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Abstract

Surrogate and group relaxation have been used to compute bounds
for various integer linear programming problems. We prove that (a)
when only inequalities are surrogated, the surrogate dual is N'P-hard,
but solvable in pseudo-polynomial time under certain conditions; (b)
when equations are surrogated, the surrogate dual exhibits unusual
complexity behaviour; (c¢) the group relaxation is A'P-hard for the
integer and 0-1 knapsack problems, and strongly N'P-hard for the set
packing problem.

Keywords: integer programming; surrogate relaxation; group relax-
ation

1 Introduction

Many important NP-hard problems have a natural formulation as an integer
linear program or ILP (see, e.g., Conforti et al. [6]). To obtain a bound on
the optimal value, one can solve the continuous relazation of the ILP, which
is obtained by permitting variables to take fractional values. The resulting
bound can however be very weak in some cases. Popular ways to obtain
stronger bounds include cutting planes (e.g., [7,28]), Lagrangian relazation
(e.g., [12,19]) and Dantzig- Wolfe decomposition (e.g., [1,9]).

Two further methods for obtaining strong bounds, which are less well
known, are surrogate and group relaxation (see [13,17] and [15,16], respec-
tively). The existing literature on these techniques leaves unanswered several
natural questions concerned with computational complexity. In an attempt
to address this gap, we show the following:
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e For the case in which only inequalities may be surrogated, the surro-
gate dual is NP-hard, but solvable in pseudo-polynomial time under
certain conditions.

e For the case in which only equations may be surrogated, the surrogate
dual exhibits unusual complexity behaviour: computing the bound is
N'P-hard in the strong sense, but optimal multipliers can be found in
polynomial time.

e The group relaxation is N'P-hard for the integer knapsack and 0-1
knapsack problems, and strongly NP-hard for the set packing prob-
lem.

The paper has a simple structure. The literature is reviewed in Sec-
tion 2. The subsequent three sections present the three theoretical results
mentioned above. Some concluding remarks are made in Section 6.

Throughout the paper, we let n denote the number of variables, and
let N denote {1,...,n}. We call surrogate and group relaxation “SR” and
“GR?”, respectively. Given a vector v € Q%, we let ||v||; denote > P, v;.
Given a rational scalar s, vector v or matrix M, we let “size(s)”, “size(v)”
and “size(M)” denote the number of bits needed to represent s, v or M,
respectively. We assume that the reader is familiar with the basics of com-
putational complexity theory, including ordinary and strong NP-hardness,
and pseudo-polynomial time (see [11]). Finally, we remind the reader that
a function f : S — R with convex domain C' is called quasi-convez if

f(Az+ (1= N)y) <max{f(z), f(y)} (Vz,y,€ C, A€ (0,1)).

2 Literature Review
In this section, we recall the key papers on SR and GR.
2.1 Surrogate relaxation
Consider an ILP of the form
maX{ch: Az <b,z € X}, (1)
where c € Z", A€ Z™*", b € Z™, and
X:{xEZi: Dzﬁe}

for some integral matrix D and integral vector e. In SR, we pick a vector
p € R of surrogate multipliers, and solve the following simpler ILP [13,17]:

max {CT$ : (MTA).%‘ <plb, xe X}. (2)
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This gives an upper bound, that we call U(u).

Note that computing U(u) is itself an ILP, and may even be A'P-hard.
On the other hand, when X has a sufficiently simple structure, the ILP in
question may be solvable reasonably quickly in practice. For example, if
X is Z7 or {0,1}", then (2) is a knapsack problem, and can be solved in
pseudo-polynomial time by dynamic programming [2].

The problem of finding the vector p that gives the best upper bound
is called the surrogate dual. It is shown in [13,17] that the corresponding
upper bound is at least as good as the one from LP relaxation. It is also
shown that U(p) is a quasi-convex function of p.

For heuristic and exact algorithms for solving the surrogate dual, see,
e.g., [3,4,22-24,31].

