 0.225

500 66638 13.576 1.184 1.152 1.505 1.783 0.432
1000 90786 377.850 1.294 1.174 1.461 1.890 0.699

125 40018 3.183 1.130 1.125 1.481 1.673 0.173
Mexico 250 52156 1.977 1.180 1.130 1.460 1.723 0.465

500 75101 5.761 1.321 1.226 1.533 2.025 7.143
1000 103667 187.237 1.575 1.286 1.518 2.390 0.082

Table A2: Results for Steiner TSP instances with |V ′| = 2000.

22

Graph Solution Phase 1 Phase2

City |V ′| |VR| U T UE/U TE/T U ′E/U T ′E/T

1000 125 39387 0.288 1.027 0.389 1.025 0.403
1000 250 49405 6.145 1.057 0.057 1.045 0.058

Paris 1000 500 64205 40.119 1.078 0.128 1.066 0.128
1000 1000 81105 182.045 1.166 0.092 1.131 0.092

1000 125 36189 0.409 0.989 0.352 0.982 0.362
1000 250 46902 2.987 1.093 0.572 1.089 0.573

Barcelona 1000 500 59834 7.692 1.112 0.556 1.089 0.557
1000 1000 78542 70.542 1.180 0.695 1.144 0.695

1000 125 34706 0.286 1.038 0.671 1.035 0.689
1000 250 44025 6.039 1.120 0.069 1.114 0.070

Karachi 1000 500 54695 5.770 1.105 0.515 1.089 0.515
1000 1000 64549 197.549 1.219 2.638 1.170 2.638

1000 125 62679 0.250 1.133 0.780 1.129 0.796
1000 250 81481 1.352 1.172 1.950 1.156 1.953

Moscow 1000 500 108101 2.647 1.261 8.066 1.193 8.067
1000 1000 132527 43.911 1.442 1.072 1.295 1.073

1000 125 29374 0.316 1.074 0.443 1.058 0.456
1000 250 42474 0.650 1.093 0.891 1.079 0.895

London 1000 500 55500 12.536 1.121 0.080 1.084 0.080
1000 1000 70096 338.395 1.282 0.130 1.194 0.130

1000 125 47098 0.342 1.069 0.471 1.065 0.482
1000 250 59274 6.954 1.107 2.728 1.090 2.729

Jo’ Burg 1000 500 77447 2.111 1.219 1.601 1.195 1.603
1000 1000 98001 576.304 1.304 0.005 1.235 0.005

1000 125 32398 0.332 1.131 0.434 1.120 0.443
1000 250 40379 0.887 1.143 4.640 1.109 4.646

Istanbul 1000 500 51766 230.977 1.402 0.097 1.293 0.097
1000 1000 64426 128.776 1.372 1.353 1.228 1.353

1000 125 34763 0.300 1.041 1.003 1.034 1.017
1000 250 44890 2.129 1.110 1.290 1.088 1.292

Madrid 1000 500 56146 8.675 1.235 0.157 1.181 0.158
1000 1000 70813 422.553 1.212 0.097 1.168 0.097

1000 125 50217 0.289 1.060 0.806 1.060 0.820
1000 250 60523 1.285 1.042 2.795 1.034 2.798

New York 1000 500 78315 6.077 1.051 3.457 1.038 3.458
1000 1000 94061 376.965 1.122 0.167 1.086 0.168

1000 125 37036 0.392 1.187 0.355 1.176 0.365
1000 250 51679 2.625 1.124 0.389 1.092 0.390

Hanoi 1000 500 65519 15.831 1.266 0.839 1.214 0.839
1000 1000 85719 453.008 1.486 0.037 1.318 0.037

1000 125 33792 0.286 1.161 0.839 1.140 0.853
1000 250 40297 2.230 1.130 0.214 1.117 0.216

Seoul 1000 500 53020 11.842 1.169 0.462 1.100 0.462
1000 1000 63617 377.450 1.269 0.699 1.163 0.699

1000 125 44980 2.827 1.146 0.100 1.139 0.102
1000 250 55517 0.930 1.384 0.456 1.257 0.460

Mexico City 1000 500 67630 3.380 1.478 11.893 1.343 11.894
1000 1000 85090 184.903 1.711 0.074 1.338 0.074

Table B1: Results for Steiner CVRP with |V ′| = 1000.

