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Abstract. 

 

   Vehicle Routing Problems (VRPs) arise when routes must be 

devised for one or more vehicle(s) such that certain standards of 

efficiency are met and each route obeys one or more given 

restriction(s). VRPs are complex combinatorial optimisation 

problems and sophisticated algorithms are required in order to 

solve them. 

   In this thesis, four particular VRPs are considered. All four are 

Arc Routing Problems, in which the vehicles are required to 

traverse certain edges (roads) of a network rather than visit certain 

vertices (customers). For each problem, an integer programming 

formulation is given and the convex hull of feasible solutions is 

studied to yield strong valid inequalities. For two of the problems, 

detailed optimisation algorithms are presented and tested. 
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1. Introduction. 

 

1.1. Vehicle Routing Problems. 
 

   Vehicle Routing Problems (VRPs) arise when routes must be devised for one or 

more vehicles such that certain standards of efficiency are met and each route obeys 

one or more given restrictions. Examples of VRPs abound in the real world, since the  

transportation and distribution of both people and commodities form an integral part 

of modern life. Even simple VRP instances are often rather difficult to solve and, 

since large quantities of money are involved, Vehicle Routing has formed a fruitful 

area of study for Operational Researchers (see Golden & Assad, 1988; Ball et al., 

1995b).  

   One strand of research into VRPs has been concerned with devising optimisation 

algorithms, i.e., procedures for finding an optimal solution and proving that it is 

optimal. In order for such an algorithm to be applicable, there must be a well-defined 

function assigning a cost to any given feasible solution. Typically, this function is a 

weighted sum of two costs; one proportional to the number of vehicles used in the 

solution and one proportional to the sum of the lengths of the routes ('length' here can 

mean distance, time, fuel consumption or whatever). 

   In any solution, a given vehicle is either used or not used and a given road is either 

traversed or not traversed by any given vehicle. The optimisation problem is therefore 

discrete or combinatorial in nature. Like many other Combinatorial Optimisation 

Problems or COPs, VRPs are almost always NP-Hard. This means (Garey & Johnson, 

1979) that it is unlikely that any algorithm can be devised for them which is 

guaranteed, for any instance, to give the answer in a time which is polynomial in the 

size of the problem. Even the simplest kind of VRP, the famous Travelling Salesman 

Problem or TSP, is NP-Hard (see Lawler et al., 1985). The TSP represents the case 

where a single vehicle must visit all of the vertices of a complete, undirected network 

exactly once and no other complicating constraints are present. 
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   The idea of NP-Hardness was first conceived at the end of the sixties (see the 

references in Garey & Johnson, 1979). It was an elegant explanation for the fact that 

nobody had yet devised an efficient algorithm for the TSP and related problems.  

Unfortunately, many misinterpreted the theory of NP-Hardness to mean that no large 

instance of an NP-Hard problem could ever be solved. This is quite untrue, as 

witnessed by the recent success of many researchers in solving several TSP instances 

which were previously regarded as unsolvable (e.g., Padberg & Rinaldi, 1991; 

Applegate et al., 1995). In fact, Applegate et al. have solved instances with up to 8000 

vertices. The key to this rapid progress has been the polyhedral approach, which is 

outlined in the next section. 

   In this thesis, polyhedral results are given for four particular VRPs, each one of 

which is at least as useful as the TSP. All four are Arc-Routing Problems (ARPs), in 

which the vehicles are required to traverse certain edges (roads) of a network rather 

than visit certain vertices (customers). For two of these four cases, the resulting 

optimisation algorithms are described in detail. 

 

1.2. The Polyhedral Approach. 
 

   The text by Nemhauser & Wolsey (1988) is a thorough introduction to almost all of 

the concepts described in this section. 

   A Linear Programme (LP) is a problem of minimising a linear function of a set of 

variables subject to linear constraints. If, in addition, some or all of the variables are 

required to take integer values, the problem is called an Integer Programme or IP. It 

has been known for a long time (e.g., Dantzig, Fulkerson & Johnson, 1954), that 

COPs like the TSP can be formulated as IPs. 

   This knowledge by itself is not too useful since IPs are much harder to solve than 

LPs. In fact, the most effective known method for solving IPs involves the solution of 

a (possibly large) number of subsidiary LP relaxations. These LPs are embedded 

within the enumerative procedure known as branch-and-bound. 
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   However, the task of solving a COP as an IP can be made considerably easier by 

seeking a tight formulation. A tight formulation is one in which the solution of the 

corresponding LP, with integrality conditions relaxed, is still integral or close to 

integral. A tight formulation is highly desirable since it leads to fewer LPs being 

solved in the branch-and-bound process. 

   The way to obtain a tight formulation is to note that the variables in the IP 

correspond to the dimensions of a Euclidean space. Each feasible solution to the 

problem corresponds to a point in this space and the convex hull of these points 

defines a polyhedron. An IP formulation which included all of the linear inequalities 

which induce facets of this polyhedron would be as tight as possible: The resulting LP 

relaxation would be completely integral and no branch-and-bound would be needed. 

   This principle is illustrated below. Fig. 1.1(a) displays the feasible region defined by 

the inequalities 6x - 4y ≤ 15, 2x + 4y ≥ 5, 6x + 2y ≥ 5, 2x - 6y ≥ -15 and 6x + 8 y ≤ 33, 

whereas Fig. 1.1(b) displays the feasible region defined by the inequalities x ≥ 1, y ≥ 

1, y ≤ 2 and x + y ≤ 4. Both regions contain the same five integer solutions, but the 

latter region is much smaller. This is because x ≥ 1, etc. induce facets of the convex 

hull of feasible integer solutions. 
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     Fig. 1.1(a): A loose IP formulation.        Fig. 1.1(b) A tight IP formulation. 
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   In practice, however, there may be a vast number of known facet-inducing 

inequalities and a vast number of unknown ones. Therefore, the cutting-plane 

approach is taken: An initial LP is solved which contains only a tiny fraction of these 

inequalities. Then, auxiliary separation routines are invoked to generate further 

inequalities which are violated by the current LP solution. These are appended to the 

LP and the LP is resolved. If no more violated inequalities can be found, but the 

solution is still not integral, branch-and-bound commences. 

   In fact, as observed by Padberg & Rinaldi (1987), separation routines can be 

invoked at every node of the branch-and-bound tree, thus tightening the bounds at 

each stage.  Since facet-inducing inequalities are valid globally (i.e. over the whole 

branch-and-bound tree), only one constraint matrix need be stored. This is in contrast 

to old-fashioned Gomory cuts, which were only valid at a particular node. 

   Some commercial mathematical programming packages now explicitly support this 

branch-and-cut method. For example, the MINTO package of Nemhauser & 

Savelsbergh (1994) contains a number of separation routine modules by default and 

allows the user to append others. 

   The study of IP formulations of COPs and the associated valid inequalities is known 

as Polyhedral Combinatorics and is developing rapidly. A survey of early work can be 

found in Lenstra (1985), see also the references in Nemhauser & Wolsey (1988). 

Relevent papers are reviewed in Chapters 2 and 5. 

   In this thesis, then, the polyhedral approach is applied to four Arc-Routing 

Problems. In each case, the author has considered formulations, valid inequalities, 

separation routines and/or solution algorithms. 

 

1.3. Two Problems with a Single Vehicle. 
 

   The first single-vehicle problem under consideration is the Rural Postman Problem 

or RPP (Orloff, 1974). This is defined on a network G (such as a road network) with a 

set V of vertices (junctions) and a set E of edges (two-way roads). Each edge e ∈ E 
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has an associated cost ce which is normally proportional to the length of the road. A 

subset of edges R ⊆ E requires service. This means that the vehicle must traverse each 

e ∈ R at least once; the non-required edges, if any, may be traversed any number of 

times or not at all. Moreover, the vehicle must start and end the route at the same 

place. 

    The task is to find a route of minimum cost. Note that the TSP can be transformed 

into an RPP by replacing each vertex by an infinitessimal required edge and adding a 

large constant to all other edge costs so that it is never optimal to visit any vertex more 

than once. 

   The second single-vehicle problem will be called the Rural Postman Problem with 

Deadline Classes or RPPDC. This is a generalisation of the RPP in which the set R is 

partitioned into deadline classes R1, ..., RL according to priority. For each e ∈ E, a 

time te is taken to traverse e without servicing it. Similarly, for each e ∈ R, a time se is  

taken to traverse e while servicing it. Edges in R1 must be serviced no later than time 

T1, edges in R2 must be serviced no later than T2, and so on. For reasons which will 

be made clear in chapter 4, it is assumed that L < ln |R|. 

   Note that in the case of the RPPDC it is necessary to specify at which vertex of G 

the depot is located, since moving the depot can affect the optimal solution or even 

lead to there being no feasible solution at all. 

   The RPP is known to be NP-Hard (Lenstra & Rinnooy-Kan, 1976). Since the 

RPPDC reduces to the RPP when the deadlines become sufficiently large, the RPPDC 

is NP-Hard also. However, although both of these problems are NP-Hard, there is a 

sense in which the RPPDC is harder than the ordinary RPP, at least from a practical 

point of view: Given any particular RPP instance, it is trivial to find a feasible 

solution, even if it will almost certainly be suboptimal. On the other hand, given a 

particular RPPDC instance, it appears to be NP-Hard to even decide whether a 

feasible solution exists at all. 

   Even RPPDC instances in which L = 1 are substantially more difficult to solve than 

ordinary RPP instances, as will become apparent in Chapter 4. 
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1.4. Two Multi-Vehicle Problems. 
 

   The first multi-vehicle problem is the Capacitated Arc Routing Problem or CARP 

(Golden & Wong, 1981). The network G(V, E, R) is defined as in the RPP, but now 

each e ∈ R has an associated demand qe, which is assumed to be non-negative. A fleet 

of identical vehicles is available and the demand of the required edges serviced by any 

single vehicle cannot exceed Q, the vehicle capacity. A fixed cost of C is incurred for 

each vehicle used in the solution. 

   Note that the CARP, like the RPPDC defined in the previous section, is a 

generalisation of the RPP. It is possible to generalise in both ways at once to obtain 

the Capacitated Arc Routing Problem with Deadline Classes or CARPDC. Although 

this problem probably has wide applicability in practice, it proved to be too complex 

to tackle using existing polyhedral techniques. In this thesis, therefore, attention is 

restricted to the special case of the CARPDC in which L = 1. That is, each vehicle 

must finish servicing roads before a (single) time deadline T. This will be called the 

Capacitated Arc Routing Problem with a Deadline; it will be denoted by CARP+1D 

to emphasise the fact that only one deadline is involved. 

 

1.5. Motivation for the Research. 
 

   As mentioned in Section 1.1, polyhedral algorithms now exist which are capable of 

solving many (but not all) large TSP instances to optimality, despite the fact that the 

TSP is NP-Hard. However, the TSP is rarely an adequate model in practice, because 

VRPs that occur in real-life may involve any of the following complications: multiple 

vehicles and/or depots; both pick up and delivery; certain roads requiring treatment; 

one-way streets; restrictions on the capacity of the vehicles, the length of any route or 

on the time at which a delivery occurs, etc. There is therefore a need for optimisation 

algorithms and lower bounding procedures for models of more general applicability. 
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   Such algorithms are slowly beginning to emerge (see Chapters 2 and 5). One 

problem which has received attention is the Vehicle Routing Problem with Time 

Windows or VRPTW, which allows for vehicle capacity limitations and individual 

time windows within which each customer must be serviced (see Desrosiers et al., 

1995). The best current VRPTW algorithm can solve some instances with up to 100 

customers (Kohl & Madsen, 1995). 

   However, all known VRPTW algorithms fail when the time windows are wide. A 

time deadline is effectively a wide window and therefore VRPTW algorithms can be 

expected to fail on deadline problems (Nygard et al., 1988 and Thangiah et al., 1994 

resort to heuristic approaches). Moreover, there is no optimisation literature on Arc-

Routing with either time windows or deadlines, yet work by Eglese and Li (see 

Section 5.1) has indicated that deadlines are quite likely to occur in real-life ARPs. 

   For these reasons, then, it seemed that algorithms specifically tailored to ARPs with 

deadlines might be of use. This led to the decision to study deadline variants of the 

RPP and CARP. Preliminary attempts to formulate and solve some small single-

vehicle problems led to the hope that that fairly large RPPDC instances might be 

solvable to optimality. Analogous attempts with multi-vehicle problems indicated that 

good lower bounds might be obtainable for the CARP+1D. 

   Clearly, a prerequisite for studying deadline variants of the RPP and CARP is a 

study of the RPP and CARP themselves. During the research, the author in fact found 

some new results on these problems and also on another problem related to the CARP 

called the Bin Packing Problem. These results are included in the thesis for the sake of 

completeness (see Chapters 3 and 6). 

 

1.6. Outline of the Thesis. 
 

   i) A thorough survey of the literature on the RPP (and related single-vehicle 

problems) was conducted. This makes up Chapter 2. 
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  ii) In Chapter 3, a known formulation of the RPP is considered. Large new classes of 

valid inequalities are introduced for the associated polyhedron, some of which are 

proved to induce facets. It is shown how to use some of these inequalities as cutting-

planes and computational results are given. 

 

 iii) A formulation for the RPPDC is given in Chapter 4 which is efficient in that it 

exploits the natural sparsity of road networks. It is shown how to transfer known valid 

inequalities for the RPP over to the RPPDC; moreover, further inequalities are given 

which cannot be obtained in this way. The use of some of these as cutting-planes is 

given, along with computational results. 

 

 iv) A survey of the literature on the CARP (and related multi-vehicle problems) is 

given in Chapter 5. 

 

v) In Chapter 6, some comments are made concerning the choice of which formulation 

to use when attempting to solve the CARP. Some new valid inequalities are given for 

some of these formulations. Also, a lower bound for a related problem, the Bin 

Packing Problem, is examined and from this it is possible to derive still more valid 

inequalities for the CARP formulations. 

 

vi) A formulation and valid inequalities for the CARP+1D appear in Chapter 7. It is 

shown how to use some of these inequalities as cutting-planes to produce a very tight  

lower bound. The quality of this lower bound is tested on some examples for which 

good upper bounds are known. 

 

vii) Conclusions and suggestions for further work are given in Chapter 8. 
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2. Literature on Single-Vehicle Problems. 

 

2.1. Overview. 
 

   A vast number of articles and books have been published in the area of Vehicle 

Routing and it would require several hundred pages to review the field in any depth. 

In this thesis, therefore, the scope is restricted to optimisation algorithms for 

undirected problems with a single depot. That is, we will not be considering heuristic 

approaches, nor problems with directed arcs (i.e., one-way streets) or multiple depots. 

   The literature review is divided into two parts for the sake of convenience. Single-

vehicle problems are considered in the present chapter, whereas Multi-vehicle 

problems will be considered in Chapter 5. For general surveys of Arc-Routing 

Problems, see Assad & Golden (1995) or Eiselt, Gendreau & Laporte (1995a, b). 

 

2.2. The GRP and its Special Cases. 
 

   The RPP (see Section 1.3) is a special case of the so-called General Routing 

Problem (GRP). In the GRP, the set R may contain required vertices as well as 

required edges. That is, the vehicle must visit each required vertex at least once as 

well as traversing each required edge at least once. An instance of the RPP may 

therefore be regarded as a GRP instance in which R ⊆ E. 

   Both the RPP and GRP were first defined and named in a paper by Orloff (1974), in 

which he proposed a branch-and-bound algorithm for them. Unfortunately, the paper 

contained some errors as shown by Lenstra & Rinnooy-Kan (1976). These authors 

also showed that both the RPP and GRP are strongly NP-Hard. 

   It is known, however, that the special case of the RPP where R induces a connected 

subgraph is equivalent to a matching problem and is polynomially solvable (Edmonds 

& Johnson, 1973). It is called the Chinese Postman Problem after its discoverer, Mei-

Gu Guan (Guan, 1962). 
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   The other natural special case of the GRP, where R ⊆ V, has been termed the Road 

Travelling Salesman Problem (R-TSP) by Fleischmann (1985) and the Steiner 

Graphical Travelling Salesman Problem by Cornuéjols, Fonlupt and Naddef (1985). 

It will be referred to as the SGTSP. If in addition R = V the Graphical Travelling 

Salesman Problem (GTSP) is obtained (Cornuéjols, Fonlupt & Naddef, 1985). Even 

the GTSP is strongly NP-Hard, as the standard TSP can be transformed to it. 

   The standard TSP differs from the GTSP in three ways: in the TSP, vertices must be 

visited exactly once, edges may be traversed at most once and the underlying network 

is complete (i.e., there is an edge connecting every pair of vertices). In the GTSP, 

vertices must be visited at least once, edges may be traversed any number of times 

and the network need only be connected. 

    Note also that the GRP, SGTSP and RPP correspond most naturally to real-life 

situations. Each of these can in fact be transformed to the standard TSP, but only at 

the price of introducing a large number of redundant variables. 

 

2.3. Time Windows and Time Deadlines. 
 

   A time window is an interval of time during which a vertex (customer) or edge 

(road) requires service. Time windows are often present in real-life routing problems 

(see the survey by Desrosiers et al., 1995). To the author's knowledge, the only single-

vehicle problem to receive attention in this area has been the Travelling Salesman 

Problem with Time Windows (TSPTW). The current best algorithm for this appears to 

be the  dynamic programming implementation of Dumas et al. (1995). However, this 

only works well if the time windows are rather narrow. 

   Time deadlines (Nygard et al., 1988, Thangiah et al., 1994) are a special case of time 

windows; namely, the case in which the window starts at time zero. These also 

frequently occur in practice, for example in parcel delivery, road treatment, waste 

collection or the delivery of perishable goods. The dynamic programming approach  

fails in the case of deadlines since deadlines are effectively wide time windows. 
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   The deadline classes described in Section 1.3 are an even more restricted form of 

time window, which nevertheless present serious difficulties for generic time window 

algorithms. The reason the author chose to study them is that they arise in practice 

whenever customers or roads are ordered in terms of priority. Several studies 

concerning real-life multi-vehicle problems with time deadlines are reviewed in 

Chapter 5. Of course, these problems contain the single-vehicle case as a subproblem. 

   Finally, there has been some research on problems with precedence constraints 

(PCs), i.e. conditions which state that vertex (or edge) i must be serviced before vertex 

(or edge) j. Balas, Fischetti & Pulleyblank (1995) consider the TSP with PCs and 

Dror, Stern & Trudeau (1987) and Gélinas (1992) consider the RPP with PCs. 

However, deadline classes differ from PCs in that there is nothing to prevent a low 

priority customer from being serviced before a high priority customer if time allows. 

   Some known polyhedral results are considered in the next three sections. 

 

2.4. The TSP Polyhedron. 
 

   Like many COPs, the TSP can be formulated as an IP in a variety of ways. The 

classical formulation, due to Dantzig, Fulkerson & Johnson (1954), has a zero-one 

variable xij for each pair of vertices i and j, taking the value 1 if and only if i and j are 

adjacent on the tour. If there are N vertices, the formulation can be written as: 

 

Minimise c xij ij
i j N1≤ < ≤

∑
 

 

Subject to: 

 

  x(δ({i}))  =  2                                   (i = 1, ..., N)                              (2.1) 

 

   x(δ(S))  ≥  2                        (∀S ⊂ V: 3 ≤ |S|  ≤  N - 3)                      (2.2) 
 

  xij  ∈  {0, 1}                                   (1 ≤ i ≤  j ≤ N)                             (2.3) 
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where δ(S) represents the set of edges (commonly called the cutset) connecting 

vertices in S to vertices in V - S and, for any set of edges F ⊂ E, x(F) denotes xij
ij F∈
∑ . 

   The Degree equations (2.1) ensure that the vehicle enters and leaves each vertex 

exactly once and the Subtour Elimination or Connectivity inequalities (2.2) ensure that 

the vehicle enters and leaves each set of vertices at least once. 

   For a TSP on N vertices, the convex hull of solutions to (2.1) - (2.3) is denoted by 

QNT (Grötschel & Padberg, 1979). It is a polytope (i.e., a bounded polyhedron) and, 

due to the degree equations, it is not full-dimensional (that is, it lies within a subspace 

of the space it is defined in). A great deal of research has been conducted on the 

structure of QNT and it would be impossible to review all of this here. Jünger, Reinelt 

& Rinaldi (1995) contains an excellent summary. 