Note that U(sp) = U(u) for any positive scalar s. Accordingly, most
authors impose the condition that ||u|[1 = 1. We will not do this, however,
for reasons which will become clear in Section 3.

We will also consider the case in which equations, rather than inequal-
ities, are surrogated. For this situation, we will need a result of Glover &
Woolsey [14]. It states that, if Cx = d is a set of m equations in n binary
variables, one can compute in polynomial time a non-negative integral vec-
tor p, with coefficients bounded by 2™ [[;%,(|d;| + 1), such that the single
equation (u”'C)z = p”'d has the same set of binary solutions.

2.2 Group relaxation

Now consider an ILP written in the slightly different form
max{cT:c: Az <b,xze€Z}}, (3)
where c € Z", A € Z™*" and b € Z™. Adding slack variables we obtain
max {c'z: Az +s=0b, (z,s) € Z}. (4)

Suppose we solve the continuous relaxation of (4) by the simplex method,
yielding a basic optimal solution (z*, s*). Exactly m variables will be basic
and n variables will be non-basic at (z*, s*).

Gomory’s GR is obtained from (4) by retaining integrality, but dropping
the non-negativity restriction on the basic variables [15,16]. Provided that
(z*,s*) is non-degenerate, this is equivalent to dropping all non-binding
constraints in the original ILP (3), including all non-binding non-negativity
constraints, if any. Thus, the upper bound obtained with GR is at least as
good as the one obtained with LP relaxation.

The reason for the name group relaxation is that Gomory showed how
to express it in group-theoretic terms. He also showed that the GR can
be reduced to a shortest-path problem in a graph with D nodes, where D
is the determinant of the basis matrix. This has led to several algorithms



for solving the GR (see, e.g., [5,30]). Unfortunately, none of them run in
polynomial time.

It is stated in [25] that, for general ILPs, the GR is A'P-hard in the strong
sense. An explicit proof is given in [10]. Interestingly, however, there are
some NP-hard ILPs whose GR can be solved in polynomial time. Indeed,
Cornuéjols et al. [8] show that this is true for ILPs of the form

max{pTa:: a:u-l—a:vgl({u,v}EE),xGZﬁ}. (5)

where p € Z} and E is the edge set of an arbitrary (simple, loopless, undi-
rected) graph on n nodes. Such ILPs are used to model the independent set
problem (also known as the node packing problem or stable set problem),
which is well-known to be strongly NP-hard [21].

3 Surrogating Inequalities

In this section, we consider the computational complexity of the surrogate
dual when only inequalities are surrogated. To begin, for any 6 € Z, let

AO)={peR}: Uu) <06}.

That is, A(0) is the lower level set of U(u) for the given 6. Observe that
A(0) is the set of points p € R'" satisfying the following linear inequalities:

Az =) u>0 (Vzex:cz>0+1). (6)

Thus, A(f) is a convex cone. On the other hand, it is not closed (except
in the trivial cases when it is either empty or equal to R'"). This makes it
rather difficult to work with.

Now, consider the following modified version of the inequalities (6):

Az -b)Tp>1 (VzeXx:cz>0+1). (7)

Observe that, if a vector lies in A(f), we can multiply it by a suitable pos-
itive scalar to make it satisfy (7). This leads us to define the following
(unbounded) convex set:

AO)={peR}: (7) hold}.

From the above argument, A(f) is empty if and only if A(6) is empty. We
also have the following result.

Proposition 1 A() is a polyhedron.



Proof. Define the polyhedron
Pez{xERi: Dz <e, CTZEZO—I—l},

and let PIQ denote the convex hull of the integral points in P. By Meyer’s
theorem [27], P! is a polyhedron. Thus, it can be described by a finite set of
extreme points and extreme rays. Let p!, ..., p° be the points and !, ..., rt
be the rays. By definition, A() is the set of all points in R’" that satisfy
the following inequalities:

(ApF—b)Tp>1  (k=1,....p)
(A" >0  (k=1,...,7). (

—
O 0o
~— —

O

It is therefore the intersection of a finite number of half-spaces.