23

Graph Solution Phase 1 Phase2

City |V ′| |VR| U T UE/U TE/T U ′E/U T ′E/T

2000 125 59555 0.331 1.050 0.834 1.045 0.843
2000 250 78003 1.261 1.034 0.463 1.030 0.466

Paris 2000 500 98272 25.891 1.090 1.192 1.084 1.192
2000 1000 126146 331.089 1.075 0.071 1.059 0.071

2000 125 55457 0.563 1.016 0.284 1.012 0.290
2000 250 68377 1.195 1.061 0.291 1.060 0.294

Barcelona 2000 500 92880 12.514 1.066 1.050 1.058 1.050
2000 1000 126761 5045.895 1.152 0.082 1.126 0.082

2000 125 48010 0.324 0.984 0.954 0.981 0.972
2000 250 61408 2.947 1.031 0.182 1.026 0.184

Karachi 2000 500 78360 12.079 1.095 1.225 1.070 1.226
2000 1000 100169 247.115 1.102 5.143 1.090 5.143

2000 125 93548 0.364 1.064 1.011 1.060 1.033
2000 250 121731 0.753 1.159 1.348 1.144 1.352

Moscow 2000 500 151465 2.582 1.192 0.716 1.179 0.718
2000 1000 204989 147.940 1.289 3.172 1.217 3.172

2000 125 48934 0.943 1.029 0.267 1.026 0.270
2000 250 62347 0.680 1.038 1.204 1.026 1.210

London 2000 500 81685 18.868 1.055 0.081 1.047 0.081
2000 1000 102689 859.985 1.166 0.751 1.102 0.751

2000 125 70955 0.326 1.049 0.742 1.032 0.755
2000 250 90505 2.018 1.102 2.041 1.087 2.043

Jo’ Burg 2000 500 111526 36.197 1.118 0.378 1.106 0.378
2000 1000 145352 26315.217 1.227 0.001 1.185 0.001

2000 125 48660 0.311 1.088 0.955 1.073 0.968
2000 250 57547 0.843 1.101 8.686 1.089 8.690

Istanbul 2000 500 78710 37.830 1.199 0.554 1.158 0.554
2000 1000 98115 40683.938 1.315 0.001 1.227 0.001

2000 125 48513 0.372 1.092 0.433 1.090 0.441
2000 250 68328 0.686 1.138 6.044 1.136 6.050

Madrid 2000 500 89592 27.635 1.315 0.679 1.277 0.679
2000 1000 114311 1654.951 1.362 0.015 1.227 0.015

2000 125 79175 0.435 1.075 0.940 1.075 0.947
2000 250 94726 4.794 1.115 0.109 1.106 0.110

New York 2000 500 119121 5.894 1.162 4.152 1.153 4.152
2000 1000 152221 12353.404 1.169 0.625 1.148 0.625

2000 125 55992 0.882 1.064 0.150 1.064 0.153
2000 250 71724 0.966 1.130 0.322 1.118 0.325

Hanoi 2000 500 97896 13.977 1.169 0.221 1.128 0.221
2000 1000 129269 610.425 1.269 0.432 1.195 0.432

2000 125 45757 0.378 1.043 10.463 1.042 10.487
2000 250 62760 0.847 1.045 1.138 1.023 1.145

Seoul 2000 500 79397 11.662 1.202 0.957 1.176 0.958
2000 1000 106821 1537.491 1.229 0.007 1.155 0.007

2000 125 56698 0.477 1.103 0.319 1.101 0.327
2000 250 68801 1.583 1.094 0.717 1.069 0.720

Mexico City 2000 500 91527 19.801 1.289 0.223 1.255 0.223
2000 1000 117344 6321.233 1.555 0.005 1.352 0.005

Table B2: Results for Steiner CVRP with |V ′| = 2000.

24

	Introduction
	Literature Review
	The Steiner TSP
	Other Steiner VRPs
	The planar Euclidean TSP
	Road distances versus Euclidean distances

	Data Collection and Instance Creation
	Data collection
	Road distances versus Euclidean distances
	Creation of Steiner TSP instances
	Creation of Steiner Capacitated VRPs

	Experiments with the Steiner TSP
	Solution of Steiner TSP instances
	The heuristic
	Results

	Experiments with the Steiner CVRP
	Heuristics
	Results

	Concluding Remarks
	Steiner TSP Results
	Steiner CVRP Results