   Because QNT is not full-dimensional, a given valid inequality for Q
N
T can be 

expressed in a variety of ways by adding or subtracting multiples of the Degree 

equations (in this way, the upper bounds of 1 on each variable, implied by (2.3), can 

be regarded as Connectivity inequalities with |S| = 2). 

   It has been pointed out by Naddef (1990) that most (but not all) of the known valid 

inequalities for QNT can be expressed in terms of the cutsets of various sets of vertices 

labelled handles and teeth (the meaning of these terms will become clear in what 

follows). In this thesis, we will call such inequalities Handle-Tooth-Cutset (HTC) 

inequalities. Figure 2.1 overleaf, adapted from Naddef (1990), displays every known 

class of HTC inequalities for QNT at the time of writing. An arrow from one to another 

means that the former is a special case of the latter. 

   Comb inequalities (Grötschel & Padberg, 1979) are defined as follows: Let q ≥  3 be 

an odd integer and H, T1, ..., Tq be sets of vertices such that H ∩ Ti and Ti \ H are 

non-empty for 1 ≤ i ≤ q and such that the Ti are mutually disjoint. H is the handle of 

the comb and the Ti are the teeth. The associated comb inequality in HTC form is: 

 

          
x H x T qj

j

q

( ( )) ( ( )) ( . ).δ δ+ ≥ +
=
∑
1

3 1 2 4
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Fig. 2.1. The known classes of HTC inequality. 

 

 

 

   Figure 2.2 below shows a comb. Throughout this section, bold (respectively, plain) 

ellipses represent handles (resp., teeth). Small white (resp., black) circles represent 

sets of vertices which may (resp., may not) be empty. This follows the convention in 

Naddef (1990). 

   When each tooth contains only 2 vertices (i.e., each small black circle in fig. 2.2 

corresponds to a single vertex), comb inequalities reduce to 2-Matching inequalities, 

first discovered by Edmonds (1965). 

 

 

 

 
 

Fig. 2.2: A comb with five teeth. 
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   Historically, the first generalisation of the comb inequalities are the clique-tree 

inequalities (Grötschel & Pulleyblank, 1986). These allow a number of comb 

configurations to be joined together in a tree-like structure (Fig. 2.3 below). The 

number of teeth intersecting any given handle must still be odd and at least 3 and each 

tooth must contain at least one vertex not contained in any handle. If there are p 

handles and q teeth, the clique tree inequality in HTC form is: 

 

     
x H x T p qi

i

p

j
j

q

( ( )) ( ( )) ( . )δ δ
= =

∑ ∑+ ≥ + −
1 1

2 3 1 2 5
 

 

   As implied by Fig. 2.1, connectivity inequalities are also a kind of clique-tree 

inequality. In fact, they are those with p = 0 and q = 1. 

   Clique-trees have been generalised by Boyd & Cunningham (1991) to form 

bipartitions. Handles and teeth are allowed to connect together in any way, subject to 

the following conditions: all teeth must be disjoint, all handles must be disjoint, the 

number of teeth intersecting any handle must be odd and at least 3 and no tooth may 

be contained in any single handle. 

   Let dj denote the number of handles intersecting tooth j. In bipartitions, unlike 

clique-trees, there may be teeth which do not contain any vertices outside of the dj 

handles. Such teeth are called degenerate. Define βj = 1 for non-degenerate teeth, but 

βj =  dj  / (dj -1)  for degenerate teeth. 

 

 

 

        
 

Fig. 2.3: A clique-tree. 
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The bipartition inequality, expressed in HTC form, is (see also Carr, 1995): 

 

  

x H x T p d di
i

p

j j
j

q

j
j

j j
jND D

( ( )) ( ( )) ( ) ( ) ( . )δ β δ β
= = ∈ ∈

∑ ∑ ∑ ∑+ ≥ + + + −
1 1

2 2 1 2 6

 
 

where ND and D are the sets of non-degenerate and degenerate teeth, respectively. 

   When all βj are integral, i.e., no degenerate teeth intersect three or more handles, the 

bipartition inequality is referred to as integral. Figure 2.4 below shows an integral 

bipartition with three degenerate teeth. For this instance, all cutsets have a coefficient 

of 1 apart from the three degenerate teeth on the periphery, which have coefficient 2. 

Moreover, the rhs is 26. 

   Path inequalities were first defined by Cornuéjols, Fonlupt & Naddef (1985). If P ≥ 

3 is an odd integer and ni (i = 1,..., P) are integers greater than one, a  

path configuration is a partition of V into sets A, Z, Vij (i = 1, .., P, j = 1, .., ni) such 

that the Vij are non-empty. Now, for all i, identify V
i
j with A when j = 0 and with Z 

when j = ni + 1. The path inequality corresponding to the path configuration is: 

 

              

α ij ij
i j N

i

ii

P

x
n

n1 1

1 2 7
1

1≤ < ≤ =
∑ ∑≥ +

+

−
( . )

 
 

where αij is defined as: 

 

 

 

2 2

2  
 

Fig. 2.4: An integral bipartition. 
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1   if   i ∈ A,  j ∈ Z, 
 

(q - p) /(nr - 1)  if i ∈ V
r
p and j ∈ V

r
q (p <  q), either p ≠ 0 or q ≠ nr + 1; 

 

1/(nr - 1) + 1/(ns - 1) + 
p 1

n 1

q 1

n 1r s

−

−
−

−

−
  if i∈Vrp, j∈Vsq, r ≠ s, 1 < p < nr, 1 < q < ns, 

 

0 otherwise. 

 

   If all ni are equal to the same number n, then Cornuéjols et al. refer to the path 

inequality as n-regular. In such a case, the inequality can be simplified by multiplying 

throughout by n - 1. The rhs then becomes P.n + P + n - 1. It can then be shown that 

the 2-regular path inequalities are precisely the comb inequalities. 

   A path configuration with P = 3, n1 = 3 and n2 = n3  = 2 is shown in Fig. 2.5 below. 

   Although path inequalities do not immediately look like HTC inequalities, they can 

in fact be expressed in HTC form, as long as handles are permitted to lie inside other 

handles (Fleischmann, 1988). For example, the inequality corresponding to Fig. 2.5 

can be multiplied by 2 and then expressed, as in Fig. 2.6 overleaf, as having two 

handles and three teeth. All cutsets then receive a coefficient of 1, apart from the two 

rightmost teeth, which receive a coefficient of 2. The rhs becomes 16. 

 

 

 

A

Z

V

V

V

V

V

V

V

1
1

1

1

1 1

2

2

2
2

2
3

3

3

 
 

Fig. 2.5. Path configuration with 3 paths. 
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2
2

 
 

Fig. 2.6. Path configuration in HTC Form. 

 

 

 

   This idea of nested handles led Fleischmann (1988, 1987) to generalise the path 

inequalities to form the star and hyperstar inequalities. However, these will not be 

described here (see Naddef, 1990). Eventually, Naddef (1990, 1992) produced the 

binested inequalities in which, as the name implies, both handles and teeth are 

permitted to be nested. The conditions on the intersection of the handles and teeth, 

along with the rules for deriving the cutset coefficients, are extremely complex and 

will therefore not be described here. 

   A simple example of a binested set is given in Fig. 2.7 below. This has a single 

handle, but six teeth. In the corresponding binested inequality, each cutset has a 

coefficient of 1 and the rhs is 18. 

 

 

 

 
 

Fig. 2.7: A binested set; rhs = 18. 
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2.5. The GTSP and SGTSP Polyhedra. 
 

   The first paper published on the GTSP was that of Cornuéjols, Fonlupt & Naddef 

(1985), though a few of their results were simultaneously discovered by Fleischmann 

(see Fleischmann, 1985, 1988). Cornuéjols et al. associate a general integer variable 

xe with each e ∈ E, representing the number of times e is traversed, and formulate the 

GTSP as follows: 

 

Minimise c xe e
e E∈
∑  

 

Subject to: 

 

x(δ(i)) is a positive even integer         (∀i ∈V)                           (2.8) 

 

x(δ(S)) ≥ 2                                          (∀S ⊂V)                           (2.9) 

 

xe  ≥  0 and integer                             (∀e ∈E)                           (2.10) 

 

   For a given graph G, let GTSP(G) denote the convex hull in ℜ|E| of solutions to 

(2.8) - (2.10). Notice that GTSP(G) is always a full-dimensional, unbounded 

polyhedron, which makes it easier to study than QNT. Yet, from a comparison of (2.1) 

- (2.3) with (2.8) - (2.10), it can be seen that QNT is a face of GTSP(KN), where KN is 

the complete graph on N vertices. Hence, new facets of GTSP(KN) frequently lead to 

new facets of QNT. 

   It was these observations which led Cornuéjols et al. to discover the path 

inequalities. They showed that the path inequalities are valid for GTSP(G) as well as 

for QNT. 

   It has been shown (see Naddef, 1990, Jünger, Reinelt & Rinaldi, 1995 and the 

references therein), that all HTC inequalities for QNT are also valid for GTSP(G). Of 

course, they will not necessarily induce facets. Indeed, the sparser the graph G is (i.e., 

the fewer edges it has), the less likely it is for a HTC inequality to induce a facet.  
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   For example, when Cornuéjols, Fonlupt and Naddef (1985) define path inequalities 

for the GTSP, they require the subgraphs induced in G by each of the sets Vij to be 

connected and, moreover, that there be an edge in G connecting Vij to V
i
j+1 for i = 1, 

..., P and j = 1, ..., ni - 1. Path inequalities do not induce facets of GTSP(G) if these 

conditions are not met. 

   The SGTSP polyhedron has received little attention. Cornuéjols, Fonlupt & Naddef 

(1985) only consider analogues of the connectivity inequalities (2.9): These remain 

valid provided that | S ∩ R | ≥  1 and | (V \ S) ∩ R | ≥  1. Fleischmann (1985) 

describes what he calls "3-star" inequalities. In the terminology of Cornuéjols et al. 

(1985), the 3-star inequalities are in fact 2-regular path inequalities with P = 3. These 

inequalities remain valid provided that | Vij ∩ R | ≥  1 for all i and j. 

   In the next section, attention is turned to known polyhedral results for the two 

problems in which required edges are permitted; namely, the RPP and GRP. 

 

2.6. The RPP and GRP Polyhedra. 
 

   In this section some more notation will be needed: recall that a RPP instance is 

given by a graph G(V, E, R), a set of edge costs ce ≥ 0 for each e ∈ E and a set R ⊆ E 

of required edges. We let R(S) and δR(S) denote the set of required edges with both 

end-vertices in S, or one end-vertex in S, respectively. 

  Corberán & Sanchis (1994) formulate the RPP in the following way: associate a 

general integer variable xe with each e ∈ E representing the number of times e is 

traversed (if e ∉ R), or one less than this number (if e ∈ R). Then we have: 

 

Minimise c xe e
e E∈
∑  

 

Subject to: 

 

x(δ(S))  ≥  2         (∀ S  ⊂ V:   δR(S) = ∅, R(S) ≠ ∅, R(S) ≠ R)       (2.11) 
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x(δ(i))  ≡  |δR(i)| mod 2                             (∀ i ∈ V)                    (2.12) 
 

  xe  ≥  0  and integer                                  (∀ e ∈ E)                    (2.13) 

 

   Now, for a given graph G, let RPP(G) denote the convex hull in ℜ|E| of solutions to 

(2.11) - (2.13). It is a full-dimensional, unbounded polyhedron. Corberán & Sanchis 

show that the connectivity inequalities (2.11) and the non-negativity conditions induce 

facets of RPP(G) under very mild conditions. However, because of the non-linear 

degree constraints (2.12) and the integrality conditions, more inequalities are required 

to define RPP(G). 

   Observe that a vehicle must leave a set S ⊂ V as many times as it enters it and 

therefore that |δR(S)| + x(δ(S)) must be even. This leads to the R-odd cut inequalities: 

 

         x(δ(S))  ≥  1                (∀ S  ⊂ V:   |δR(S)| odd)                    (2.14) 

 

   Two other polyhedral results are presented in Corberán & Sanchis (1994). The first 

of these is the following: Suppose that the set of vertices V is partitioned into subsets 

in such a way that each subset contains at least one required edge and no required 

edge crosses between subsets. Now, if each subset is shrunk into a single vertex, one 

can define a GTSP instance on the resulting network G'. It can be shown that every 

facet-inducing inequality for GTSP(G') is also facet-inducing for RPP(G). Note that 

the connectivity inequalities are a special case of this. The procedure also leads to 

path, star, etc., inequalities for RPP(G). 

   The second result is that the following K-component (K-C) constraints are facet-

inducing: Let k be an integer greater than one. Consider a partition of V into the non-

empty sets Vj (j = 0, ..., k+1) such that: 

 

- each induced subgraph G(Vj) is connected; 

 

- each required edge either lies within some G(Vj) or crosses from V0 to Vk+1 ; 



21 

V

V

1

4

V
5

V
2

V
3

0
V

 
 

Fig. 2.8: K-C structure. 

 

 

 

- at least one edge in E connects G(Vj) to G(Vj+1), for  j = 0,.., k; 

 

- there are an even number of required edges crossing from V0 to Vk+1. 

 

   A diagram of the resulting K-C configuration is shown in Figure 2.8 above. Letting 

(p:q) denote the set of edges with one end-vertex in each of Vp and Vq, the 

corresponding K-C inequality takes the form: 

 

(k 1) x(0:k 1) (q p) x(p:q) 2k (2.15)
0 p q k 1,
p 1 or q k

− + + − ≥
≤ ≤ ≤ +
≥ ≤

∑

 
 

   Now to consider the GRP. The recent paper by Corberán & Sanchis (1996) extends 

the above results on the RPP to the GRP and also significantly generalises them. They 

show that the formulation (2.11) - (2.13) transfers to the GRP provided that R(S) is 

interpreted as containing the required vertices in S as well as the required edges 

having both end-vertices within S. The validity of the R-Odd, K-C and GTSP-type 

inequalities then transfers directly to the GRP. 

   Corberán & Sanchis (1996) then present the honeycomb inequalities, valid for the 

RPP as well as the GRP. It would take up too much space to formally define these 

here. Instead, we simply note that honeycomb configurations can be formed by 
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'gluing' K-C configurations together by identifying edges. The gluing must be done in 

such a way that certain conditions are met, such as the condition that some of the non-

required edges form a spanning tree. 

   K-C configurations themselves can be regarded as very simple honeycomb 

configurations; namely, those in which the spanning tree is a mere path. 

   Three example honeycomb configurations are shown in Fig. 2.9 below. In the 

corresponding inequalities, the edges shown have a coefficient of 1 unless otherwise 

indicated. The coefficient of any edge not shown is equal to the number of edges 

traversed in the spanning tree to get from one end-vertex of the edge to the other. 

 

 

 

                                      

 

Fig. 2.9a: First honeycomb, rhs = 6.           Fig. 2.9b: Second honeycomb, rhs = 6. 

 

 

 

2 2

2  

 

Fig. 2.9c: Third honeycomb, rhs = 8. 
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2.7. Separation Algorithms for the TSP. 
 

   A separation algorithm is a routine which takes an LP relaxation as input and 

outputs one or more violated inequalities in a given class (e.g. 2-matching, comb, 

etc.), if any exist. In the case of the TSP, the input will typically be a weighted support 

graph G*(V, E*), where e ∈ E* if and only if the variable associated with that edge is 

positive, and the weight of e is equal to the current value of xe. An algorithm which 

guarantees to find a violated inequality in a given class (if one exists), is called exact, 

otherwise it is called heuristic. It is also desirable for such an algorithm to run in 

polynomial time. 

   At present, three exact polynomial separation algorithms are known: 

 

   (i) A Connectivity inequality (2.2) is violated if and only if a minimum cut in G* 

takes a value less than 2. If the minimum cut algorithm of Nagamochi, Ono & Ibaraki 

(1994) is used, this means that separation for (2.2) can be performed in time O(NM + 

N2 log N), where M is the number of edges in G*. 

 

  (ii) Padberg & Rao (1982) show how to construct an auxiliary graph G', by splitting 

edges of G* and labelling certain vertices odd, with the property that a 2-matching 

inequality is violated if and only if a minimum odd cut in G' has a weight less than 1. 

They also show that a minimum odd cut can be found in polynomial time by invoking 

a maximum flow routine at most NODD times, where NODD is the number of odd 

vertices. 

 

 (iii) Carr (1995, 1996) has shown that bipartition and binested inequalities with a 

fixed number of handles and teeth can be separated in polynomial time. However, the 

order of the polynomial in Carr's algorithm increases rapidly as the number of handles 

and teeth increases. At present, the only practical use of the algorithm is for the 

identification of comb inequalities with three teeth. 
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   We now consider heuristic separation routines. Padberg & Rinaldi (1990) present 

fast separation heuristics for connectivity, 2-matching, comb and clique-tree 

inequalities. The comb heuristic relies mainly on the idea of shrinking sets of vertices 

in G*, in such a way that a violated 2-matching inequality in the shrunk graph leads to 

a violated comb inequality in G* (shrinking a set S of vertices means identifying all 

vertices in S, eliminating any consequent loops, and merging each consequent set of 

parallel edges into a single edge, summing the weights in the process). This comb 

heuristic is extended in Clochard & Naddef (1993) and Naddef & Clochard (1994). In 

these papers, not only is the comb heuristic made more effective, but it is extended to 

find violated path inequalities as well. 

   Note that if all connectivity inequalities are satisfied, then there is a limit on the 

amount by which a comb inequality can be violated. It is not hard to show that the 

maximum violation occurs when x(δ(Tj ∩ H)) = x(δ(Tj \ H)) =  x(δ(Tj)) = 2 for all 

teeth, when the lhs in (2.4) is 3q. Such maximally violated combs often arise in LP 

relaxations. This led Applegate et al. (1995) to concentrate on producing a separation 

algorithm for this extremal case. 

   Applegate et al. call a set of vertices S tight if x(δ(S)) = 2 in G*. They show that 

tight sets can be conveniently represented by O(N) necklaces. A necklace is a partition 

of V into vertex sets S1, ..., Sm, called beads, such that each bead is tight, the union of 

any consecutive sequence of beads is tight, and Sm ∪ S1 is also tight. The union of a 

pair of consecutive beads is called a domino. 

   Fig. 2.10, overleaf, shows a possible G* arising within a branch-and-cut procedure. 

The solid lines represent edges with xe = 1 and the dotted lines represent edges with 

xe = 1/2. One necklace is given by the beads {1}, {2} and {3, ..., 16}. Since there are 

only 3 beads in this necklace, each domino is the complement of a single bead and 

therefore tight. A second necklace is given by the beads {1, 2}, {3}, {4} and {5, ..., 

16}. Note that the dominoes {1, 2, 3}, {3, 4}, {4, ..., 16} and {1, 2, 5, ..., 16} are tight, 

as required. 
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  Fig. 2.10: Possible G*.        

 

 

 

   Since each tooth of a maximally violated comb satisfies x(δ(Tj ∩ H)) = x(δ(Tj \ H)) 

= x(δ(Tj)) = 2, each domino is a potential Tj and the two beads making up the domino 

are candidates for Tj ∩ H and Tj \ H. Applegate et al. show that, if there is a 

maximally violated comb in G* at all, then there is one which uses at most one 

domino from each necklace. They associate a {0, 1} variable with each necklace, 

taking the value 1 if some domino in that necklace is to be a tooth. They then set up a 

system of linear congruences modulo 2 in these variables and show that the existence 

of a maximally violated comb in G* is equivalent to the existence of a solution to 

these congruences with a particular property. 

   Applegate et al. do not give a polynomial-time algorithm for finding suitable 

solutions to the congruences. Instead, they resort to a (sophisticated) heuristic. 