The above concepts are made clear by the following example:

Example 1: Consider the following trivial ILP:
. 2
max{xl + a9 621 + 3wy < 4, 3x1 + 620 < 4, x € {0,1} }

The optimal solution is (0,0), with profit 0. The optimal solution to the LP
relaxation is (4/9,4/9), giving the upper bound 8/9.

Suppose we set X' to {0,1}2, and surrogate both of the linear constraints,
with multipliers p; and ps. Suppose also that we set 8 to 0. There are
three points in X’ with profit greater than 0; namely, (0,1), (1,0) and (1,1).
The corresponding constraints (6) are —puj + 2u9 > 0, 247 — p2 > 0 and
5u1 + Bug > 0, respectively. The last of these is redundant. Therefore:

AO0) = {peRL: —p1+2u2 >0, 2u1 — pp >0}
AMO) = {peRL: —py+2u0>1, 201 — po > 1}.

One can check that A(0) has the unique extreme point (1,1). Thus, SR with
this choice of p yields the upper bound 0. U

We will also need the following lemma.

Lemma 1 The number of bits needed to represent any inequality of the form
(8) or (9) is polynomial in n, size(c), size(D), size(e) and size(6).

Proof. This follows from [32], Corollary 17.1c, and the definition of the p*
and r¥. O

Next, consider the following decision problem associated with the surro-
gate dual:



The Level Set Problem (LSP): Given some 0 € Z, is A(6)
empty?

It follows from the above observations that the answer to the LSP is
“yes” if and only if the following LP is infeasible:

min {||p||; : (7) hold, u € R} }. (10)

We remark that, if X has infinite cardinality, then (10) is a semi-infinite LP.
Clearly, solving the LSP cannot be harder than solving the surrogate
dual. On the other hand, we have the following negative result.

Proposition 2 Even when only inequalities are surrogated, the LSP is N'P-
complete.

Proof. Consider the special case of the ILP (1) in which m =1, A > 0,
b > 0and X = {0,1}". In this case, the ILP reduces to the 0-1 knapsack
problem. Moreover, by setting p; to any positive quantity, we can make the
upper bound U (u) exact (i.e., equal to the profit of the optimal solution of
the knapsack problem). So, the answer to the LSP is “yes” if and only if
there exists a solution to the knapsack problem with profit larger than 6.
This is NP-hard to check.

To complete the proof, we just have to show that the LSP is in NP. For
a given 0, let S be the system of linear inequalities formed by the union of
(8) and (9). By definition, the answer to the LSP is “yes” if and only if S
is inconsistent. Moreover, if S is inconsistent, then, by Helly’s theorem [20],
there exists a subset of S of cardinality at most m+1 that is also inconsistent.
Moreover, by Lemma 1, each of the m+1 inequalities involves a polynomially
bounded number of bits. Thus, whenever the answer to the LSP is ‘yes’,
there exists a short certificate of that fact. This shows that the LSP is in
NP. O

We now return to the surrogate dual itself.

Theorem 1 Consider once more an ILP of the form (1). Suppose that the
following three assumptions hold:

1. For any 0 € Z and v € Q", one can solve the following ILP in time
that is polynomial in n, size(D), size(e), size(8), size(v) and ||c||1:

min {vTx xeX, x> 0}.

2. The continuous relazation of the ILP (1) is feasible and bounded.

3. One can compute in polynomial time a lower bound L on the opti-
mal profit, whose encoding length is polynomial in n, size(A), size(b),
size(c), size(D) and size(e).



Then one can solve the surrogate dual in time that is polynomial in n,
size(A), size(b), size(D), size(e) and ||c||1.