   Fleischer & Tardos (1996) note that the set of necklaces can be obtained in 

O(N.M.logN) time, using an algorithm of Benczúr (1994). However, they also note 

that the remainder of the necklace algorithm has not been shown to run in polynomial 

time in the worst case. They show, however, that when G* is a planar graph, the 

whole algorithm can be made to run in polynomial time. This is because a necklace 

can be represented by a series of parallel edges running from one face of G* to 

another. Fig. 2.11, overleaf, illustrates this for the necklace with beads {1, 2}, {3}, 

{4} and {5, ..., 16} discussed above. 
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         Fig. 2.11: Representing a planar necklace.  

 

 

 

   Construct an auxiliary graph G', with a vertex corresponding to each face of G*, and 

one of the parallel edges for each necklace. It is possible for G' to not be planar even 

though G* is planar. Fleischer & Tardos (1996) show that if a comb inequality is 

maximally violated in G*, then G' contains an odd cycle. The converse is false, but 

they show that if G' contains an odd cycle, then one or both of the following 

conditions holds: 

 

(i) At least one maximally violated comb inequality exists. 

 

(ii) At least two violated comb inequalities exist which are not maximally violated. 

 

   Since there are only O(N) necklaces, G' contains O(N) edges. Therefore an odd 

cycle in G' can be detected in O(N) time by breadth-first search. This time is far 

outweighed by the O(N.M.logN) time taken to list the necklaces initially. Finally, it 

can be shown that the whole approach takes O(N2.logN) time, since M is O(N) for 

planar graphs. 

   Finally, Christoff & Reinelt (1996) have very recently given complete linear 

descriptions of QNT for n ≤ 10, using a computer program. They are also working on 

producing heuristic separation routines for some of the newly discovered classes of 

facets. 
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2.8. Other Separation Algorithms. 
 

   The success of polyhedral theory in tackling large instances of the TSP has not yet 

been duplicated with the GTSP, SGTSP, RPP or GRP. However, this is probably 

merely due to the fact that fewer researchers pay attention to these problems. The only 

papers known to the author in which computational results are presented are those of 

Fleischmann (1985) and Corberán & Sanchis (1994). 

   As mentioned in Section 2.5, Fleischmann (1985) concerns the SGTSP, although the 

problem is termed the R-TSP in that paper. Fleischmann gives exact and heuristic 

polynomial separation routines for the connectivity inequalities and gives a separation 

heuristic for the 3-star inequalities. Instances with up to 200 vertices were solved to 

optimality with a combination of connectivity and 3-star inequalities, traditional 

Gomory cuts, and branch-and-bound. 

   As mentioned in Section 2.6, Corberán & Sanchis (1994) concerns the RPP. 

Violated connectivity, R-odd cut and K-C inequalities were identified by eye. RPP 

instances with up to 184 edges were solved to optimality without the use of branch-

and-bound. 

   Finally, Corberán (1996) gives the following theoretical results for the GRP:  

 

   i) The separation problem for connectivity inequalities can be solved exactly in 

polynomial time: First, give each e ∈ E in G a weight equal to xe. Shrink all required 

edges in G to yield a smaller graph G'. Call the new vertices thus created special. Each 

special vertex corresponds to a cluster of required edges in G. Pick one special vertex 

and send maximum flows in G' to each one of the other special vertices. If a 

Connectivity inequality is violated, at least one of these maximum flows will have a 

value less than 2. 

 

  ii) The separation problem for R-odd cut inequalities can also be solved exactly in 

polynomial time: Give each e ∈ E in G a weight equal to xe, label vertex i odd if and 

only if |δR(i)| is odd, then find a minimum weight odd cut (see Padberg & Rao, 1982). 
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   Corberán also claims to have fast and effective separation heuristics for 

connectivity, R-odd cut, K-C and honeycomb inequalities. 

   In the following chapter, many new classes of valid inequality will be given for the 

RPP, along with an effective separation heuristic for one of these classes. 
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3. The Rural Postman Problem. 

 

3.1. Overview. 
 

   In this chapter, the polyhedral approach to the RPP is extended, both theoretically 

and computationally. In Section 3.2, it is shown how to "borrow" most of the 

polyhedral results known for the GTSP (Section 2.5), first to give new inequalities for 

the SGTSP and then to give new inequalities for the RPP. This leads to an extremely 

detailed (though not complete) description of RPP(G). In Section 3.3, some of the 

inequalities thus obtained are discussed in detail. They are shown to generalise most 

of the inequalities in Corberán & Sanchis (1994, 1996). In Section 3.4, the path-

bridge inequalities are defined and the necklace method of Fleischer & Tardos (1996) 

(see Section 2.7) is adapted to yield a good separation heuristic for them. The chapter 

concludes with some computational experiments and comments in Section 3.5. 

 

3.2. The GTSP, SGTSP and RPP Polyhedra. 
 

   In Section 2.5, it was stated that all of the HTC inequalities discussed in Section 2.4 

are valid for the GTSP as well as the standard TSP. Each class of HTC inequalities is 

defined in terms of the way in which the handles and teeth are permitted to intersect 

and also whether certain vertex sets are permitted to be empty. Naddef (1990, 1992) 

notes that, given a set of handles and teeth, one can define an equivalence relation on 

the vertices, putting two vertices in the same class if they belong to the same handles 

and teeth. Naddef calls these classes HT-classes. 

   When viewed in this way, the small black circles in Figs. 2.2 - 2.7 (pp. 13-17) 

represent HT-classes which are not permitted to be empty and the small white circles 

represent HT-classes which may be empty without affecting the validity of the 

inequality. We will call the latter kind of HT-class emptiable. 

   Armed with these definitions, the first theorem in this thesis can be stated: 
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Theorem 3.1: All HTC-inequalities are valid for SGTSP(G), exactly as defined for 

GTSP(G), provided that every non-emptiable HT-class contains at least one required 

vertex. 

 

Proof: Note that, if the theorem is true for complete graphs G, then it is true for all 

graphs. This is because removing edges of G can only cause a shrinking of 

SGTSP(G). Thus we assume that G is complete. Recall that, by definition, the lhs of 

an HTC inequality is equal to the weighted sum of a number of cutsets. This implies 

that the coefficients of the edges obey the triangle inequality. 

   Suppose that a SGTSP tour exists that violates a suitable HTC inequality. This tour 

can be written as a circular sequence of vertices, possibly with repetitions, 

representing the order in which the vertices are visited. Now consider the new SGTSP 

tour formed by taking "shortcuts"; that is, by observing the same sequence but 

omitting the visits to non-required vertices. By the triangle inequality, this must also 

violate the HTC inequality. Yet this is impossible, since this would imply that the HTC 

inequality is not valid for the GTSP. 

   

The following result is also easy to obtain: 

 

Lemma 3.2: An HTC inequality which is valid for SGTSP(G) induces a facet of 

SGTSP(G) if it induces a facet of GTSP(G). 

 

Proof: Immediate from the fact that the SGTSP on a given graph is a relaxation of the 

GTSP on the same graph and therefore that SGTSP(G) contains GTSP(G). 

 

   This means that all of the classes of inequality in Fig. 2.1 (p. 13) have SGTSP 

analogues. This significantly extends the observation by Fleischmann (1985) that the 

star inequalities are valid for SGTSP(G). 
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   It will now be shown that the RPP and SGTSP polyhedra are also strongly related, 

by showing how to transform any RPP instance into a SGTSP instance with only a 

minor modification of G and the cost function. The transformation is of interest in its 

own right, since it preserves useful properties, such as sparsity or planarity, that G 

might have. However, its main use will be to provide new valid inequalities for 

RPP(G). The transformation involves doing the following for each required edge e = 

{u, v} (that is, u and v are the end-vertices of e): 

 

- add two new required vertices (u' and v', say). 

- add three new edges {u, u'}, {u', v'} and {v', v}. 

- give these new edges a very large cost. 

- make e non-required. 

 

   We will call the new vertices (resp., edges) fixing vertices (edges) and denote by G' 

the transformed network. Fig. 3.1 overleaf illustrates the transformation. Note that G' 

has |E| + 3 |R| edges. 

 

Lemma 3.3: A solution vector for the SGTSP produces a solution vector to the 

original RPP when the variables associated with the fixing edges are dropped. 

 

Proof: For any required edge e in G, consider the new vertices u' and v' in G'. The 

following three connectivity inequalities are valid for the SGTSP instance: 

  

     x{u, u'} + x{u', v'} ≥  2,   x{u, u'} + x {v', v} ≥  2,   x{u', v'} + x{v', v} ≥  2. 

 

   Since the three fixing edges have all been given a very large cost, these inequalities 

will be satisfied at equality in any optimal SGTSP solution if possible. Solving the 

simultaneous equations yields x{u, u'} = x{u', v'} = x{v', v} = 1. Hence, the path u - u' 

- v' - v plays the role of a required edge and the result follows. 
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Fig. 3.1: Transforming an RPP into a SGTSP. 

 

 

 

   A possible SGTSP solution for the graph G' of Fig. 3.1 is shown in Fig. 3.2a. The 

corresponding RPP solution is shown in Fig. 3.2b. It can be seen that this is a solution 

to the RPP of Fig. 3.1. In general, there is a precise one-to-one correspondence 

between RPP solutions and appropriate SGTSP solutions. 

   Now let SGTSP(G') denote the convex hull in ℜ|E|+3|R| of all feasible SGTSP tours 

in G'. Consider the face of SGTSP(G') containing all tours in which the connectivity 

inequalities described in Lemma 3.3 hold as equalities (that is, all variables 

corresponding to fixing edges take the value 1). Call this face P*. The one-to-one 

correspondence between SGTSP tours in G' and GRP tours in G immediately implies 

the following theorem: 

 

 

 

               
 

            Fig. 3.2a: SGTSP solution in G'.                   3.2b: RPP solution in G. 
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Theorem 3.4: RPP(G) is equal to the projection of P* onto the |E| dimensional 

subspace defined by the original (i.e., non-fixing) edges. 

 

Elementary properties of polyhedra yield the following result: 

 

Corollary 3.5: Any facet-inducing inequality for SGTSP(G') can be reduced, by 

elimination of the variables associated with the fixing edges, to a valid (not 

necessarily facet-inducing) inequality for RPP(G). Moreover, any facet-inducing 

inequality for RPP(G) can be obtained in this way. 

 

   These results imply that each class of HTC inequality in Fig. 2.1 has a generalisation 

in terms of the RPP. The author terms these generalised bipartition, generalised 

binested, etc., inequalities. These inequalities are discussed in the next section. 

 

3.3. HTC Inequalities for RPP(G). 
 

   In this section, the generalised versions of many of the classes of inequality listed in 

Fig. 2.1 are discussed in detail. It is assumed throughout that the reader understands 

the transformation from G to G', along with the idea of eliminating variables 

associated with fixing edges, as outlined in the previous section. 

   First consider the inequalities of Corberán & Sanchis (1994): 

 

Lemma 3.6: Connectivity inequalities (2.11) are generalised connectivity inequalities. 

 

Proof: This is the trivial case in which no fixing edges lie in the cut in G'. 

 

Lemma 3.7: R-odd cut inequalities (2.14) with |δR(S)| = 1 are generalised connectivity 

inequalities. 
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Proof: If S is such that |δR(S)| = 1, then δ(S) in the transformed graph G' contains 

exactly one fixing edge. Since the variable associated with this edge receives a 

coefficient of 1 in the connectivity inequality, the rhs drops by 1 when it is eliminated. 

 

Remark 3.8: Any generalised connectivity inequality not covered by Lemmata 3.6 and 

3.7 is redundant for RPP(G): If there are two or more fixing edges in a cut in G', the 

rhs drops to zero or less when variables are eliminated. 

 

Theorem 3.9: R-odd cut inequalities (2.14) in which |δR(S)| ≥  3 are generalised 2-

matching inequalities. 

 

Proof: Each of the |δR(S)| required edges in an R-odd cut yields a pair of fixing 

vertices in G'. One vertex in the pair is connected to S by a fixing edge; the other 

vertex in the pair is connected to V - S by a fixing edge. We say that the former type is 

"close" to S. Define a 2-matching inequality on G' as follows: let the handle be the 

union of S and the fixing vertices which are close to S; let each pair of fixing vertices 

be a tooth. The rhs of this 2-matching inequality is 3 |δR(S)| + 1. Each original (i.e., 

non-fixing) edge receives the same coefficient in the 2-matching inequality as it did in 

the original R-odd cut inequality. However, the variables associated with the three 

fixing edges in each new path also appear on the lhs of the 2-matching inequality, 

each with a coefficient of 1. Since there are 3 |δR(S)| such edges, the rhs of the 2-

matching inequality drops down to 1 when eliminating the variables associated with 

the fixing edges. In this way, the original R-odd cut inequality is obtained. 

 

Theorem 3.10: K-C inequalities (2.15) are generalised path inequalities. 

 

Proof: Recall (Section 2.6) that a K-C configuration on G is defined by sets of vertices 

V0, ... ,Vk+1. Suppose there are B required edges crossing from V0 to Vk+1 (B must be 

even). Then a path configuration can be defined on G' as follows (see Fig. 
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3.3 below): Let P = B + 1 and let ni = 2 for i = 1, ..., B, ni = k for i = B + 1. Let A = 

V0, Z = Vk+1, V
P
j = Vj for j = 1, ..., k. Finally, for i = 1, ..., B, let Vi

1 be the fixing 

vertex of the ith crossing required edge which is close to A and let Vi
2 be the fixing 

vertex of the ith crossing required edge which is close to Z. 

   The rhs of this path inequality, see (2.7), is 1 + 3 B + (k + 1)/(k - 1). An edge in G' 

going from VP
s to V

P
t (0 ≤ s < t ≤ k + 1) receives a coefficient of (t - s) / (k - 1) in the 

path inequality, unless s = 0 and t = k + 1, when it recieves a coefficient of 1.  

   Now, corresponding to each of the B crossing required edges in G there is a path of 

three fixing edges in G', each with a coefficient of 1 in the path inequality. Hence, 

when eliminating variables, the rhs drops to 1 + (k + 1)/(k - 1) = 2k / (k - 1). 

   We have established that the generalised path inequality gives a coefficient of (t - s) 

/ (k - 1) to an edge in G going from Vs to Vt (0 ≤ s < t ≤ k + 1) unless s = 0 and t = 

k+1, and that the rhs is 2k / (k - 1). Multiplying throughout by k - 1 yields the original 

K-C inequality (2.15). 

 

   As we shall see, there are useful, non-redundant generalised path inequalities which 

are neither K-C inequalities nor ordinary path inequalities. Before presenting these, 

however, the honeycomb inequalities of Corberán & Sanchis (1996) are discussed. 
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Fig. 3.3: (a) K-C configuration in G.                 (b) Path configuration in G'. 
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   It is obvious that there are honeycomb inequalities of HTC type, since K-C 

inequalities are honeycomb inequalities (Section 2.6). Some other honeycomb 

inequalities, not of the K-C type, can also be expressed in HTC form: It is not hard to 

show that the honeycomb inequality of Fig. 2.9a is a generalised clique-tree inequality 

(cf. Fig. 2.3), the honeycomb inequality in Fig. 2.9b is a generalised binested 

inequality (cf. Fig 2.7) and the honeycomb inequality in Fig. 2.9c is a generalised 

integral bipartition inequality (cf. Fig. 2.4). 

   The author has been unable, however, to prove that all honeycomb inequalities are 

derivable in this way. In fact, it is conjectured that they cannot. Just as there are facets 

of the GTSP which are not of the HTC type (Jünger, Reinelt & Rinaldi, 1995), it may 

be that some honeycomb inequalities are not of HTC type either. 

   Some hitherto unknown inequalities, which can also be derived by the 

transformation from G to G', are now examined. Consider the simple RPP instance in 

Fig 3.4a below. When this is formulated as in section 2.6, and violated connectivity 

and K-C inequalities have been appended, the LP relaxation shown in Fig. 3.4b is 

obtained with cost 6. Although it is has integral x values, it violates constraints (2.12) 

(there are 'odd' vertices). Furthermore, no R-odd cut, honeycomb or GTSP-type 

inequalities are violated. Thus, the cutting-planes of Corberán & Sanchis (1994, 1996) 

cannot ensure that a valid tour is obtained, even if integrality is achieved by branch-

and-bound. 

 

 

 

              

1 1

00

00

1 1

1 1

1

 
 

          Fig. 3.4 (a) RPP instance, ce shown.                  (b) an LP relaxation. 
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   Now consider the graph G' for this RPP instance (Fig. 3.5a below). We can 

construct an LP relaxation of the SGTSP instance on G' (Fig. 3.5b), which 

corresponds to the LP relaxation of the RPP in Fig. 3.4b. This new LP relaxation 

violates a comb inequality with 3 teeth and a rhs of 10. Three fixing edges have a 

coefficient of 1 in this inequality; the other fixing edges have a coefficient of 0. By 

eliminating the corresponding variables, one obtains a generalised comb inequality, 

valid for RPP(G), with a rhs of 7. This inequality is in fact precisely 

 

                           c xe e
e E∈

∑ ≥ 7 3 1( . ). 

   It turns out that (3.1) induces a facet of RPP(G), as can be shown by enumerating 

affinely independent tours. Moreover, the addition of (3.1) to the LP is sufficient to 

obtain an optimal solution to the RPP instance, which consequently has a cost of 7. 

Thus, the generalised comb inequalities differ from all other known inequalities, and 

at least some of them can cut off integral LP relaxations with 'odd' vertices. This also 

means that the generalised path inequalities properly contain the path, comb, K-C and 

R-odd  cut inequalities. 

   However, there are still other RPP instances, such that the polyhedron defined by all 

GTSP-type, generalised path and honeycomb inequalities still has invalid integral 

extreme points with 'odd' vertices. The simplest example known to the author is 

shown in Fig. 3.6 overleaf. 

 

 

 

 

 

            Fig. 3.5(a) corresponding G'.                  (b) corresponding LP relaxation. 
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Fig. 3.6: RPP instance, ce shown. 

 

 

 

   A little experimentation should convince the reader that all optimal solutions to the 

RPP in Fig. 3.6 have a cost of 12. Yet, when connectivity, R-odd cut and generalised 

path inequalities have been added to the LP for this instance, the invalid integral LP 

relaxation of Fig. 3.7 below is obtained, with a cost of 11. It has 'odd' vertices; yet no 

GTSP-type or honeycomb inequalities are violated. Thus, yet another new inequality 

is necessary to cut off this extreme point. To find this inequality, we proceed in the 

same way as for the extreme point shown in Fig. 3.4b. 

 

 

 

 
 

Fig. 3.7. Invalid LP relaxation. 
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   Again, we draw the corresponding graph G' (Fig. 3.8a below), along with the 

analogous LP relaxation of the SGTSP instance on G' (Fig. 3.8b). It is apparent that 

this LP relaxation violates a clique-tree inequality, with 2 handles and 5 teeth, of the 

form shown in Fig. 2.3 in Chapter 2. This has a rhs of 18. Six fixing edges have a 

coefficient of 1 in this inequality; the other fixing edges have a coefficient of 0. By 

eliminating the corresponding variables, one obtains a new generalised clique-tree 

inequality, valid for RPP(G), with a rhs of 12. This inequality is in fact precisely: 

 

                           c xe e
e E∈

∑ ≥ 12 3 2( . ). 

   As in the earlier case of (3.1), (3.2) induces a facet of RPP(G) and the addition of 

(3.2) to the LP is sufficient to obtain an optimal solution to the RPP instance (with a 

cost of 12). Thus, the class of generalised clique-tree inequalities also contains 

inequalities in no hitherto known class, and these too can cut off integral LP 

relaxations with 'odd' vertices. 

   To summarise the results of this section: At least two classes of Generalised HTC 

inequalities contain hitherto unknown facet-inducing members, and these are 

sometimes necessary to cut off invalid integral extreme points. The HTC approach is 

therefore a significant new development in the quest for a description of RPP(G). 

 

 

 

            

 

            Fig. 3.8(a) corresponding G'.                  (b) corresponding LP relaxation. 
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3.4. Paths, Bridges and Necklaces. 
 

   In the previous section, the generalised comb inequality (3.1) was shown to be both 

facet-inducing and useful for one particular RPP instance. This particular inequality, 

which is also a generalised path inequality, has the property that the only required 

edge to receive a non-zero coefficient is an edge which crosses from A to Z in G'. This 

made the derivation of coefficients rather straightforward, since the rhs had merely to 

be reduced by 3 when eliminating variables. 

   The K-C inequalities, which are also generalised path inequalities (Theorem 3.10), 

have a similar property: The only required edges to receive a non-zero coefficient are 

the B edges crossing from A to Z in G'. This facilitated the proof of Theorem 3.10 

since, when converting the path inequality in G' to a K-C inequality in G, the rhs had 

merely to be reduced by 3 B. 

   In the light of these observations, we will give special attention to the generalised 

path inequalities in which the only required edges receiving a non-zero coefficient 

cross from A to Z in G'. Associated with these inequalities is a configuration of the 

form shown in Fig. 3.9 overleaf. It is similar to an ordinary path configuration (see 

Fig. 2.5, p. 16), but there are two important differences: 

 

i) There may now be required edges crossing from A to Z. These required edges will 

collectively be referred to as the bridge. The bridge is empty in an ordinary path 

configuration. 

 

ii) The condition that P be odd and at least 3 is replaced by the condition that, if B is 

the number of required edges in the bridge, then P + B must be odd and at least 3. 

 

   We will call a partition of vertices with the structure shown in Fig. 3.9 a path-bridge 

configuration and the resulting inequality a path-bridge inequality (PBI). This section 

is entirely concerned with PBIs. They are important for at least five reasons: 

 

i) R-odd cut, K-C, path (and therefore comb) inequalities are all PBIs, 
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Fig. 3.9: Path-bridge configuration. 

 

 

 

ii) The coefficients of a PBI can be calculated easily without invoking G', the SGTSP 

and so forth. 

 

iii) PBIs appeared to be very useful in initial computational experiments, 

 

iv) No other generalised path inequalities appeared to be of use computationally. 

 

v) The necklace methods of Applegate et al. (1995) and Fleischer & Tardos (1996) 

(see Section 2.7) can be extended to produce a heuristic separation algorithm for PBIs. 

 

Point (i) has already been explained. As for point (ii), it turns out that the coefficients 

and rhs of a PBI are given precisely by the formula (2.7) given in Section 2.4 for the 

ordinary path inequalities: each of the B extra paths of 3 fixing edges in G', 

corresponding to the B edges in the bridge, contributes 3 to the rhs of the path 

inequality in G'; yet, each of the variables associated with the 3B fixing edges has a 

coefficient of 1 in the path inequality and the rhs drops by 3B when these are 

eliminated. 
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   Point (iv) could be explained if it was shown that generalised path inequalities 

which are not PBIs are redundant for RPP(G). The author conjectures that this is so, 

but has been unable to prove it. The rest of this section is devoted to demonstrating 

point (v). The results given also have implications for the standard TSP. 

   By analogy with Section 2.7, we say that a PBI is maximally violated if it is violated 

by as much as possible given that all connectivity inequalities are already satisfied. 

Due to Theorem 3.4, a PBI is maximally violated in G if and only if an ordinary path 

inequality is maximally violated in G' (recall Figs. 3.4b and 3.5b). Thus, we can 

restrict our search to maximally violated path inequalities in G'. 

   Now, Goemans (1995) has shown (in the context of the GTSP) that a maximally 

violated path inequality has the following property: The sum of the xe over the edges 

going from Vi
j to V

i
j+1 is 1, for all i and for j = 0, ..., ni. In the terminology of section 

2.7, this is equivalent to saying that all Vi
j except A and Z are tight. Hence, each V

i
j 

apart from A and Z is either a bead in some necklace or the union of several beads. 

 

Theorem 3.11. If a path inequality is maximally violated in G', then at least 
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comb inequalities are simultaneously violated in G'. 

 

Proof: Let ri, for i = 1, ..., ni, satisfy 1 ≤ ri ≤ ni - 1. Set: 
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The resulting comb inequality is maximally violated, since Goemans result implies 

that Ti, H ∩ Ti and Ti \ H are tight for all i. 

 

   Now assume that G' is planar. It is possible (see Fleischer & Tardos, 1996 and the 

references therein) to obtain a list of all necklaces and beads in G' in O(N.M.logN) 
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time. Since G' is planar, this is O(|V|2.log|V|) time. Moreover, the result of Fleischer & 

Tardos, that a necklace can be represented by a series of parallel edges running from 

one face of G' to another, still holds. If the Fleischer & Tardos algorithm is applied 

with G' as input, one of three things happens: 

 

(i) The algorithm returns a maximally violated comb inequality in which each tooth is 

a domino (the union of two consecutive beads in a necklace). 

 

(ii) The algorithm returns two (not maximally) violated comb inequalities. 

 

(iii) The algorithm fails to find any violated comb inequality. 

 

   Now suppose that outcome (i) occurs. The comb inequality is (see Section 2.4) a 2-

regular path inequality. To obtain a more general (not necessarily 2-regular) 

maximally violated path inequality, simply pick any particular tooth of the comb, 

made up, say, of beads b1 and b2, with b1 adjacent to A in the path and b2 adjacent to 

Z. In the necklace, b1 will be adjacent not only to b2, but also to some other bead b0. If 

b0 lies wholly within A, then we can extend the path b1 - b2 to b0 - b1 - b2 and remove 

b0 from A. This process can be performed repeatedly until A and Z no longer contain 

any suitable beads. 

   Preliminary computational testing showed that it is always a good strategy to extend 

the paths in this way, rather than using the 'raw' comb inequalities. A possible 

explanation for this is that path inequalities are stronger than comb inequalities: 

Goemans (1995) has shown that, in the case of the GTSP, the addition of comb 

inequalities to the system (2.9), (2.10) cannot increase the lower bound by more than 

a factor of 1/9. Even the clique-tree inequalities cannot increase it by more than a 

factor of 1/7. In contrast, path inequalities can increase it by a factor of 1/3 in some 

cases. Moreover, no other class of inequalities is known that will do better. 

   It seems likely that, in the context of the RPP, some similar result can be shown for 

the path-bridge inequalities. 
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3.5. Computational Experiments. 
 

   In Christofides et al. (1981), 24 RPP instances were constructed to test their 

Lagrangean relaxation algorithm. Corberán & Sanchis (1994) also solved these 24 

instances, plus two more of their own. Out of the whole 26 instances, 11 could not be 

solved to optimality using only connectivity and R-odd cut inequalities. The data for 

these 11 particularly hard instances are given in Appendix 1, and these are the 

instances on which the new PBI separation routine shall be tested. 

   Table 3.1 below gives a summary of these eleven instances. The last three columns 

in the table show, respectively, the number of connected components in the graph 

obtained by dropping all non-required edges, the optimal solution value, and the 

number of branch-and-bound nodes needed in the Lagrangean relaxation algorithm. 

 

 

 
 

Instance |V| |E| |R| Comps Optm LRB 

I2  14  33 12 4 72 57 

 I4  17  35 22 3 29 31 

I17  19  44 17 5 49 401 

I5  20  35 16 5 55 79 

I14  28  79 31 6 57 857 

I16  31  94 34 7 64 4293 

I24  41 125 55 7 113 5751 

I21  49 110 67 6 78 8923 

I20  50  98 63 7 116 1209 

I23  50 158 78 6 95 8537 

I22  50 184 74 6 122 14791 

 

Table 3.1: Problem Characteristics. 



45 

   There are three points to note here: first, the optimum of I21 is 78, rather than 76 as 

printed in Corberán & Sanchis (1994); similarly, the optimum of I16 is 64 rather than 

63 (Corberán, 1996). Second, none of these instances can in any sense be regarded as 

easy. Third, none of the instances is planar. Despite this, however, it was found that 

(a) the graphs obtained by dropping non-basic, non-required edges were always planar 

throughout the cutting-plane procedure when connectivity and R-odd cut inequalities 

were all satisfied, and (b) the Fleischer-Tardos approach never returned a violated 

comb inequality which was not maximally violated. The author has no explanation for 

either of these facts. 

   The LP solver used was CPLEX 3.0. Minimum cut algorithms were kindly donated 

to the author by G. Skorobohatyj at the Zentrum fur Informationstechnik, Berlin 

(ZIB); the author had to write some C code also. Connectivity and R-odd cut 

separation routines were invoked alternately until no more violated inequalities could 

be found, at which point the PBI routine was invoked. The LP was always resolved as 

soon as a single violated inequality was found. 

   Table 3.2, overleaf, shows the performance of the cutting-plane procedure. The first 

4 columns show the number of inequalities of each type in the final LP: R-odd cut, 

connectivity, K-C and (other) path-bridge. The next 3 columns show the lower 

bounds obtained by adding only R-odd cut inequalities (LB1), both R-odd cut and 

connectivity inequalities (LB2), and all three classes of inequality (LB3), respectively. 

As implied by the final column, all instances apart from I21 could be solved without 

branching. When the procedure terminated for I21, 13 branch-and-bound nodes 

produce an integer LP relaxation. This had no 'odd' vertices and so was an optimal 

solution. 

  As a further indication of performance, note that the average of LB1/OPT, LB2/OPT 

and LB3/OPT over the 11 instances come to 51.91%, 96.26% and 99.72%, 

respectively. Moreover, for I21, the PBIs closed precisely 2/3 of the gap between LB2 

and the optimum. The PBI separation routine thus appears to be extremely useful in 

the solution of difficult RPP instances. 
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Instance R-Odd Con KC PBI LB1 LB2 LB3 B&B 

I2  9  6  1  0 24 67.5 72 - 

 I4  10  3  3  0 9 27 29 - 

I17  15  5  1  0 27 48.5 49 - 

I5  13  6  1  0 35 54.5 55 - 

I14  31  8  3  0 26 53 57 - 

I16  25  7  2  1 41 62.5 64 - 

I24  33  9  1  0 60 111.5 113 - 

I21  36  7  5  0 36 71 75 2/3 13 

I20  43  9  3  0 41 111 116 - 

I23  49  8  1  0 64 93 95 - 

I22  38  5  0  0 93 122 122 - 

    

Table 3.2: Computational Results. 

 

 

 

   Before closing this chapter, one anomalous result should be noted. Although 

Corberán & Sanchis reported that a single K-C inequality was needed to solve 

problem I22, the author found that it could be solved using only connectivity and R-

odd cut inequalities. In order to shed light on this discrepancy, the author examined 

the simplex tableau for the final LP relaxation. It transpires that, for the particular cost 

function involved, the polyhedron described by the connectivity and R-odd cut 

inequalities has multiple optima. Many of these multiple optima represent valid 

solutions to the RPP instance, but there is at least one which does not. For this 

particular optimum, a single K-C inequality is maximally violated. 
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4. The Rural Postman Problem with Deadline Classes. 

 

4.1. Overview. 
 

   In this chapter, the cutting-plane procedure for the RPP outlined in the previous 

chapter is adapted to the RPPDC, which was defined in Section 1.3. In Section 4.2, an 

integer programming formulation is given which has far fewer variables than another, 

more obvious, formulation. In Section 4.3, the fact that the RPPDC contains the RPP 

as a subproblem is exploited to give valid inequalities for the RPPDC. In Section 4.4, 

other valid inequalities are given which cannot be found in this way. In Section 4.5, 

separation algorithms are given for some of the inequalities discussed. Finally, the 

results of some computational experiments are discussed in Section 4.6. 

   For ease of exposition, it is assumed throughout that the depot is located at vertex 1. 

 

4.2. Integer Programming Formulation. 
 

   Like many combinatorial optimisation problems, the RPPDC can be formulated as 

an integer programme in a variety of ways. One of the most common ways to 

formulate problems involving time-constraints is to treat time as a commodity which 

is consumed during the vehicle's journey; see, e.g., Desrosiers et al. (1995). This leads 

to a large number of zero-one variables representing the travel of the vehicle from one 

vertex to another, along with an equally large number of continuous variables 

representing the flow of the commodity. 

   It is not difficult to produce such a commodity-flow formulation for the RPPDC. 

However, there are three reasons why this approach is undesirable: 

 

   i) The formulation does not exploit the special structure of deadline classes. 

 

  ii) The formulation ignores any special structure that the network G may have. In 

practice, G may be a planar (or near-planar) road network, with low vertex degrees. 
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 iii) Flow formulations are known to produce poor bounds when the time windows are 

large (Desrosiers et al., 1995). As mentioned in Section 1.5, windows of the deadline 

type are typically large. 

 

   These considerations led the author to avoid flow variables in favour of an approach 

which can exploit sparsity in G. This is done by regarding a feasible RPPDC solution 

as being composed of L time-phases, as explained below: 

   Let R
A
B , with 1 ≤ A ≤ B ≤ L, denote RA ∪ ... ∪ RB. In phase 1, the vehicle leaves the 

depot and services the edges in R1 plus (optionally) some edges in R
2
L . There is then a 

phase transition to phase 2, which must occur no later than time T1. The vehicle 

begins phase 2 at the vertex at which it ended phase 1, and services any remaining 

edges in R2 plus (optionally) some remaining edges in R
3
L . And so on. When the final 

phase, L, is finished (no later than TL), all edges have been serviced and the vehicle 

returns to the depot via a shortest path. 

      The above observations lead to the following variable definitions: 

 

   xep  =   no. times e ∈ E is traversed without servicing in time phase p. 

   yep   =   1 if e ∈ R is serviced in time phase p, 0 otherwise. 

   zvp     =  1 if time phase p ends at v ∈ V, 0 otherwise. 
 

   The xep are defined for all e ∈ E, p = 1, ..., L. For a given e ∈ Rm, yep is defined for 

p = 1, ..., m. When e ∈ R1, however, yep need not be defined since it must equal 1. 

The zvp are defined for all v ∈ V, p = 1, ..., L and represent the phase transitions 

(when p = 1,..., L-1), or the return trip to the depot from the last edge serviced (when p 

= L). Certain zvp can in fact be fixed to zero without losing generality (e.g., by 

assuming that the vehicle finishes phase 1 immediately after servicing an edge in R1), 

but we define all zvp for notational convenience. 

   We will also need the following notation: Let c*v denote the cost of the shortest path 

from vertex v to the depot. For any S ⊂ V, let δ(S) (respectively, E(S)) denote the set 

of edges having exactly one end-vertex (exactly two end-vertices) in S. For 
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any F ⊆ E, let R
A
B (F) = R

A
B  ∩ F and xA

B
(F) = xep

e Fp A

B

∈=
∑∑ . For any F ⊆ R

A
L , let yA

B
(F) 

= yep
e Fp A

B

∈=
∑∑ . If A = B in any of the above expressions, we drop the subscript, writing 

RB(E(S)), RB(δ(S)) and so on. Finally, for any κ ⊆ V, let zp(κ) = zvp
v∈
∑
κ

. 

   In an optimal solution, no edge will be traversed more than twice in any particular 

phase: if the vehicle traverses an edge n times, n ≥ 3, it may just as well traverse it n - 

2 times, since the route remains connected and Eulerian. Thus, no edge need be 

traversed more than 2L + 1 times overall (twice in each phase and once on the return 

trip to the depot). The RPPDC can now be formulated as follows: 

 

Minimise   c xe ep
e Ep

L

∈=
∑∑

1

   +   c zv vL
v V

*

∈
∑  

 

Subject to: 

 

          y1
m (e)  =  1                                        (m = 2, ..., L, e ∈ Rm)                       (4.1) 

 

t x s y T s m L (4.2)e ep
e E

e ep

e Rp

m
m

e

e Rm
L m∈ ∈= ∈

∑ ∑∑ ∑+











≤ − =

+1 11

1( ,..., )

 

 

           zp(V)  =  1                                            (p = 1, ..., L)                                 (4.3)           

 

x1(δ(S)) + y1(RL
2 (δ(S)))  +  z1(S)   ≥   2 

                                    (∀S ⊆ V \ {1}: R1(E(S)) ≠ ∅, R1(δ(S)) = ∅)                 (4.4a) 

 

x1(δ(S)) + y1(RL
2 (δ(S)))  +  z1(S)   ≥   2 ye1  

                           (∀S ⊆ V \ {1}: R1(δ(S) ∪ E(S)) = ∅, e ∈ R L
2 (E(S)))              (4.4b) 

 

x1(δ(S)) + y1(RL
2 (δ(S)))  +  z1(S)   ≥   xe1  

                                  (∀S ⊆ V \ {1}: R1(δ(S) ∪ E(S)) = ∅, e ∈ E(S))              (4.4c) 
 

xp(δ(S)) + yp(Rp
L (δ(S)))  +  zp-1(S) +  zp(S)  ≥  2 yep  

                                            ( , ,.., , ( ( ))) ( . )∀ ⊂ = ∈S V p L e R E S dp
L2 4 4  



50 

xp(δ(S)) + yp(Rp
L (δ(S)))  +  zp-1(S) +  zp(S)  ≥ xep  

                                           ( , ,.., , ( ( ))) ( . )∀ ⊂ = ∈S V p L e R E S ep
L2 4 4  

 

x1(δ(v)) + y1(RL
2 (δ(v)))  +  zv1 ≡ |R1(δ(v))|  mod  2    (∀v ∈V \ {1} )              (4.5a) 

 

x v y R v z zp p
p
L

v p vp( ( )) ( ( ( ))) mod,δ δ+ + + ≡−1 0 2  

                                                                                (∀v ⊂ V, p = 2, ..., L)        (4.5b)  

 

               xep ∈ {0, 1, 2};  yep, zvp ∈ {0, 1}                                                       (4.6) 

 

   The y variables do not appear in the objective function since the cost of servicing the 

required edges is fixed. The second component in the objective represents the cost of 

returning to the depot after servicing is completed. Constraints (4.1) state that each 

edge must be serviced exactly once, (4.2) are the time deadlines (after some 

simplification) and (4.3) ensure that there is only one phase transition at the end of 

each phase and one trip back to the depot after servicing the last required edge. 

Constraints (4.4a, b, c) ensure that the route is connected in phase 1 and (4.4d, e) do 

the same for the other phases. Constraints (4.5) ensure that the vehicle leaves each 

vertex as many times as it enters: (4.5a) concerns phase 1 and (4.5b) the other phases. 

Finally, (4.6) are the integrality conditions and bounds. Note that LP software with 

provision for Special Ordered Sets can exploit the structure of (4.3). 

   Under the assumption that ce > 0 for all e, (4.4c), (4.4e) and the bounds of 2 on the x 

variables in (4.6) are redundant, since they will never be violated by any LP relaxation 

satisfying the other constraints. However, they are included in the formulation in the 

belief that a tighter formulation can lead to tighter valid inequalities (see Section 4.4). 

   The convex hull of solutions to (4.1) - (4.6) is a bounded polyhedron, i.e., a 

polytope. It will be denoted by DC(G). 
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4.3. Valid Inequalities from the RPP Subproblem. 
 

   The fact that the RPPDC reduces to the ordinary RPP, when the deadlines are 

sufficiently large, implies that the inequalities for the RPP given in Chapter 3 have 

RPPDC analogues. This idea is explored in detail in this section. Some of the 

resulting inequalities have proved to be effective when used as cutting-planes for the 

RPPDC, suggesting that they induce high-dimensional faces of DC(G). However, no 

attempt is made to find conditions under which they induce facets, for three reasons: 

First, little is yet known even about multidimensional Knapsack polyhedra such as 

implied by constraints (4.2) and (4.6); second, DC(G) is not full-dimensional due to 

constraints (4.1) and (4.3); third, it is clearly NP-Hard to calculate the dimension of 

DC(G) or even to determine if it is non-empty. 

   A very large number of inequalities, which are termed strong cumulative (SC) 

inequalities, are found from a consideration of the part of the vehicle route lying 

within the first B phases, where 1 ≤ B ≤ L. Define a graph GB(VB, EB), with VB = V 

∪{1*} and EB = E ∪ {1, 1*} ∪{{v, 1*} ∀ v ∈ V}. The vertex {1*} may be thought 

of as a copy of the depot. Now consider an RPP defined on GB, with arbitrary costs, in 

which the required edges are RB
1  ∪ {1, 1*}. By using the formulation (2.11) - (2.13) 

given in Chapter 2, the polyhedron RPP(GB) can be defined. All of the classes of 

valid inequalities and facets given in Chapter 3 are then valid for RPP(GB). 