Proof. First, suppose that 6 € Z is fixed. Consider the separation problem
for the constraints (7) (i.e., the problem of detecting when a given i € R’
violates one of the constraints). The separation problem is equivalent to the
ILP

min{(ﬁ,TA)x crxeX, x> 9—1—1}.

(Indeed, one of the linear constraints is violated if and only if the optimal
solution of this ILP, say Z, satisfies (ﬂTA)j < 14p"b.) Now, under the first
assumption, the separation problem can be solved in time that is polynomial
in the parameters listed. Then, by Lemma 1 and the polynomial equivalence
of separation and optimisation [18], the LP (10) can be solved in time that
is polynomial in n, size(A), size(b), size(D), size(e), size(f) and ||c||;. This
implies in turn that the LSP can be solved in time that is polynomial in the
same parameters.

Now suppose that assumption 2 holds. Using the ellipsoid method [18,
32], we can solve the LP relaxation of the ILP (1) in time that is polynomial
in n, size(A), size(b), size(c), size(D) and size(e). This yields an upper
bound on the optimal profit, which we denote by U. Moreover, from [32],
Theorem 10.3, size(U) is bounded by a polynomial in the same parameters.

Now suppose that assumption 3 also holds. We now have both lower
and upper bounds on the optimal value of 6, each of which has polynomial
encoding length. Thus, by applying binary search on the value of 6, one can
reduce the surrogate dual to a number of LSP instances that is polynomial
in the stated parameters. O

This result generalises a result of Boros [4], who proved it for the case
in which X is the hypercube. It means that, if we can solve the surrogate
relaxed problem in pseudo-polynomial time, then the surrogate dual cannot
be N'P-hard in the strong sense (unless of course P = N'P).

We remark that computing L is often easy in practice. Indeed, if it is
known that all points T € X satisfy £ < Z < u, for some vectors £,u € Z",
then an easily-computable value for L is

Z ¢; max{0,¢;} + Z u; min{0, ¢; }.

j=1 j=1

4 Surrogating Equations

Now we turn our attention to the case in which equations, rather than
inequalities, are surrogated. More precisely, we now assume that the ILP
takes the form:

IIlaX{CT.’EZ Axr =0, x € X}.
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Similarly, we now assume that
U(p) = max {ch : (MTA):U =ulb, z € X}.

Note also that, here, it may make sense to allow some of the surrogate
multipliers to take negative values.
As in the previous section, we can define lower level sets:

AO)={peR™: U(u) <0}.
Note however that, in this case, we have:
AB) ={peR™: (uTA):T:#uTb (VzeX: lz> 9)}.

The presence of the symbol “#£” suggests that A(f) is not convex in general.
This is indeed the case. In fact, A(f) can even be disconnected, as shown
by the following example.

Example 2: Consider the following equality-constrained 0-1 LP:
max{an +510: 1 =0, 21 +22=0, xz € {0,1}2}.

Trivially, the optimal solution has profit 0. Now, as before, we set X to
{0,1}? and surrogate both of the linear constraints. Note that the domain
of 11 is now R?. One can check that

U(p)= 6 (Gf g1 +2pu2 =0)
= 5 (if ug=0and uy #0)
= 1 (if p1 + p2 =0 and pp # 0)
= 0 (otherwise).
So the lower level sets A(1),...,A(6) are all disconnected. O

Now recall that, in the inequality-constrained case, we reduced the Level
Set Problem to the LP (10). The equivalent problem in the equality-
constrained case is:

min{||,u||1 (AD) AT (VEe X T2 >0), pe Rm} .
Note that (11) looks much harder to solve than (10). Indeed, we have the
following negative result.

Theorem 2 If only equations are surrogated, then the surrogate dual is
NP-hard in the strong sense, and the LSP is N'P-complete in the strong
sense.