 

Theorem 4.1: If any inequality of the form 

 

                 

α β γ δe e
e E

v v
v V

x x x
∈ ∈
∑ ∑+ + ≥{ , *} { , *}1 1 1

  
 

is valid for RPP(GB), then the inequality 

 

              

α α β δe 1
B

e E
e 1

B

e R

v vB
v V

x e y e z

B
L

( ) ( )
∈ ∈ ∈
∑ ∑ ∑+ + ≥

+1  
 

is valid for DC(G). 
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Proof: Given any feasible solution to (4.1) - (4.6), construct a multigraph G*(V*, E*) 

as follows:  Let V* = VB and let E* consist of the edge {1, 1*}, x eB
1 ( )  copies of each 

edge e ∈ E \ R, x eB
1 ( )  + 1 copies of each edge in R1, zvB copies of edge {v, 1*} and, 

for 2 ≤ m ≤ L, x eB
1 ( )  + y e

m B
1
min( , )

( )  copies of each e ∈ Rm. By construction, G* is 

Eulerian and E* contains at least one copy of each e ∈ RB
1 . But this means that G* 

represents a feasible solution to the RPP defined on GB. The inequality follows from 

the construction of G* and the fact that x'{1, 1*} = 0 in this feasible solution. 

 

   Three specific classes of SC inequality have proven to be particularly useful as 

cutting-planes, producing large increases in the objective function value. 

Unsurprisingly, these are the SC versions of the connectivity, R-odd cut and path-

bridge inequalities (see Sections 2.6 and 3.4). For completeness, these are defined 

explicitly in the following three corollaries: 

 

Corollary 4.2: For some 1 ≤ B ≤ L, let S ⊆ V - {1} be such that RB
1 (E(S)) ≠ ∅ and 

RB
1 (δ(S)) = ∅. Then the strong cumulative connectivity (SCC) inequality: 

  

         x S y R S z SB B
B
L B

1 1 1 2 4 7( ( )) ( ( ( ))) ( ) ( . )δ δ+ + ≥+  

 

is valid for DC(G). 

 

Corollary 4.3: If 1 ≤ B ≤ L and S ⊆ V - {1}, then the inequality 
 

     x S y R S z S aB B
B
L B

1 1 1 1 4 8( ( )) ( ( ( ))) ( ) ( . )δ δ+ + ≥+  

 

is valid for DC(G) when | RB
1 (δ(S))| is odd and 

 

     x S y R S z V S bB B
B
L B

1 1 1 1 4 8( ( )) ( ( ( ))) ( ) ( .δ δ+ + − ≥+  

 

is valid for DC(G) when | RB
1 (δ(S))| is zero or even. These will be called strong 

cumulative parity (SCP) inequalities.  
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Corollary 4.4: Let B, P and W be integers with 1 ≤ B ≤ L, P ≥ 1, W ≥ 0, P + W ≥ 3 

and odd. Let ni (i = 1,..., P) be integers greater than one. Partition V into sets A, Z, 

Vij (i = 1, ..., P, j = 1, ..., ni). For convenience, for all i we identify V
i
j with A when j 

= 0 and with Z when j = ni + 1. If the partition is such that: 

 

- for each edge {u, v} ∈ RB
1 , either {u} and {v} lie within the same G(Vij), or one of 

{u} and {v} is in A and the other is in Z; 

 

- for i = 1, ..., P, j = 1, ..., ni, either R
B
1 (E(V j

i )) ≠ ∅ , or {1} ∈ V j
i , or both; 

 

 

- there are W required edges in RB
1  with one end-vertex in A and the other in Z; 

 

then the strong cumulative path-bridge (SCPB) inequality: 

 

               

α α βe e
e E

e e

e R

v
v V

vB
i

ii

P

x y z
n

n
B
L∈ ∈ ∈ =

∑ ∑ ∑ ∑+ + ≥ +
+
−

+1

1
1

11    

 

 is valid for DC(G), where the αe are given as in Section 2.4 and the coefficient βv 

equals the coefficient an edge would have if it connected v to {1}. 

 

   The SCC inequalities (4.7) generalise (4.4a). 

   Despite the fact that there are vast numbers of possible SC inequalities, there are 

other inequalities, also concerning the first B phases, which are not of the SC type. 

Consider the following results:  

 

Theorem 4.5: For some 1 ≤ B ≤ L, let S ⊆ V - {1} be such that RB
1 (E(S) ∪ δ(S)) = ∅, 

but R E SB
L
+ ≠ ∅1( ( )) . Then, for any e ∈ Rm(E(S)), with B< m ≤ L, 

  

     x S y R S z S y eB B
B
L B m

1 1 1 12 4( ( )) ( ( ( ))) ( ) ( ) (δ δ+ + ≥+  

 

is valid for DC(G). 



54 

Proof: If e is not serviced in phases 1 to B, the rhs becomes 0 and the inequality is 

trivially true. On the other hand, if e is serviced in phases 1 to B, the rhs becomes 2, 

which is valid since the vehicle must enter S at least once during phases 1 to B, and 

must then either leave S (possibly servicing an edge in RB
L
+1 as it does so), or end 

phase B while still within S. 

 

Theorem 4.6: If 1 ≤ B ≤ L and S ⊆ V \ {1}, then: 
 

   x S y R S F z S y F FB B
B
L B B

1 1 1 1 1( ( )) ( ( ( ) )) ( ) ( ) | |δ δ+ − + ≥ − ++  
 

is valid for any F ⊆ R S
B
L
+1( ( ))δ  such that |F ∪  RB

1 (δ(S))| is odd and 

 

 x S y R S F z S y F FB B
B
L B B

1 1 1 1 1( ( )) ( ( ( ) )) ( ) ( ) | |δ δ+ − + ≥ − ++ V-  
 

is valid for any F ⊆ RB
L
+1 (δ(S)) such that |F ∪ RB

1 (δ(S))| is zero or even. 

 

Proof: If |F| - 1 or less of the edges in F are serviced in phases 1 to B, the rhs 

becomes zero or less and the inequality is trivially true. On the other hand, if all of 

the edges in F are serviced in phases 1 to B, the rhs becomes 1, which is valid since 

the vehicle must enter and leave S an even number of times. 

 

   The inequalities (4.9), which generalise (4.4b), can be obtained by the following 

three step procedure: (I) Temporarily fix yep to zero for B < p ≤ m, which is equivalent 

to moving e from Rm to RB. (II) Invoke Corollary 4.2 for the new RPPDC instance 

thus formed to give an SC inequality. (III) Lift the resulting inequality back into the 

space of the original variables (for an introduction to lifting see, e.g., Nemhauser & 

Wolsey, 1988). For this reason, (4.9) will be termed lifted cumulative connectivity 

(LCC) inequalities. Similarly, the inequalities (4.10a, b) can be obtained by fixing 

variables associated to the edges in F, invoking Corollary 4.3 and lifting. They will be 

called lifted cumulative parity (LCP) inequalities. 
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   Other lifted cumulative inequalities can be found in a similar way, but only the LCC 

and LCP inequalities have proven to be useful in the cutting-plane algorithm. Even 

these do not tend to produce as large an increase in the objective function as the SC 

inequalities, although they are necessary to obtain feasibility. 

    Unfortunately, DC(G) is even more complicated than implied by the results given 

so far. The inequalities presented so far have all concerned parts of the route involving 

phase 1. It is possible to derive inequalities which concern only later phases, as 

illustrated below. 

 

Theorem 4.7: If S ⊆ V is such that RL
2 (S) ≠ ∅ and e is any edge in Rm(S), m ≥ 2, then 

  

x S y R S z S z S y eA
B

A
B

A
L A B

A
B( ( )) ( ( ( ))) ( ) ( ) ( ) (δ δ+ + + ≥−1 2 4 

 

is valid for any 2 ≤ A ≤ B ≤ m. 

 

Proof: This is analogous to the proof of Theorem 4.5. If e is not serviced during 

phases A to B, the inequality is trivially true. On the other hand, if e is serviced during 

these phases, the rhs becomes 2 which is valid since: (a) the vehicle must either enter 

S during phases A to B, or finish phase A-1 while within S, and (b) the vehicle must 

either leave S during phases A to B, or finish phase B while within S. 

 

Theorem 4.8: for any S ⊆ V, 2 ≤ A ≤ B ≤ L and F ⊆ RA
L (δ(S)), 

 

x S y R S F z S z S y F FA
B

A
B

A
L A B

A
B( ( )) ( ( ( ) )) ( ) ( ) ( ) | | ( .δ δ+ − + + ≥ − +−1 1 412 

 

is valid when |F| is odd and 

 

x S y R S F z S z V S y F FA
B

A
B

A
L A B

A
B( ( )) ( ( ( ) )) ( ) ( ) ( ) | |δ δ+ − + + − ≥ − +−1 1  

 

is  valid when |F| is even. 
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Proof: This is analogous to the proof of Theorem 4.6. If |F| - 1 or less of the edges in 

F are serviced during phases A to B, the rhs becomes zero or less and the inequality is 

trivially true. On the other hand, if all of the edges in F are serviced during phases A 

to B, the rhs becomes 1, which is valid since the vehicle must enter and leave S an 

even number of times. 

 

   For obvious reasons, (4.11) and (4.12a, b) are called non-cumulative connectivity 

(NC) and non-cumulative parity (NP) inequalities, respectively. They tend to produce 

little increase, if any, in the objective function when used as cutting-planes. However, 

they are required in order to gain feasibility. Note that (4.10) generalise (4.4d). 

 

4.4. Other Valid Inequalities. 
 

   Many of the inequalities presented in the previous section have proved to be useful 

as cutting-planes. In this section, some other possible valid inequalities are discussed. 

However, they are probably of theoretical interest only, since no good separation 

algorithms are known. 

   Suppose that for some RPPDC instance with L = 4, S ⊆ V\{1} is such that R1
3(δ(S)) 

= ∅ and |R4(δ(S))| is odd. If, in some feasible solution, y1(R4(δ(S))) = y3(R4(δ(S))) = 

0, then precisely one of the quantities y2(R4(δ(S))) and y4(R4(δ(S))) must be odd. If 

the first is odd, Theorem 4.8 yields x2(δ(S)) + z1(S) + z2(S) ≥  1. If the second is odd, 

Theorem 4.8 yields x4(δ(S)) + z3(S) + z4(S) ≥  1. Either way, x2(δ(S)) + z1(S) + z2(S) 

+ x4(δ(S)) + z3(S) + z4(S) ≥  1 holds. Hence, for the RPPDC instance under 

discussion, the following inequality is valid: 

 

x2(δ(S)) + z1(S) + z2(S) + x4(δ(S)) + z3(S) + z4(S) ≥ 1 - y1(R2(δ(S))) - y3(R2(δ(S))). 
 

   It can be shown that this inequality is not equal to, nor dominated by, any of the 

inequalities in Section 4.3. In order to make the nature of this inequality more 

apparent, it is helpful to use equations (4.1) to rewrite the right-hand-side as: 
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                        y2(R2(δ(S))) + y4(R2(δ(S))) - |R2(δ(S))| + 1. 
 

In this form, the inequality resembles an NP inequality of type (4.12a). This result 

may be generalised, via a consideration of all possible subsets of {2, ..., L}, to obtain a 

class of valid inequalities which subsumes the class of NPs (4.12a): 

 

Theorem 4.9: Let Ai and Bi, for i = 1, ..., h, be integers satisfying A1 ≥ 2, Bt ≤ L, Bi ≥ 

Ai for all i, and Ai+1 ≥ Bi + 2 for i = 1, ..., h. Let S ⊆ V be such that RA
L

1
(δ(S)) ≠ ∅ 

and let F ⊆ RA
L

1
(δ(S)) be such that |F| is odd. Then the following inequality is valid: 

 

( )x S y R S F z S z S
A

B

A

B
A
L A B

i

h

i

i

i

i i i( ( )) ( ( ( ) )) ( ) ( )δ δ+ − + +−

=
∑

1

1

1  

                                                                                             

≥ − +
=
∑ x F F

A
B

i

h

i

i ( ) | | .
1

1

 

 

Proof: If a feasible solution satisfies x F
A
B

i

h

i

i ( )
=
∑
1

 < |F|, the rhs becomes zero or less 

and the inequality is trivially true. Now suppose a feasible solution has x F
A
B

i

h

i

i ( )
=
∑
1

 = 

|F|; the rhs reduces to one in this case. Since |F| is odd, x F
A
B

i

i ( ) must be odd for at 

least one 1 ≤ i ≤ h. Then, Theorem 4.8 implies that  
 

        
x S y R S F z S z S
A
B

A
B

A
L A B

i

i

i

i i i( ( )) ( ( ( ) )) ( ) ( )δ δ+ − + + ≥−
1

1 1
 

 

 for at least one 1 ≤ i ≤ h. The result follows from the non-negativity of the variables. 

 

   The author calls these inequalities generalised non-cumulative parity (GNP) 

inequalities. It may be the case that further GNP inequalities can be derived by 

analogy with the inequalities (4.12b). In addition, it is probable that a similar 

generalisation of the LCP inequalities (4.10a, b) is possible, yielding generalised lifted 

cumulative parity (GLCP) inequalities. Hence, the number of different inequalities of 

the parity type is immense. 
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   These new inequalities will not be examined further, for the following reason: The 

author has attempted to solve the corresponding separation problem and has not been 

able to arrive at an algorithm with a running-time which is polynomial in L. It may in 

fact be the case that the separation problem is strongly NP-Hard. If so, the RPPDC 

formulation will only be effective when L is small, say L < ln |R| as recommended in 

Section 1.3. In Section 6.3, a similar argument will be used to conclude that a 

particular formulation of the Capacitated Arc-Routing Problem (CARP), due to 

Belenguer & Benavent (1996), will only be effective when the number of vehicles is 

small. 

   Even this is not the last word on the parity question. Due to the presence of the 

deadlines (4.2), it is conceivable that constraints (4.5) could be violated even after all 

known inequalities have been added and integrality has been achieved through branch-

and-bound. Some unknown inequalities would then be necessary to cut off such 

invalid solutions. Fortunately, this situation did not arise during computational 

experiments. 

   Now note that constraints (4.1), (4.2) and (4.6) form a multidimensional Knapsack 

subproblem with upper bounds of 2 on the x variables and generalised upper bounds 

on the y variables. It may be possible to produce valid inequalities for DC(G) based 

on a consideration of this structure. Some polyhedral results are available for the 0-1 

Knapsack problem (see, e.g., Balas, 1975; Nemhauser & Wolsey, 1988), and also for 

the 0-1 Knapsack Problem with generalised upper bounds (see, e.g., Johnson & 

Padberg, 1981; Nemhauser & Vance, 1994). However, to the author's knowledge, no 

nice results are presently known for multidimensional Knapsack polyhedra. For this 

reason, this area was not explored further. 

   Finally, it might be possible to produce inequalities which take into account the 

Knapsack and routing aspects simultaneously. Belenguer & Benavent (1996) do 

something similar to this in the context of the CARP (see Section 5.4). Again, the 

author did not explore this any further. 
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4.5. Separation Algorithms. 
 

   In this section, polynomial separation algorithms are given for the various 

connectivity and parity inequalities presented in Section 4.3. Moreover, the separation 

problem for SCPB inequalities is considered briefly. It is assumed that the reader is 

familiar with the concept of shrinking a set of vertices in a weighted graph, which is 

used by many authors (e.g., Fleischmann, 1985; Padberg & Rinaldi, 1990; Nagomochi 

et al., 1994). Shrinking a set S of vertices means deleting E(S), moving the vertices in 

S together until they coincide, then replacing each set of parallel edges thus formed 

with a single edge, summing weights in the process. 

   The vertex in the shrunk graph which corresponds to S will be called a supernode. 

Shrinking can be done repeatedly in that a set S' of vertices in a shrunk graph may also 

be shrunk, even if it contains supernodes from a previous shrinking. 

   The separation problem for the strong cumulative connectivity (SCC) inequalities 

can be solved in the following way: For a fixed value of B, construct a graph as 

follows: Copy G(V, E), give each e ∈ RB
L
+1 a weight of x1

B(e) + y1
B(e) and each e ∈ 

E \ R a weight of x1
B(e). For each v ∈ V, add an extra edge {v, 1} with weight zvB. 

Call the resulting graph the B-graph. Now shrink all edges in RB
1  to obtain what will 

be called the SB-graph. There is now a many-to-one correspondence between edges in 

RB
1  in the original graph and supernodes in the SB-graph. 

   The weights of the edges in the SB-graph have been contrived in such a way that an 

SCC inequality is violated if and only if there is a cut in the SB-graph of weight less 

than 2, such that at least one supernode lies on the opposite shore of the cut to the 

depot vertex {1}. To test if such a cut exists, it suffices to solve a series of maximum 

flow problems, one for each supernode. In each case, the flow is sent from one 

particular supernode to {1}. 

   Now, for fixed B, O(min{|V|, |R|}) maximum flows will be needed and the SB-

graph contains O(|V|) vertices and O(|E|) edges. Therefore: 
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Theorem 4.9: The separation problem for SCC inequalities can be solved in the time 

taken to perform O(L.min{|V|, |R|}) maximum flow problems in graphs with O(|V|) 

nodes and O(|E|) edges. 

 

   In practice, the running-time of the algorithm is often much better than implied by 

Theorem 4.9. The number of supernodes may be very small. 

   Now consider the separation of lifted cumulative connectivity inequalities (4.9). 

Assume once more that B is fixed and construct the B-graph once more. Note that one 

of the conditions on the set S in (4.9) is that RB
1 (E(S) ∪ δ(S)) = ∅. This permits a 

more radical shrinking of the B-graph than was used to form the SB-graph: All of the 

vertices in the B-graph which are incident to edges in RB
1 , plus {1} if this is not 

already included, can be shrunk into a single supernode. Call the resulting graph the 

TB-graph (T for 'tiny'). Since the conditions on S and e in (4.9) imply that e is not 

adjacent to any edge in RB
1 , this means that, for fixed B, the only edges in RB

L
+1 

which need to be considered as candidates for e in (4.9) are those which are not 

adjacent to the supernode in the TB-graph. 

   For fixed B and a fixed suitable candidate e = {u, v}, choose an arbitrary end-vertex 

{u} and send a maximum flow from {u} to the supernode in the TB-graph. If the 

weight of the resulting cut is ≥ 2 y1B(e), no LCC inequality is violated. If the weight is 

< 2 y1B(e) and {u} and {v} are on the same shore of the cut, then an LCC inequality is 

violated for the given B and e. The third possibility is that the weight is < 2 y1B(e), but 

{u} and {v} are on opposite shores of the cut. In such a situation, it turns out that a 

lifted cumulative parity inequality of the form (4.10a) is violated. To see this, set S 

equal to the shore of the cut containing {u} and set F = {e}. The resulting LCP 

inequality (4.10a) can be rewritten as: 

 

                   x S y R S z S y eB B
B
L B B

1 1 1 12( ( ) ( ( ( )) ( ) ( ),δ δ+ + ≥+  
 

which is clearly violated. 
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   Once again, for fixed B, O(min{|V|, |R|}) maximum flows will be needed. 

Therefore:  

 

Theorem 4.10: If all LCP inequalities are already satisfied, the separation problem 

for LCC inequalities can be solved in the time taken to perform O(L.min{|V|, |R|}) 

maximum flow problems in graphs with O(|V|) nodes and O(|E|) edges. 

 

   In practice, however, the running-time is much faster, since the TB-graph can be 

very small and there may only be a handful of candidates for e. 

   In fact, the routine can be made even faster, due to the following result: 

 

Theorem 4.11: Suppose all LCP inequalities are satisfied, B is fixed and a LCC 

inequality is violated for some S and e. If an f ∈ RB
L
+1 is adjacent to e, such that y1

B(f) 

≥ y1B(e), then the LCC inequality with f replacing e is violated by at least as much. 

 

Proof: As e and f are adjacent, f is in either R(E(S)) or R(δ(S)). If f is in R(E(S)), the 

result is immediate. Suppose f lies in R(δ(S)). Because all LCP inequalities are 

satisfied, we have 

 

     x S y R S z S y f y eB B
B
L B B B

1 1 1 1 12 2( ( )) ( ( ( ))) ( ) ( ) ( ),δ δ+ + ≥ ≥+  

 

which contradicts the assumption that the LCC inequality is violated for the given S 

and e. 