Proof. Suppose that X = {0,1}", i.e., we are dealing with a 0-1 LP.
By using a slack variable s;, we can convert the condition z; € {0,1} to
xj+sj =1, xj,s; € Zy. In this way, we can transform a 0-1 LP into an
ILP in which all constraints (apart from the non-negativity and integrality
constraints) are equations. The result of Glover & Woolsey [14] mentioned
in Subsection 2.1 then implies that there exists an integral vector p, whose
encoding length is polynomial in that of the input, such that U(u) is equal
to the profit of the optimal solution of the original 0-1 LP. Thus, solving
the surrogate dual problem is as hard as solving a 0-1 LP, and is therefore
strongly N'P-complete. Moreover, the answer to the LSP is “yes” if and
only if there is a feasible solution to the 0-1 LP with profit greater than 6.
For 0-1 LPs in general, checking whether such a feasible solution exists is
strongly N'P-complete. O

Thus, in the equality-constrained case, one cannot determine the best
possible value of U (1) in pseudo-polynomial time (unless P = N'P). Bizarrely,
however, one can find an optimal vector p in polynomial time (by applying
the procedure in [14]). The explanation of this apparent paradox is that
the components of © may be exponentially large, which makes solving the
surrogate relaxed problem as hard as solving the ILP itself.

5 Group Relaxation

In this section, we prove some results concerned with the complexity of GR.
We start with two results concerned with knapsack problems (KPs). We
remind the reader that the integer KP takes the form

max {pTa: cale<b xe YARS (12)

where p,a € Z and b is a positive integer. The 0-1 KP is similar, except
that all variables are constrained to be binary. Both problems are known to
be weakly AN'P-hard [21,26]. Our results are as follows.

Proposition 3 The GR is N'P-hard for the integer KP.

Proof. Consider an integer KP instance of the form (12). Let M be a
“large” positive integer. (In fact, it suffices to set M to any integer that
is larger than (b+ 1) maxjen{p;/a;}.) We construct a different integer KP
instance, which we call the augmented KP:

max plo+ My
st. alz+(b+1)y<2b+1 (13)
(z,y) € ZIH.



Note that the LP relaxation of the augmented KP has a unique optimal
solution with z% = 0 for all j, and y* = (2b+1)/(b+ 1) < 2. This solution
is non-degenerate, since the only binding constraints are the non-negativity
constraints on the z variables and the constraint (13). Thus, applying GR
to the augmented KP just means dropping non-negativity on y. Since y has
a very large profit, it will be set to 1 in the optimal GR solution. So the
optimal z for the GR of the augmented KP is identical to the optimal x of
the original integer KP. U

Proposition 4 The GR is N'P-hard for the 0-1 KP.

Proof. Consider again an integer KP instance of the form (12), and let M
be as in the previous proof. We construct the following 0-1 KP with n + 2
variables:

max ple +2My + Mz
st. alz+(b+1)(y+2) <2b+1 (14)
(z,y,2) € {0,1}"+2.

The LP relaxation of the 0-1 KP has an optimal solution with z7 = 0 for
all j, y* = 1 and z* = b/(b+ 1) < 1. This solution is non-degenerate,
since the only binding constraints are the non-negativity constraints on the
x variables, the constraint (14), and the upper bound of 1 on y. Thus,
applying GR to the 0-1 KP means dropping the upper bounds of 1 on the
xj, the lower bound of 0 on y, and the lower and upper bounds on 2. Since
y has a very large profit, it will be set to 1 in the optimal GR solution. This
forces z to take the value 0. So the optimal x for the GR of the 0-1 KP is
identical to the optimal x of the original integer KP. (]

Next, we consider the set packing problem (SPP). In the SPP, we are
given a positive integer n, a positive integer profit p; for each j € N, and

a collection of m non-empty subsets of N, say Si,...,S,. The task is to
select a subset of N of maximum profit, subject to the constraint that, for
i =1,...,m, at most one element of S; is selected. The SPP is strongly

NP-hard [21]. The standard ILP formulation is as follows [29]:

max{pT:p: ijgl(izl,...,m),:):EZﬁ}. (15)
JES;

Theorem 3 The GR is N'P-hard in the strong sense, even for set packing
problems that are formulated as ILPs of the form (15).