 

   Thus only a few edges in RB
L
+1 (the ones with locally maximal y values), need to be 

considered as candidates for the edge e. This leads to fewer maximum flows being 

needed. 

   The separation problem for non-cumulative connectivity (NC) inequalities is similar 

to that for LCC inequalities, but a little more tricky. Assume that A and B are both 
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fixed. Construct the following parachute graph: Copy G(V, E), give each edge in RA
L  

a weight of x eA
B ( )  + y eA

B ( )  and each other edge a weight of x eA
B ( ) . Add a virtual 

depot vertex {1*} and connect each v ∈ V to {1*} with an edge of weight zv,A-1 + 

zvB. Now, pick any edge e = {u, v} from RA
L . A minimum cut in the parachute graph 

such that {u} and {1*} lie on opposite shores can be found by sending a maximum 

flow from {u} to (1*}. 

   The parachute graph has been constructed so that, if the weight of the resulting cut is 

≥ 2 y1B(e), no NC inequality is violated for the particular values of B and e. If the 

weight is < 2 y1B(e) and {u} and {v} are on the same shore of the cut, then an NC 

inequality is violated. Finally, if the weight is < 2 y1B(e), but {u} and {v} are on 

opposite shores of the cut, a non-cumulative parity inequality is violated by an 

argument similar to the one given above. 

   The maximum possible number of times the maximum flow routine needs to be 

invoked is again O(min{V, R}). Since the number of edges in the parachute graph is 

|E| + |V| = O(|E|), we have: 

 

Theorem 4.12: If all NP inequalities are already satisfied, the separation problem for 

NC inequalities can be solved in the time taken to perform O(L2.min{V, R}) maximum 

flow problems in a graph with O(|V|) nodes and O(|E|) edges. 

 

   Moreover, a result similar to that of Theorem 4.11 could allow the algorithm to be 

improved substantially. 

   We now consider the strong cumulative parity (SCP) and lifted cumulative parity 

(LCP) inequalities simultaneously. The reason this can be done is because (4.8a,b) can 

be regarded as a special case of (4.10a, b); namely, the case in which F = ∅. 

   Now note that (4.10a) and (4.10b) can be rewritten in the following form: 

 

  x S y R S F y e z SB B
B
L B

e F

B
1 1 1 11 1 410( ( )) ( ( ( ) ) ( ( )) ( ) ( .δ δ+ − + − + ≥+

∈
∑  

  x S y R S F y e z V S bB B
B
L B

e F

B
1 1 1 11 1 410( ( )) ( ( ( ) ) ( ( )) ( \ ) ( . 'δ δ+ − + − + ≥+

∈
∑  
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   We use the well-known edge-splitting strategy (see Padberg & Rao, 1982 and 

Section 2.7). Create a copy of G(V, E) and label vertices even unless they meet an odd 

number of edges in R
1
B , when they should be labelled odd. Give each e ∈ R

B
L
+1 a 

weight of x
1
B (e) + y

1
B (e), other edges a weight of x

1
B (e). Now split each e ∈ R

B
L
+1 

into two new edges, called halves, by inserting a new vertex, labelled odd, in the 

middle. Let one half (the normal half) retain the previous weight, but let the other (the 

flipped half) have weight 1 + x
1
B (e) - y

1
B (e). Now add an extra odd vertex {1*} and 

reverse the label of the depot. For each v ∈ V, add an edge {v, 1*} of weight ziB. 

Finally, reverse the label of any v ∈ V which is adjacent to an odd number of flipped 

halves. 

   A cut in the resulting split graph will have weight equal to the left-hand-side of 

4.10a' (resp., 4.10b') if {1}and {1*} lie on the same (opposite) shores of the cut; 

moreover, the cut will be odd iff the edge-cutset contains an odd (even) number of 

flipped halves.  Therefore we have immediately that a SCP or LCP is violated iff there 

is an odd cutset in the split graph with a weight less than 1. If {1} and {1*} are on the 

same shore of the cut, it is of the form 4.10a'; but if they are on opposite shores, it is 

of the form 4.10b'. The set F consists of those e ∈ R
B
L
+1 whose flipped halves lie in 

the edge-cutset. 

   The minimum weight odd-cut routine of Padberg & Rao (1982) entails the solution 

of NODD maximum flow problems, where NODD is the number of odd vertices. Since 

the split graphs contains O(max{|V|, |R|}) vertices, O(|E|) edges and O(|R|) odd 

vertices, we have: 

 

Theorem 4.13: The separation problem for SCP and LCP inequalities, combined, can 

be solved in the time taken to perform O(L.|R|) maximum flow problems in graphs 

with O(max{|V|, |R|}) vertices and O(|E|) edges. 

 

   A similar approach works for the non-cumulative parity (NP) inequalities. Assume 

A and B are fixed. Create a copy of G(V, E) and label all vertices even. Give each e ∈ 



64 

R A
L  a weight of xA

B (e) + yA
B (e), other edges a weight of xA

B (e). Now split each e ∈ 

R A
L  into two halves, by inserting a new odd vertex in the middle. Let the normal half 

retains the previous weight, but let the flipped half have weight 1 + xA
B (e) - yA

B (e). 

Now add two extra odd vertices, {1*} and {1**}. From each v ∈ V, add an edge to 

{1*} of weight zi,A-1 and an edge to {1**} of weight ziB. Finally, reverse the label of 

any v ∈ V which is adjacent to an odd number of flipped halves. 

   By the same arguments as for the LCP inequalities, a NC is violated iff there is an 

odd cutset in the split graph with a weight less than 1. If {1*} and {1**} are on the 

same shore of the cut, it is of the form (4.12a); but if they are on opposite shores, it is 

of the form (4.12b). The set F consists of those e ∈ R A
L  whose flipped halves lie in the 

edge-cutset. We also have: 

 

Theorem 4.14: The separation problem for NP inequalities can be solved in the time 

taken to perform O(L2.|R|) maximum flow problems in graphs with O(max{|V|, |R|}) 

vertices and O(|E|) edges. 

 

   Finally, consider the separation problem for the strong cumulative path-bridge 

(SCPB) inequalities. Initially, the author attempted to look for maximally violated 

SCPB inequalities by analogy with Section 3.4. However, preliminary experiments 

showed that SCPB inequalities were rarely, if ever, maximally violated. This is 

because constraints (4.2) tend to destroy integrality entirely in LP relaxations. 

   For this reason a simpler heuristic is used: Before solving an RPPDC instance, the 

instance is first treated as an ordinary RPP and the cutting-plane algorithm of Chapter 

3 is used. In the final LP relaxation of this RPP instance, there will typically be one or 

more binding PB inequalities. These can then be transformed into their strong 

cumulative counterpart via Theorem 4.1 and used as cutting-planes for the RPPDC 

instance proper. 

   Despite the fact that this is an extremely naive approach, it worked well in limited 

computational experiments, as will be seen in the next section. 
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4.6. Computational Experiments. 
 

   In this section, some computational results are given for a number of RPPDC 

problem instances, using the separation algorithms outlined in the previous section. 

The initial LP relaxation is found by solving the RPPDC instance as an ordinary RPP, 

by the method of Chapter 3, then converting the binding constraints in the last LP 

relaxation into their SC form. These are then added to (4.1) - (4.3). Then, the SCC, 

LCC, SCP/LCP, NC and NP separation algorithms are invoked in cyclic order until a 

violated inequality is found. Each time an inequality is added, the LP is resolved using 

the dual simplex method. When no more violated inequalities can be found, branch-

and-bound is invoked to obtain integrality. 

   It may happen that the resulting integer solution violates one or more known 

inequalities. If this happens, the inequalities are appended to the LP and the cutting-

plane procedure continues again, followed by branch-and-bound once more, and so 

on. Such restarts, which were done manually, were necessary since branch-and-cut 

software was unavailable at the time of writing. The number of restarts needed ranged 

from zero to about fifty in the problems we tested, so branch-and-cut software would 

speed up the algorithm significantly. 

   As in Chapter 3, CPLEX version 3.0 along with some C routines for cut problems 

due to Georg Skorobohatyj were run on a Hewlett Packard HP-9000 workstation. 

Additional C routines for constructing the parachute and split graphs and forming 

inequalities were written by the author. 

   The test problems are based on the five hardest RPP instances solved in Section 3.5: 

I4, I14, I16, I20 and I21. All of these required at least 3 path-bridge inequalities to be 

solved. Table 4.1 (overleaf) shows the number of binding connectivity, R-odd cut, K-

C and (other) path-bridge inequalities in the final LP relaxation when solved as an 

ordinary RPP. 

   Two RPPDC versions of each problem were solved: one with L = 1 and one with L 

= 2. In each case, te was set to ce and se was set to 3ce/2 rounded down to the nearest 
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Instance Connectivity R-Odd Cut K-C Path-Bridge 

 I4  1   7 3 0 

 I14  5   21 2  0 

 I16  6   18 1  1 

 I20  9   20 2  0 

 I21  4   22 5  0 

 

 

Table 4.1: Binding constraints. 

 

 

 

number. Such a high correlation between times and costs is often encountered in 

practice. The versions with L = 1 were formed by making the deadline just tight 

enough to make the ordinary RPP solution invalid. The versions with L = 2 were 

formed by a slightly more complicated procedure as follows: 

   Partition R into equivalence classes, putting two edges in the same class if they have 

the same cost. List the classes in decreasing order of cost and set R1 = ∅  and R2 = R. 

Then do the following until |R1| ≥  |R2|: remove a class C from the head of the list, set 

R1 := R1 ∪  C and R2 := R2 \ C. This led to |R1| values of 11, 20, 19, 40 and 38, 

respectively, for the five problems. "Plausible" phases 1 and 2 were then formed by 

hand, and the deadlines set accordingly. 

   The computational results are given in Tables 4.2 and 4.3 overleaf. For each 

problem the following is listed: the time deadline(s), the number of cutting-planes of 

each type generated in addition to those in the initial relaxation, the cost of the final 

LP relaxation, the number of branch-and-bound nodes required to solve the final 

relaxation to optimality and the cost of the optimal solution. It will be seen that all ten 

instances could be solved to optimality by the cutting-plane method. 
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Instance T1 Con R-Odd LP B&B Optimum 

     I4 105 0 3 29.67 20 33 

    I14 260 0 0 57.00 15 59 

    I16 263 0 3 64.43 27 67 

    I20 522 0 4 116.49 28 118 

    I21 490 0 2 75.67 180 84 

 

 

Table 4.2: Results for single deadline class. 

 

 

 

Instance T1 T2 Con R-Odd LP B&B Optimum 

I4 92 110 28 50 30.35 25 33 

I14 236 321 33 42 57.23 63 62 

I16 229 268 29 27 67.65 147 72 

I20 498 624 37 52 116.17 131 118 

I21 468 500 56 81 75.84 2657 84 

 

 

Table 4.3: Results for two deadline classes. 
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   Although the final column of Table 4.2 is identical to the final column of Table 4.3 

in three positions, this should not be taken to mean that the corresponding solutions 

were identical. Indeed, a comparison of the solutions showed that this was not the 

case. For two of the three pairs, there were edges traversed in the L = 1 version which 

were not traversed in the L = 2 version and vice-versa. 

   Due to the manual restarts, it is not too meaningful to talk in terms of computation 

time. It is worth mentioning, however, that the time taken by the LP solver and the 

separation routines, combined, never exceeded 3 minutes for any problem; also, each 

single invocation of branch-and-bound took less than 20 seconds. The author is 

confident that each of the problems could be solved within a few minutes if branch-

and-cut software was available. 

   A final point: When solving practical problems, the running time of the algorithm 

will probably be improved if the edge costs are measured very accurately (e.g. to 3 

significant figures), perhaps from a Geographical Information System (GIS). This acts 

as a perturbation scheme which reduces the chance of alternate optima. In contrast, it 

is only worthwhile measuring times to 1/2 significant figures. This is for two reasons: 

First, LP packages perform better if all constraints have similar precision; second, if a 

viable separation algorithm ever emerges for "Knapsack-type" valid inequalities 

(Section 4.4), it is likely to be pseudopolynomial in the coefficients of constraints 

(4.2) (see, e.g., Boyd, 1992). Fortunately, real-life time constraints are often of a 'soft' 

nature. 
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5. Literature on Multi-Vehicle Problems. 

 

5.1. Overview. 

 

   In Chapter 2, the relevant literature on single-vehicle problems was reviewed. In this 

chapter, multi-vehicle problems are considered. As in Chapter 2, the scope is mainly 

restricted to optimisation algorithms for single-depot problems. Special attention will 

be given to Arc-Routing Problems (ARPs), but, as more results are known for their 

Node Routing counterparts, some mention will be made of these also. Formal 

definitions are given in the next section. 

   A variety of different formulations have been attempted for multi-vehicle problems. 

In this chapter, these will be put into one of the following four categories: complete, 

sparse, very sparse and other. Sections 5.3 - 5.6, respectively, describe these 

formulations and review polyhedral results and algorithms where applicable. In 

Section 5.7, some lower bounding procedures are briefly reviewed. In Section 5.8, 

some literature is reviewed on a strongly NP-Hard problem known as the Bin Packing 

Problem (BPP). An understanding of the BPP turns out to be useful for deriving valid 

inequalities for the CARP, as will be seen in Chapter 6. 

 

5.2. Definitions. 
 

   The Capacitated Arc Routing Problem or CARP has already been defined in Section 

1.4. Golden and Wong (1981) provided the first formulation of the CARP and noted 

that merely determining the minimum possible number of vehicles is equivalent to the 

BPP. A consequence of this is that even finding a CARP solution within 50% of the 

optimum is also strongly NP-Hard. 

   The CARP with R = E is called the Capacitated Chinese Postman Problem (CCPP) 

and was first considered in Christophides (1973). Unlike the ordinary Chinese 

Postman Problem (see Section 2.2), the CCPP is strongly NP-Hard. 
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   The node-routing counterpart of the CARP (i.e., the version in which R contains 

vertices instead of edges), has been the subject of intense research and for this reason 

is often referred to as the Vehicle Routing Problem (VRP). Laporte & Osman (1995) 

provides a comprehensive survey on this and other problems. 

   Because the CARP+1D (see Section 2.2) will be studied in Chapter 7, it is worth 

mentioning a little about time windows. Although no specialised optimisation 

algorithms are currently available for ARPs with time windows, much work has been 

done on the Vehicle Routing Problem with Time Windows (VRPTW). The best current 

solution method for the VRPTW appears to be that of Kohl & Madsen (1995). 

However, as in the case of the single-vehicle TSPTW (Section 2.3), VRPTWs with as 

few as fifty customers can defeat even the most recent methods unless the time 

windows are rather narrow. 

   For this reason, current VRPTW algorithms cannot be applied to problems with only 

time deadlines (though some heuristics appear in Nygard et al., 1988, Thangiah et al., 

1994). It is unlikely that they could even be adapted to the CARP+1D. Yet, as 

mentioned in Section 2.3, deadlines do in fact occur in real-life. Eglese & Li (1992) 

study a multi-vehicle, multi-depot problem, in which roads must be treated with salt 

within 2, 4 or 6 hours of a callout, depending on their importance. The problem was 

complicated by the presence of one-way roads and the possibility of vehicles refilling 

at various points. Various heuristics for this problem are described in Eglese & Li 

(1992), Howie & Aktin (1993), Eglese (1994) and Li & Eglese (1996). 

   The CARP+1D is a simplified version of this problem. Eglese & Li (1996) have 

produced an effective Tabu Search-based heuristic for the CARP+1D, called 

LOCSAR. This was used to obtain upper bounds for the test problems in Chapter 7. 

   In Stephenson (1996), a parcel delivery problem is studied which is somewhat 

similar. This is a node-routing problem (like the VRP), but with the added 

complication that parcels must be delivered by 9.30 a.m., 11 a.m., 1.00 p.m. or 5.30 

p.m., depending upon the rate paid by the customer. Stephenson (1996) also resorts to 

an heuristic approach. 
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5.3. Complete Formulations. 

 

   One way to formulate multi-vehicle problems such as the VRP and CARP is to 

adapt the TSP formulation given in Section 2.4. The author calls such formulations 

'complete' since they are effectively defined on a complete graph, with O(|R|2) edges, 

and do not exploit sparsity in G. With the VRP, the standard complete formulation is 

as follows (see, e.g., Gouveia, 1995): let the depot be vertex 1 and the other customers 

be located at vertices 2, ..., N+1. Let the cost of travel from i to j be cij and let the {0, 

1} variable xij take the value one if and only if some vehicle moves between i and j in 

the solution. Then, assuming that use of a vehicle incurs a fixed cost C, we obtain: 

 

Minimise x c xC
ij ij

j i

N

i

N

2
1

1

1

1( ( ))δ +
= +

+

=
∑∑

 

 

Subject to: 

 

    x(δ(i))  =  2                         (i = 2, ..., N + 1)                                      (5.1) 

 

   x(δ(S)) ≥  2 K(S)           (∀S  ⊆ V \ {1}: |S| ≥ 2)                                   (5.2) 

 

   xij  ∈    {0, 1, 2}  if  {i, j} ∈ δ({1}),   {0, 1}  otherwise                           (5.3) 

  

   Constraints (5.1) are known as degree constraints. Constraints (5.2), known as 

capacity inequalities, are strengthened subtour elimination inequalities. In these, the 

term K(S) represents the minimum number of vehicles required to service S. For a 

particular S, K(S) can be found by solving a Bin-Packing Problem (see Section 5.7 

and also Martello & Toth, 1990). The integrality conditions and bounds are given in 

(5.3). Note that xij is permitted to take the value 2 when ij is incident with the depot. 

This corresponds to a trip in which a vehicle leaves the depot, visits a single customer 

and returns immediately to the depot. 
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   In the case of the CARP, the complete formulation is a little more complicated (see, 

e.g., Welz, 1994). Recall that the CARP is defined in terms of a graph G(V, E, R). 

Assume, without loss of generality, that the edges in E are ordered such that first |R| 

edges in E are the members of R. Define a complete graph G'(V', E'), with 1 + 2 |R| 

vertices. The depot is represented by vertex {1} in G', as it was in G. For i = 1, ..., |R|, 

let vertex i + 1 in V' be a copy of one particular end-vertex of the ith edge in E. 

Similarly, let vertex i + |R| + 1 in V' be a copy of the other end-vertex of the ith edge 

in E. 

   In E', for i = 1, ..., |R|, the edge {i + 1, i + |R| + 1} now represents the ith required 

edge in E. The other edges in E' represent shortest paths between the corresponding 

vertices in G. The set of these other edges will be denoted by E*. A {0, 1} variable xij 

is now defined for every edge in E*. Now let S ⊆ V'\{1} be called unbroken if it has 

the property that, for i = 2, ..., |R| + 1, i ∈ S if and only if i + |R| ∈ S. That is, S 

corresponds to a set of required edges in R. The formulation becomes: 

 

Minimise x c xC
ij ij

ij E
2

1( ( ))
*

δ +
∈
∑

 

 

Subject to: 

 

    x(δ(i))  =  1                      (i = 2, ..., 2 |R| + 1)                                      (5.4) 

 

  x(δ(S)) ≥  2 K(S)            (∀S⊆ V'\{1}, S unbroken)                                 (5.5) 

 

    xij  ∈ {0, 1}                    (ij ∈ E*)                                                        (5.6) 

  

   Constraints (5.4) ensure that a vehicle arrives or departs from each end-vertex of 

each required edge exactly once. Constraints (5.5) are analogous to (5.2). Here, K(S) 

is the minimum number of vehicles required to service the required edges represented 

by the unbroken set S. 
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   Constraints (5.6) ensure that all variables are binary. Unlike the case of the VRP, 

there is no need to allow variables to take the value 2. This is because, even if a 

vehicle only services a single edge, it will leave and return to the depot via different 

shortest paths. 