Proof. Consider an SPP of the form (15), and let M be a “large” pos-
itive integer. (Here, it suffices to set M to 23 ;.\ p;.) We construct an
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augmented SPP with n + 3m variables. It takes the form:

max pla+ MY ", (yi + y{) +(M4+1)>" 2

s.t. djes, Tt yity; <1 (i=1,...,m) (16)
hitz< (i=1,...,m) (17
Yitm< (i=1,...,m) (18)
x el
v,y z € L.

The LP relaxation of the augmented SPP has a feasible solution with z; = 0
for all j, and y; = y} = z; = 1/2 for all i. This LP solution is optimal, as one
can verify by setting the dual variables for (16) to (M — 1)/2, and the dual
variables for (17) and (18) to (M + 1)/2. In fact, it is the unique optimal
solution, as one can verify by noting that every x variable has a positive
reduced cost.

Now note that, at this LP solution, the binding constraints are (16)—(18),
together with the non-negativity constraints on the x variables. Thus, ex-
actly n+3m constraints are binding, and the LP solution is non-degenerate.
Applying GR to the augmented SPP therefore means just dropping non-
negativity on the y, ¢/ and z variables. Now, note that the remaining con-
straints imply that y; +y; +2; <1 for all i. Since z; has a larger profit than
y; and y/, it will be set to 1 in the optimal GR solution. This in turn will
force y; and y, to take the value 0. Then, the optimal = of the GR of the
augmented SPP is identical to the optimal x of the original SPP. (]

We close this section by noting that the complexity of GR for a particular
combinatorial optimisation problem depends on the way it is formulated as
an ILP. Indeed, Padberg [29] showed that the SPP and the independent set
problem are equivalent, i.e., any ILP of the form (15) can be converted into
one of the form (5) and vice-versa. Yet, as mentioned in Subsection 2.2, the
GR of (5) can be solved in polynomial time.

6 Final Remark

We close the paper by mentioning some interesting open problems concerned
with composite relaxation (CR), which is a hybrid of Lagrangian and surro-
gate relaxation [13,17]. In CR, we choose vectors A, u € R’ and solve the
relaxed problem

max{cT:c + )\T(b— Ax) : (MTA)x <ulh, ze X}.

In theory, CR can produce better upper bounds than both Lagrangian and
surrogate relaxation. Unfortunately, the dual function is not even quasi-
convex in A and p. In fact, it may have local minima that are not global
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minima [22]. Thus, the composite dual is even harder to solve than the sur-
rogate dual. We conjecture that, even in the inequality case, the composite
dual is strongly NP-hard. As for the Level Set Problem in CR, we do not
even know whether it lies in NP or co-NP.

Acknowledgement: We are grateful to an anonymous reviewer, whose
comments enabled us to improve the paper significantly.

References

1]

[6]

[7]

C. Barnhart, E.L. Johnson, G.L. Nemhauser, M. Savelsbergh &
P.H. Vance (1998) Branch-and-price: column generation for solving
huge integer programs. Oper. Res., 46, 316-329.

R.E. Bellman (1957) Dynamic Programming. Princeton, NJ: Princeton
University Press.

N. Boland, A.C. Eberhard & A. Tsoukalas (2015) A trust region method
for the solution of the surrogate dual in integer programming. J. Optim.
Th. Appl., 167, 558-584.

E. Boros (1986) On the complexity of the surrogate dual of 01 pro-
gramming. Zeit. Oper. Res., 30, A145-A153.

D.-S. Chen & S. Zionts (1976) Comparison of some algorithms for solv-
ing the group theoretic integer programming problem. Oper. Res., 24,
1120-1128.

M. Conforti, G. Cornuéjols & G. Zambelli (2015) Integer Programming.
Cham, Switzerland: Springer.

W.J. Cook (2010) Fifty-plus years of combinatorial integer program-
ming. In: M. Jinger et al. (eds.) 50 Years of Integer Programming:
1958-2008, pp. 387-430. Berlin: Springer.

G. Cornuéjols, C. Michini & G. Nannicini (2012) How tight is the corner
relaxation? Insights gained from the stable set problem. Discr. Optim.,
9, 109-121.

G.B. Dantzig & P. Wolfe (1960) Decomposition principle for linear pro-
grams. Oper. Res., 8, 101-111.

M. Fischetti & M. Monaci (2008) How tight is the corner relaxation?
Discr. Optim., 5, 262—-269.

M.R. Garey & D.S. Johnson (1979) Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: Freeman.

12



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A.M. Geoffrion (1974) Lagrangean relaxation for integer programming.
Math. Program. Study, 2, 82—114.

F. Glover (1975) Surrogate constraint duality in mathematical program-
ming. Oper. Res., 23, 434-451.

F. Glover & R. Woolsey (1972) Aggregating Diophantine equations.
Zeit. Oper. Res., 16, 1-10.

R.E. Gomory (1965) On the relation between integer and non-integer
solutions to linear programs. Proc. Nat. Acad. Sci., 53, 260-265.

R.E. Gomory (1969) Some polyhedra related to combinatorial prob-
lems. Lin. Alg. Appl., 2, 451-558.

H.J. Greenberg & W.P. Pierskalla (1970) Surrogate mathematical pro-
gramming. Oper. Res., 18, 924-9309.

M. Grotschel, L. Lovész & A. Schrijver (1981) The ellipsoid method
and its consequences in combinatorial optimization. Combinatorica, 1,
169-197.

M. Guignard (2003) Lagrangean relaxation. Trabajos de Operativa
(TOP), 11, 151-228.

E. Helly (1923) Uber Mengen konvexer Korper mit gemeinschaftlichen
Punkten. Jahresbericht der Deutschen Mathematiker- Vereinigung, 32,
175-176.

R.M. Karp (1972) Reducibility among combinatorial problems. In
R.E. Miller et al. (eds.) Complexity of Computer Computations, pp. 85—
103. New York: Plenum.

M.H. Karwan & R.L. Rardin (1980) Searchability of the composite and
multiple surrogate dual functions. Oper. Res., 28, 1251-1257.

M.H. Karwan & R.L. Rardin (1984) Surrogate dual multiplier search
procedures in integer programming. Oper. Res., 32, 52—-69.

S.-L. Kim & S. Kim (1998) Exact algorithm for the surrogate dual
of an integer programming problem: subgradient method approach. J.
Optim. Th. Appl., 96, 363-375.

A.N. Letchford (2003) Binary clutter inequalities for integer programs.
Math. Program., 98, 201-221.

G.S. Lueker (1975) Two NP-complete problems in nonnegative inte-
ger programming. Technical Report No. 178, Department of Electrical
Engineering, Princeton University.

13



[27]

[28]

[29]

[30]

31]

[32]

R.R. Meyer (1974) On the existence of optimal solutions to integer and
mixed-integer programming problems. Math. Program., 7, 223-235.

J.E. Mitchell (2011) Branch and cut. In J.J. Cochran et al. (eds.) Wiley
Encyclopedia of Operations Research and Management Science. New
York: Wiley.

M.W. Padberg (1973) On the facial structure of set packing polyhedra.
Math. Program., 5, 199-215.

J.P.P. Richard & S.S. Dey (2010) The group-theoretic approach in
mixed integer programming. In M. Juenger et al. (eds.) 50 Years of
Integer Programming 1958-2008, pp. 727-801. Berlin: Springer.

S. Sarin, M.H. Karwan & R.L. Rardin (1987) A new surrogate dual
multiplier search procedure. Nav. Res. Logist., 34, 431-450.

A. Schrijver (1986) Theory of Linear and Integer Programming. Chich-
ester: Wiley.

14