   Branch-and-bound will be necessary to solve either of the complete formulations 

(5.1) - (5.3) and (5.4) - (5.6). In both cases, the important issue is what kind of 

relaxation to use during the branch-and-bound procedure. This thesis is mainly 

concerned with the use of linear programming relaxations, but it is possible to use a 

discrete or combinatorial relaxation. In such a relaxation, the integrality condition is 

retained but some of the other constraints in the problem are relaxed. 

   For example, Fisher (1995) solves the VRP by relaxing (5.1) and some of (5.2), to 

obtain a minimum weight degree-constrained spanning K-tree subproblem. Miller 

(1995) solves the VRP by relaxing (5.2) to obtain a minimum weight b-matching 

subproblem. In both these cases, other constraints are incorporated via Lagrangean 

relaxation and subgradient optimisation. Hirabayashi, Saruwatari & Nishida (1992) 

solve the CARP by relaxing (5.5) to obtain a minimum weight perfect matching 

subproblem. 

   This thesis is mainly concerned with LP-based cutting-plane approaches. In the case 

of the CARP, only Welz (1994) attempts to solve the complete formulation (5.4) - 

(5.6). He does not study the integer polyhedron, but does present a simple separation 

heuristic for (5.5). 

   Far more time has been devoted to studying the complete formulation of the VRP. It 

is known (Harche & Rinaldi, 1995; Corberán, 1996) that the LP relaxation using 

constraints (5.2) tends to be extremely tight in practice, but that the separation 

problem for (5.2) is strongly NP-Hard. Therefore, not even a pseudopolynomial exact 

separation algorithm exists. Harche & Rinaldi (1995) resort to a heuristic. They use a 

max-flow algorithm to find violated constraints of the weaker form: 

 

x(δ(S))  ≥   2 ( qi
i S∈
∑ / Q)                     (S ⊆ V / {1}: |S|  ≥  2)             (5.7) 
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and then replace any violated constraints found with their tighter equivalent. 

   Gouveia (1995) notes that as well as tightening (5.7) to become (5.2), it is possible 

to tighten (5.7) in a different direction to yield a new class of inequalities which in 

general neither dominates nor is dominated by the class (5.2): 

 
x(δ(S))  ≥   2 ( qi

i S∈
∑  + 

i S j V∈ ∈,
             ) / Q         (S ⊆ V / {1}: |S|  ≥  2)           (5.8) 

 

These can be seen as a kind of multistar inequality (see Araque, Hall & Magnanti, 

1993 and Gouveia, 1995). We will call them weak multistar (WM) inequalities in 

Chapter 6, for reasons which will become clear in that chapter. 

   Gouveia (1995) gives an extended LP formulation of the VRP, with O(N2) variables 

and constraints, with the property that the projection of the associated polyhedron onto 

the space of the x variables is equal to the polytope defined by (5.1), (5.8) and the 

bounds in (5.3). Hall (1993) uses this extended formulation to show that the 

separation problem for (5.8) can be solved exactly in polynomial time, via a maximum 

flow problem. 

   An obvious application of the Hall (1993) result is to improve the Harche & Rinaldi 

(1995) heuristic: If a set S is found such that the WM (5.8) is violated, test to see 

whether the capacity inequality (5.2) is also violated (apparently, Harche & Rinaldi 

were unaware of the Hall result, which is due to be published in 1997). However, it is 

possible to do even better than this, as will become apparent in Section 6.4. 

   We now consider comb inequalities (see Section 2.4). Since the subtour elimination 

inequalities (2.2) can be strengthened in different ways by taking capacity 

considerations into account, it might be expected that the comb inequalities (2.4) 

could be strengthened in a similar way. This is indeed the case. The tightest variants 

known at the time of writing, due to Araque (1990), have the same form as (2.4) but 

have a larger right-hand-side. There is also a condition that the depot must be outside 

the handles and teeth. The details are not given here as the formulae for calculating the 

correct rhs are very complicated. 
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   Other more exotic valid inequalities are known for the complete VRP formulation. 

For instance, Araque, Hall & Magnanti (1993) consider the special case in which all 

customers have identical demands. They define multistar, partial multistar, ladybug 

and clique cluster inequalities. Some of these were used by Araque et al. (1994) to 

give an effective branch-and-cut algorithm for this special case. Araque et al. used 

heuristic separation routines based on shrinking (defined in Section 2.7). 

 

5.4. 'Sparse' Formulations. 
 

   Complete formulations have a very large number of variables, which in practice 

means that some kind of pricing / column generation scheme is necessary during the 

branch-and-bound routine. However, many multi-vehicle problems of interest are 

defined on road networks, which are highly sparse. In such cases, it seems desirable to 

exploit this sparsity by using a different formulation, since the number of variables 

required can be much smaller. 

   If the number of vehicles, K, to be used in the solution is specified beforehand, and 

K is sufficiently small, then it may be useful to use the following approach: For each 

edge e, let the general integer variable yek represent the number of times vehicle k 

traverses edge e (without servicing it). For each required vertex i (or required edge e), 

let the {0, 1} variable xik (or xek) take the value 1 if vehicle k services i (or e), 0 

otherwise. 

   The resulting sparse formulation has K.|E| general integer variables and K.|R| binary 

variables. If K is sufficiently small, the number of variables will be far below that of 

the complete formulation. In practical applications, K will be small and fixed if, e.g., 

few vehicles are available and/or the cost C of each vehicle is very large. 

   One such sparse formulation has been proposed for the CARP by Belenguer & 

Benavent (1996). Let S denote a set of non-depot vertices, R(S) the set of required 

edges which have both end-vertices within S and xk(S), xk(δR(S)) and yk(δ(S)) denote 
xek

e R S∈
∑
( )

,
 

xek
e SR∈
∑
δ ( )

  and yek
e S∈
∑
δ ( )

 respectively. The formulation is: 
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Minimise  ce
e Ek ∈
∑∑  

 

Subject to: 

 

    xek
k

∑   =  1                              ( ∀e ∈ R)                                               (5.9) 

 

xk(δR(S)) + yk(δ(S))  ≥  2 xfk           (∀k, S, f ∈ R(S))                               (5.10) 
 

xk(δR(i)) + yk(δ(i))  ≡  0 mod 2           (∀k, i ∈ V)                                   (5.11) 

 

      q xe ek
e R∈
∑   ≤   Q                              ( ∀k)                                          (5.12) 

 

xek  ∈  {0, 1},   yek  ≥   0   and integer                                                     (5.13). 

 

   Belenguer & Benavent (1996) show that (5.9) are implicit equations of the 

associated polyhedron CARP(G) and that the connectivity inequalities (5.10) and the 

non-negativity conditions in (5.13) induce facets under mild conditions. They also 

introduce six other classes of valid inequality: 

 

i) (5.9), (5.12) and the conditions on the x variables in (5.13) are the constraints of a 

Generalised Assignment Problem (GAP). Therefore any facets of the GAP polyhedron 

(Gottlieb & Rao, 1990) are also valid for CARP(G). In fact they can be shown to 

induce facets of CARP(G). There might even be extra implicit equations from the 

associated GAP. 

 

ii) If S is such that |δR(S)| is odd, then yk
k

∑ (δ(S)) ≥ 1 is valid. 

 

iii) If S is such that δR(S) ≠ ∅ and F ⊆ δR(S) is such that |F| is odd, then xk(δR(S)-F) 

+ yk(δ(S)) ≥  xk(F) - |F| + 1 is valid for all k. 
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iv) If K(S) denotes the minimum number of vehicles required to service R(S)∪δR(S), 
due to the capacity constraints, then the inequality yk

k

∑ (δ(S)) ≥ 2 K(S) - |δR(S)|  is 

valid. It will frequently induce a facet when 1 < K(S) < K. When K(S) = 1, it is 

dominated by the connectivity inequalities (5.10). When K(S) = K, it is dominated by 

the following set of inequalities. 

 

v) If, for some S, K(S) = K, then all vehicles must enter S. As a result, the inequalities 

xk(δR(S)) + yk(δ(S)) ≥  2  are valid for all k. These frequently induce facets. 

 

vi) if α
δ
e e

e R S S

x

R∈ ∪
∑

( ) ( )

≤ β is any valid inequality due to the GAP aspect of the 

problem, then xk(δR(S)) + yk(δ(S))  ≥ 
2
β

α
δ
e e

e R S S

x

R∈ ∪
∑











( ) ( )

 is also valid. 

 

   Although Belenguer and Benavent (1996) do not explicitly mention it, the 

connectivity inequalities (5.10) are a special case of (vi). To see this, note that the 

inequality xfk ≤ 1 is valid not only for CARP(G), but also for the associated GAP. 

   When it comes to the issue of separation algorithms, Benavent (1995) reports the 

following results: Connectivity inequalities (5.10) can be separated by solving a series 

of maximum flow problems for each vehicle. The inequalities (ii) can be separated by 

solving a minimum odd cut problem. The edge-splitting strategy of Padberg & Rao 

(1982) (see Section 2.7) can be used to reduce the separation problem for the 

inequalities (iii) to a set of k minimum odd cut problems. Benavent (1995) is also 

currently working on heuristic separation algorithms for inequalities (i) and (iv) - (vi).  

   Belenguer & Benavent (1996) report that the inequalities (iv) are extremely 

important when attempting to increase the LP lower bound. They have adapted the 

maximum flow routine of Harche & Rinaldi (1995), described in the previous section, 

to separate (iv). They use this in conjunction with simple shrinking heuristics. 



78 

5.5. 'Very Sparse' Formulations. 
 

   If the number of vehicles K is fixed once more, even more economical formulations 

of the VRP and CARP are possible. These have only one general variable xe for each 

e∈ E and will be termed very sparse. For the VRP, xe represents the total number of 

times e is traversed (by any vehicle). A feasible x vector now represents a number of 

feasible vehicle routes superimposed on each other, what one might call a K-route-set. 

The formulation is, trivially, 

 

Minimise xe
e E∈
∑  

 

Subject to: 

 

x must represent a K-route-set.                                             (5.14) 

 

   Cornuéjols & Harche (1993) examine this VRP formulation. They show that the 

associated polyhedron is full-dimensional and that the non-negativity inequalities 

induce facets. They also show that the capacity inequalities (5.2) are valid here and 

give conditions under which they induce facets. 

   A similar formulation would clearly be possible for the CARP. In the case of the 

CARP, however, it would be more sensible to interpret xe as the total number of times 

e is traversed without servicing, by any vehicle. Then, if any required edge was such 

that the only time it was traversed was when it was being serviced, the associated 

variable would have a zero value. This would reduce the number of basic variables, 

making the LP relaxations easier to solve. To the author's knowledge, this CARP 

formulation has not been examined. 

   Since very sparse formulations have so few variables, especially for problems 

defined on road networks, they initially seem very promising. However, there are two 

serious drawbacks: 



79 

(i) To the author's knowledge, no explicit integer programme is known which has the 

K-route-sets as its feasible solutions. That is, the capacity inequalities are not 

sufficient to cut off integral x vectors which do not represent a K-route-set (see 

Cornuéjols & Harche, 1993, for a counter-example). 

 

(ii) It appears to be strongly NP-hard to "untangle" a feasible solution to construct 

individual routes (the Bin Packing Problem could probably be reduced to it). 

 

   These difficulties imply that very sparse formulations are of little use for 

optimisation. However, if it is only a good lower bound which is required, they are 

potentially very useful. A very sparse formulation is used in Chapter 7 to obtain good 

lower bounds for the CARP + 1D. 

 

5.6. Other Formulations. 
 

   Other formulations have been attempted for the VRP, which could also easily be 

adapted to the CARP. Only two will be mentioned here, one only briefly. 

   The first is the Set Partitioning formulation (see, e.g., Desrosiers et al., 1995). By 

the use of Dantzig-Wolfe decomposition, the integer programme (5.1) - (5.3) is 

reformulated as a Set Partitioning Problem (SPP). In the SPP, there is a variable for 

each feasible single-vehicle route, and a constraint for each customer ensuring that 

exactly one route visits that customer. The resulting SPP therefore has a huge number 

of variables but a small number of constraints, unlike the polyhedral approach which 

uses a small number of variables but a huge number of constraints. 

   To deal with the huge number of variables, an initial SPP relaxation is solved with 

only a small number of variables present. New variables (columns) are then generated 

as and when needed. To do this, a column generation algorithm is needed, which can 

utilise the values of the dual variables in the current SCP relaxation. This is analogous 

to a separation algorithm in the polyhedral approach, which utilises the values of the 
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primal variables. In this sense, the column generation approach can be regarded as 

dual to the polyhedral approach. 

   If the number of vehicles is too small, the SPP becomes highly degenerate. On the 

other hand, if the constraints in the problem are tight enough, it may be possible to 

solve the column generation problem by dynamic programming (Desrosiers et al., 

1995). The SPP formulation therefore seems to be most appropriate for highly 

constrained problems involving a fairly large number of vehicles. 

   The second approach is to use Benders reformulation to convert (5.1) - (5.3) into a 

Generalised Assignment Problem (GAP) with a non-linear objective function (Fisher 

& Jaikumar, 1981). The objective function is then approximated by a linear function, 

which is successively improved by the addition of Benders cuts. 

   This approach appeared to be promising initially. However, the GAP is strongly NP-

Hard and difficult to solve to optimality in practice. Moreover, the addition of Benders 

cuts results in a problem which is even harder to solve than the GAP. The method has 

not been as successful as the polyhedral and SPP approaches. 

 

5.7. Combinatorial Lower Bounds. 
 

   All of the above formulations and valid inequalities for the CARP could be used to 

derive LP-based lower bounds, and, as will be shown in Chapter 7, it is not hard to 

adapt these to the CARP+1D also. However, there has also some been some work 

done on combinatorial lower bounding techniques. These rely on discrete relaxations 

rather than LP relaxations (see Section 5.3). For the sake of brevity, these will not be 

explored in detail here. However, a brief description of them is given, since one of 

them will relevant in Chapter 7. 

   To the knowledge of the author, all of the known combinatorial bounds for the 

CARP are summarised (and extended) in Benavent et al. (1992). The basic idea 

behind most of these bounds is that the optimal cost of a CARP solution must be at 

least as great as the sum of the following two components: 
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i) a matching of those vertices in G which are adjacent to an odd number of required 

edges, and 

 

ii) an extra factor to account for the fact that each vehicle has to leave and return to 

the depot in order to service any required edge. 

 

   Hence, most of these bounding techniques involve the computation of a minimum 

cost perfect matching, on a network derived from G by adding extra edges and 

introducing extra copies of the depot vertex. They differ merely in the precise nature 

of the derived network, and some have refinements to take the demand of certain 

induced subgraphs into account also. Hirabayashi, Saruwatari & Nishida (1992) 

describe another variant of this general scheme, independently of Benavent et al. 

   Besides reviewing and extending these bounds, Benavent et al. (1992) also examine 

a combinatorial bound based on state-space relaxation, which can be easily computed 

using dynamic programming. However, this bound performed uniformly poorly 

compared to the matching-based bounds in their thorough computational experiments. 

   Li (1992) reviewed the best of the Benavent et al. bounds, and addressed the 

question of producing an analogous bound for the CARP+1D. This proved to be more 

tricky than might be expected. The difficulty is that, prior to invoking a perfect-

matching algorithm, it is first necessary to have a good estimate of Kmin, the minimum 

number of vehicles required to service the required edges. If the time deadline was not 

present, it would merely be necessary to solve a Bin Packing Problem. However, due 

to the deadline, it is not so easy. 

   For this reason, Li produced the following iterative procedure: an initial lower 

bound on Kmin is formed by summing se over all e ∈ R and dividing the result by T. A 

matching problem is then solved, assuming this fleet size, to obtain a lower bound on 

the total time required, excluding return trips to the depot. This may in turn imply that 

additional vehicles are needed. If so, the lower bound on Kmin is updated and a new 

matching problem is solved, and so on. 
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   Eventually, the lower bound on Kmin cannot be further improved. At this point, a 

final matching problem is solved which, like the Benavent et al. CARP bounds, is in 

terms of cost rather than time. This yields the Li bound. 

   In Chapter 7, which concerns the CARP+1D, an experimental comparison will be 

made between the Li lower bound, a new LP-based lower bound due to the author, 

and an upper bound obtained from a tabu-search heuristic due to Eglese & Li (1996). 

 

5.8. The Bin Packing Problem. 
 

   The Bin Packing Problem (BPP) is a well-known combinatorial optimisation 

problem which has been shown to be strongly NP-Hard by Garey & Johnson (1979) 

(that is, not even a pseudopolynomial algorithm exists for the BPP unless P = NP). An 

instance is given by a positive integer Q, representing the capacity of a single bin, and 

a set of positive integers q1, ..., qn, such that qi ≤ Q for all i ∈ N = {1, ..., n}, 

representing the weights of n items. The task is to pack the items into as few bins as 

possible, given that the sum of the qi of the items in any single bin cannot exceed Q. 

   Clearly, finding the minimum number of vehicles necessary to service the required 

edges in a CARP instance is equivalent to solving a BPP. Less obvious connections 

between the two problems, of a polyhedral nature, will be demonstrated in Chapter 6. 

References on heuristics, lower bounds and optimisation algorithms for the BPP can 

be found in Martello & Toth (1990) and Chao, Harper & Quong (1995). We will be 

primarily interested in lower bounding procedures. 

   An obvious lower bound on the number of bins required is the following quantity: 

 

                            LB0 = 
q Qi

i N∈
∑













/ , 

 

where  U  denotes the least integer greater than or equal to U. LB0 is easily computed 

in O(n) time and, despite its simplicitly, works suprisingly well (Chao, Harper & 
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Quong, 1995), provided that there are very few "large" items (e.g., items with qi ≥ 

Q/4). A simple example where it fails is when Q = n = 3 and q1 = q2 = q3 = 2. Here, 

LB0 = 2, whereas 3 bins are required. 

   A refinement of LB0, which we shall call LBMT, can be found in Martello & Toth 

(1990). For any given λ, 0 ≤ λ ≤ Q/2, define BIG(λ) as {i ∈ N: qi > Q/2 + λ} and 

MEDIUM(λ) as {i ∈ N: Q/2 - λ ≤ qi ≤ Q/2 + λ}. Then each item in BIG(λ) must be 

placed in a separate bin and the items in MEDIUM(λ) require still further bins. Hence, 

the quantity 

 

            f(λ) = |BIG(λ)| +  q Qi
i MEDIUM∈

∑










( )

/
λ

 

 

 is a valid lower bound. LBMT is then defined as the maximum of f(λ) over all λ. 

Since  f(Q/2) = LB0, LBMT dominates LB0. Nevertheless, Martello & Toth show that 

LBMT can also be computed in O(n) time. 

   Although LBMT dominates LB0, there are still situations in which LBMT performs 

badly. In fact, for any small ε > 0, there are examples in which the ratio of the 

optimum to LBMT is at least 1.5 - ε. For example, if Q = 1000, qi = 334 for all i, and n 

= 999, the optimal packing uses 500 bins, yet LBMT = 334. 

   A third lower bound is that of Leuker (1983), which will be denoted by LBL. Leuker 

shows that if f(x) is a function such that the following holds: 

 

          qi
i N∈
∑ /Q  ≤  1   if and only if   f

i N∈
∑ (qi/Q)  ≤  1, 

 

then f q Qi
i N

( / )
∈
∑











   is a valid lower bound. 

 

   Several such functions are then defined and LBL is defined as the maximum of the 

corresponding lower bounds. It also can be computed in linear time. To the author's 

knowledge, the worst-case behaviour of LBL has not been analysed. 
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   A fourth lower bound, which will be termed LBCHQ, is found in Chao, Harper & 

Quong (1995). It is defined as the maximum of LB0, LBL and a third term which is 

specially defined to cope with "large" items; specifically, items with qi ≥ Q/4. LBCHQ 

can be computed in O(n log n) time. The worst-case behaviour of LBCHQ also appears 

to be unknown. 

   Finally, another lower bound is obtained by formulating the BPP as a Set 

Partitioning Problem (see Section 5.6), in which there is one variable for every 

possible filling of a single bin and one constraint for each item to ensure that it 

appears in a bin. The LP relaxation of this SPP can be solved via a column generation 

algorithm as outlined in the classic paper by Gilmore & Gomory (1961). The lower 

bound is then obtained by rounding up the optimal solution cost of this LP relaxation 

to the nearest integer. We will denote this lower bound by LBSPP. 

   The worst-case behaviour of LBSPP is also unknown, although it is extremely tight 

in practice. Unfortunately, it is also not known whether the column generation 

approach can be implemented to run in polynomial, or even pseudopolynomial, time. 
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6. The Capacitated Arc-Routing Problem. 

 

6.1. Overview. 
 

   This chapter is a theoretical study of the three integer programming formulations of 

the CARP outlined in Sections 5.3 - 5.5. It is theoretical in that no computational 

experiments have been conducted. Rather, new valid inequalities and separation 

routines are given for each formulation (along with some comments which help to 

unify some of the known results). 

   Crucial to the derivation of many of the new valid inequalities is an understanding 

of a lower bounding procedure for the Bin Packing Problem devised by the author. 

This is outlined in the next section. The new valid inequalities are presented in 

Section 6.3. Separation algorithms for some of these inequalities are given in Section 

6.4. The chapter concludes in Section 6.5 with some thoughts on which formulation(s) 

are appropriate to use in given situations. 

 

6.2. On a Lower Bound for the Bin Packing Problem. 
 

   The Bin Packing Problem (BPP) was formally defined in Section 5.7, where the 

known lower bounds were described. As mentioned in Section 5.3, the BPP often 

arises as a subproblem when attempting to solve VRP or CARP instances. In this 

section, another lower bound is given for the BPP based on linear programming. The 

derivation of this lower bound will be utilised in the next section to yield new 

inequalities for the complete, sparse and very sparse CARP formulations outlined in 

Sections 5.4 - 5.5. 

   With any BPP instance, it is possible to define an associated knapsack polytope (see, 

e.g., Balas, 1975; Nemhauser & Wolsey, 1988; Zemel, 1989), by considering the 

feasible packings of any single bin. Pick one such bin and define the {0, 1} 
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variables yi (i ∈ N) such that yi = 1 if and only if item i is placed in that bin. Clearly, 

all feasible solutions to the BPP must satisfy q yi
i N

i
∈
∑  ≤  Q. 

   Accordingly, define the Knapsack Polytope KP(Q) as the convex hull of the 

incidence vectors of feasible packings of the single bin, that is 

 

KP(Q) = Conv y q y Q y i Nn
i i

i N
i∈ℜ ≤ ∈ ∀ ∈











∈
∑: , { , } ( ) .0 1  

 

   The following result is a corollary of a result of Leuker (1983). For completeness, a 

proof is given here: 

 
Theorem 6.1: If αi i

i N

y
∈
∑ ≤ β is any valid inequality for KP(Q), with β > 0, then 

α βi
i N∈
∑












/   is a valid lower bound on the minimum number of bins. 

 

Proof: Call αi the pseudo-weight of item i. Any single bin can contain a set of items 

with a pseudo-weight at most β. Yet the whole set of items has pseudo-weight equal to  
αi

i N∈
∑ . 

 

   Leuker's lower bound (LBL, see Section 5.7) is obtained by invoking Theorem 6.1 

for a small number of valid inequalities. But Theorem 6.1 yields many other lower 

bounds in addition to LBL. For example, it yields the Martello-Toth (1990) bound, 

LBMT (Section 5.7). This is because the inequality 

 

                         

Q y q y Qi
i BIG

i i
i MEDIUM∈ ∈

∑ ∑+ ≤
( ) ( )λ λ

 
 

is valid for KP(Q). To see this, note that if yp = 1 for any p ∈ BIG(λ), yi must be zero 

for all i ∈ MEDIUM(λ). 

   Hence, if LB* denotes the maximum lower bound obtainable by an application of 

Theorem 6.1, LB* ≥ LBL and LB* ≥ LBMT ≥ LB0 both hold. 
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   To see that at least the second inequality may be strict, consider the BPP instance 

with Q = 10, n = 5 and q1, ..., q5  equal to 6, 6, 3, 3 and 2 respectively. For this 

instance, LBMT = LB0 = 2. Yet, it can be shown that the inequality 2 y1 + 2 y2 + y3 + 

y4 + y5 ≤ 3 is a facet of KP(Q) in this case. Then an application of Theorem 6.1 yields 

a bound of  7 3/  = 3, which is in fact optimal. 

   The author does not know whether LB* can be computed in polynomial time. 

However, the following is true: 

 

Theorem 6.2: LB* can be computed in pseudopolynomial time. 

 

   In order to prove this, we need the definition of a 1-polar (see, e.g., Nemhauser & 

Wolsey, 1988). Given a polyhedron P = {x ∈ ℜn : Ax ≤ b} containing the origin, the 

1-polar of P is the polyhedron π1(P) = {π ∈ ℜn : πx ≤ 1 ∀ x ∈ P}. That is, for every 

inequality πx ≤ 1 valid for P, there is a corresponding point in π1(P). It is known (see, 

e.g., Grötschel, Lovasz & Schrijver, 1988) that linear optimisation problems over 

π1(P) can be solved in polynomial (respectively, pseudopolynomial) time if and only if 

linear optimisation problems over P can be solved in polynomial (resp., 

pseudopolynomial) time. The proof of this relies on the ellipsoid method. 

 

Proof of Theorem 6.2: Maximising αi
i N∈
∑  / β  subject to the condition that αi

i N∈
∑ yi  

≤ β  is valid for KP(Q) is equivalent to maximising αi
i N∈
∑  subject to the condition 

that αi
i N∈
∑ yi  ≤ 1  is valid for KP(Q). This is a linear programming problem over 

π1(KP(Q)). This can be solved in pseudopolynomial time, since the Knapsack problem 

can be solved in pseudopolynomial time. 

 

   Instead of using the ellipsoid method to optimise over π1(KP(Q)), the algorithm of 

Boyd (1992) could be used. This involves the solution of a side-constrained network 

flow problem and will probably be more efficient in practice. 



88 

   The author has wondered whether any dominance relation exists between LB* and 

the other two bounds LBCHQ and LBSPP mentioned in Section 5.8. In fact, it was 

recently shown by Wolsey (1997) that LB* = LBSPP. To prove this, one uses the fact 

that π1(π1(KP(Q))) = KP(Q) to formulate the optimisation problem over the 1-polar 

as a linear programming problem with a constraint for every feasible packing of a 

single bin. The dual of this LP has a variable for every feasible packing, and a 

constraint for each item. It turns out to be the Set Partitioning formulation. 

 

6.3. New Valid Inequalities for the CARP. 
 

   In this section, new valid inequalities are presented for the complete, sparse and very 

sparse formulations outlined in Sections 5.3 - 5.5. A thorough reading of those 

sections is a prerequisite for understanding the results given in this section. 

   To start with, inequalities for the complete formulation (5.4) - (5.6) are presented. 

First, note that constraints (5.4) and (5.6) resemble the constraints of a perfect 

matching problem (Edmonds, 1965). Hence, an analogue of blossom inequalities can 

be defined: Let a given S ⊂ V'\{1} be called broken if it is not unbroken. If S is 

broken, then some set F ≠ ∅ of required edges lies within δ(S). It is clear that the 

blossom inequality: 

 

   x(δ(S)) ≥  1            (∀S ⊂ V'\{1}, S broken, |F| odd)                                 (6.1) 
 

is valid for the complete CARP formulation. 

   Now define the enlargement of a broken set S, en(S), to be the minimal unbroken set 

S' ⊆ V such that S ⊆ S' holds. Letting K(en(S)) represent the minimum number of 

vehicles required to service the edges within en(S), the capacity inequality (5.5) 

corresponding to the set en(S) is  

                                           x(δ(en(S)))  ≥  2 K(en(S)). 

Using the degree equations (5.1) for the vertices in en(S) \ S, this capacity inequality 

can be re-written as: 
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 x(δ(S))  ≥  2 K(en(S)) - |F| + 2 xij
i S j en S S∈ ∈

∑
, ( ) \

 + xij
i j en S i j, ( ),∈ ≠
∑ . 

 

This will dominate the blossom inequality (6.1) if |F| ≤ 2 K(en(S)) - 1. Thus, a 

necessary condition for (6.1) to be facet-defining is that |F| ≥ 2 K(en(S)) + 1. The 

author does not know whether this condition is also sufficient. 

   Now recall the definition of the graph G'. Define a 'shrunk graph', SG', by shrinking 

each edge in E' \ E*, until its end-vertices coincide. The required edges have 

effectively become required vertices and a solution to (5.4) - (5.6) is now analogous to 

a solution to the VRP formulation (5.1) - (5.3). In a natural way, valid inequalities for 

the resulting VRP yield valid inequalities for the CARP. The author calls these VRP-

derived inequalities. Viewed in this way, (5.5) are VRP-derived capacity inequalities. 

   In this way, it is not hard to adapt the weak multistar (WM) inequalities (5.8) to the 

CARP. However, it is possible to obtain a stronger class of inequalities. To show this, 

it suffices to give a class of inequalities for the complete VRP formulation which 

dominates (5.8). The VRP-derived version of these new inequalities will then 

automatically dominate the VRP-derived WM inequalities in an obvious way. 

 

Theorem 6.3: Given a VRP instance, define 
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Note that KP(Q) is a Knapsack polyhedron whose extreme points correspond to 

feasible assignments of customers to a single vehicle. 

   If   αi i
i

N

y
=

+

∑
2

1

 ≤  β, with β and all αi > 0, is valid for KP(Q), then the inequalities  

 

x(δ(S))  ≥   2 ( αi
i S∈
∑  + α j ij

i S j V S

x
∈ ∈ ∪

∑
, \ ( { })1

) / β         (S ⊆ V \ {1}: |S|  ≥  2)           (6.2) 
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are valid for the complete VRP formulation. 

 

Proof: Since no single vehicle can visit a set of vertices whose α coefficients sum to 

more than β, any feasible VRP solution must also be feasible for a transformed VRP 

in which demands are αi and vehicle capacity is β. Validity of (6.2) then follows from 

validity of (5.8). 

 

   The discovery of inequalities (6.2) was inspired by the derivation of the Bin Packing 

lower bound given in the previous section. There is also a slight resemblance to the 

sixth class of valid inequalities for the sparse CARP formulation (Section 5.4), due to 

Belenguer & Benavent (1996). The author calls (6.2) knapsack-tightened multistar 

(KTM) inequalities. 

   The class of KTM inequalities dominates the WM class, but still neither dominates 

nor is dominated by the class of capacity inequalities (5.2). It is clear that a KTM 

inequality cannot induce a facet of the VRP polyhedron unless it is derived from a 

facet of KP(Q), since linear combinations of KP(Q) inequalities lead to KTM 

inequalities which are linear combinations of other KTM inequalities. However, the 

converse may not apply; it is conceivable that a KTM derived from a facet of KP(Q) 

may nevertheless fail to induce a facet. The author believes that, in general, it will be 

difficult to derive sufficient conditions for KTM inequalities to induce facets. 

   An interesting observation is that the standard subtour elimination inequalities (2.1) 

are in fact a special case of (6.2), since, for i = 2, ..., N+1, yi ≤ 1 is valid for KP(Q). 

Hence (5.2) and (6.2) are distinct valid generalisations of (2.1), neither of which 

subsumes the other. 

   All of these results transfer over to the CARP. The resulting VRP-derived KTM 

inequalities have similar properties to their VRP counterparts. 

   Now we consider the sparse formulation of the CARP, due to Belenguer & 

Benavent (1996). Three new classes of valid inequality will be presented. Each of the 

first two classes subsumes two of the six classes outlined in Section 5.4. 
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Theorem 6.4: Given S ⊆ V \ {1} and F ⊆ δR(S), |F| odd, along with a set of vehicles H 

⊆ {1, ..., K}, the following inequality is valid for CARP(G):  

 

[ ]x S F y Sk R k
k H

( ( ) ) ( ( ))δ δ− +
∈
∑      ≥  xk

k H∈
∑ (F) - |F| + 1                      (6.3). 

 

Proof: If any vehicle not in H services any edge in F, the right-hand-side becomes 

zero or less and the inequality is trivially valid. On the other hand, if only the vehicles 

in H service the edges in F, the rhs becomes 1, which is valid since the vehicles in H 

must cross δ(S) an even number of times. 

 

   The discovery of (6.3) was inspired by the discovery of the various parity 

inequalities for the RPPDC given in Chapter 4. The author calls (6.3) general parity 

(GP) inequalities. Note that when |H| = K and F = δR(S), the x variables can be 

eliminated due to equations (5.9) and one obtains 

 

              yk
k K∈
∑ (δ(S))   ≥  1 ;  

 

which is the second set of valid inequalities described in Section 5.4. On the other 

hand, when H = {k}, i.e. |H| = 1, one obtains xk(δR(S) - F) + yk(δ(S)) ≥ xk(F) - |F| + 1 

for all k; i.e., the third set of valid inequalities in Section 5.4. 

 

Theorem 6.5: let S ⊆ V \ {1} be such that at least K(S) vehicles are required to cover 

R(S)∪ δR(S) due to the vehicle capacity constraints, and let H ⊆ {1, ..., K} be any 

subset of vehicles such that K - K(S) < |H| ≤ K. Then the following inequality is valid 

for CARP(G):  

 

[ ]x S y Sk R k
k H

( ( )) ( ( ))δ δ+
∈
∑   ≥   2  [ |H| - K + K(S) ]        (6.4). 
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Proof: At least K(S) vehicles must have xk(δR(S)) + yk(δ(S)) ≥ 2 in any feasible 

solution. At least |H| - K + K(S) of the vehicles in H must enter S since there are only 

K - |H| other vehicles available. Hence at least |H| - K + K(S) vehicles in H must 

satisfy xk(δR(S)) + yk(δ(S)) ≥ 2 in any feasible solution and the result follows. 

 

   The author calls (6.4) minimum crossing inequalities. Note that when |H| = K, the x 

variables can be eliminated due to equations (5.9) and one obtains 

 

      yk
k

∑ (δ(S))   ≥   2 K(S) - | δR(S) |, 

 

the fourth set of valid inequalities described in Section 5.4. On the other hand, when 

K(S) = K and |H| = 1, one obtains  xk(δR(S)) + yk(δ(S)) ≥ 2  for all k; i.e., the fifth set 

of valid inequalities in Section 5.4. 

   Finally, note that the general parity inequalities with |H| = K resemble the R-odd cut 

inequalities (2.14) for the RPP, apart from the summation over the K routes. This is 

due to the fact that, if all of the K routes are superimposed on one another, then an 

RPP tour must result. Hence, it is possible to adapt all of the inequalities discussed in 

Chapter 3 to the CARP. More formally: 

 

Theorem 6.6: If any inequality of the form αe e
e E

x
∈
∑  ≥ β is valid for RPP(G), then 

αe ek
e Ek K

y
∈∈
∑∑   ≥ β  is valid for CARP(G). 

 

   However, these RPP-derived inequalities cannot be expected to induce facets unless 

the demands of the edges are small relative to the vehicle capacity. 

   It is helpful to summarise and consolidate the above results on the sparse 

formulation in the following proposition: 
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Proposition 6.7: Every single known valid inequality for CARP(G) falls into one of  

the following six classes: 

 

(a) The non-negativity inequalities for the y variables in (5.13), 

 

(b) The inequalities derived from the Generalised Assignment Problem (the first set of 

valid inequalities of Belenguer and Benavent (1996)), 

 

(c) The inequalities derived from the interaction of the GAP and routing subproblems 

(the sixth class of inequalities of Belenguer & Benavent (1996). 

 

(d) Generalised parity inequalities (6.3), 

 

(e) Minimum crossing inequalities (6.4), 

 

(f) RPP-derived inequalities. 

 

   To see this, note that the equations (5.9), the inequalities (5.12) and the non-

negativity conditions on the x variables in (5.13) are a special case of (b). Also, it was 

already shown (in Section 5.4) that the connectivity inequalities (5.10) are a special 

case of (c). 

   Finally, we briefly consider a very sparse CARP formulation. For each e ∈ E, define 

a general integer variable xe, representing the total number of times e is traversed, 

without servicing, by any vehicle. A feasible x vector now represents a K-route-set, 

which in the case of the CARP means a set of K feasible vehicle routes superimposed 

on each other, but not including servicing. The formulation is, trivially, 

 

Minimise xe
e E∈
∑  

 

Subject to: 
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x must represent a K-route-set.                                             (6.5) 

 

   This very sparse formulation has a strong relationship with the RPP formulation of 

Corberán & Sanchis (1994), discussed in Section 2.6: Since each individual vehicle 

route must define an Eulerian multigraph, the routes superimposed upon each other 

must also define an Eulerian multigraph. Therefore, any solution to (6.5) must also be 

a solution to (2.11) - (2.13). Hence, it can immediately be said that all of the valid 

inequalities discussed in Chapter 3 (path-bridge, generalised binested, etc.) are also 

valid for the very sparse CARP formulation. In addition, the following result holds: 

 

Theorem 6.8: Given an S ⊆ V \ {1}, let K(S) denote the minimum number of vehicles 

required to service the edges having at least one end-vertex within S in G. Then: 

 

   x(δ(S)) ≥  2 K(S) - |δR(S)|          (∀S  ⊆ V \ {1}: |S| ≥ 2)                              (6.6) 
 

is valid for the very sparse CARP formulation. 

 

Proof: At least K(S) vehicles must enter S. That is, δ(S) must be crossed at least 2 K(S) 

times. Hence, the vehicles must cross δ(S) without servicing an edge in δR(S) on at 

least 2 K(S) - |δR(S)| occasions. 

 

   There is a strong link between (6.6) and the minimum crossing inequalities (6.4) 

with |G| = K, valid for the sparse formulation. 

   The main theoretical conclusion from the results of this section is that there is a 

complicated system of relationships between the three different formulations of the 

CARP; and, moreover, all three are also related to the Bin Packing Problem and the 

Rural Postman Problem. With more work, it might be possible to describe these 

connections with greater precision, but this is outside of the scope of this thesis. 
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6.4. Separation Routines. 
 

   In this section, various exact separation algorithms are given for some of the 

inequalities discussed in the previous section. Where the author has been unable to 

find useful separation algorithms, some comments are given which may aid the search 

for them. 

   We begin with the complete formulation. The easiest class of inequalities to deal 

with are the blossom inequalities (6.1). The result of Padberg & Rao (1982) implies 

that these can be separated in polynomial time by solving a minimum weight odd cut 

problem. 

   All of the other known valid inequalities for the complete CARP formulation are 

VRP-derived (see the previous section); that is, they can be derived by shrinking 

required edges to obtain a corresponding VRP instance. A careful rereading of the 

argument in the previous section shows that this result carries over to the separation 

problem: An LP relaxation of the CARP violates an inequality in a given class of 

VRP-derived inequalities if and only if the corresponding LP relaxation of the 

corresponding VRP violates the corresponding inequality. Hence, any separation 

algorithm for a given class of VRP inequalities automatically yields a separation 

algorithm for corresponding class of CARP inequalities. We can therefore restrict our 

attention to separation algorithms for the VRP. 

   As mentioned in Section 5.3, comb inequalities are valid for the complete VRP 

formulation (5.1) - (5.3). Therefore, any heuristic for comb inequalities, such as the 

necklace method of Section 2.7, can be used with the VRP (and therefore CARP). 

Moreover, if a comb inequality is violated or nearly violated, the rhs can then be 

strengthened according to the results of Araque (1990). 

   Since 2-matching inequalities are a special case of comb inequalities (see Section 

2.4), it follows that 2-matching inequalities are valid for the VRP. These can be 

separated exactly in polynomial time as outlined in Padberg & Rao (1982). Again, it 

might be possible to strengthen the resulting inequality. 
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   The capacity (5.2) and KTM (6.2) inequalities will be treated simultaneously, and 

three heuristic separation routines will be suggested. First, however, consider the 

simpler (still apparently NP-Hard) problem of detecting violation of (5.2) or (6.2) 

when the set S has already been fixed beforehand. In the case of (5.2), it is 

recommended that the Bin Packing lower bound of Section 6.2 be used unless the 

demands are measured to a very high precision, when one of the simpler lower bounds 

reviewed in Section 5.7 should be used. In the case of (6.2), the problem is to find a 

valid inequality for KP(Q) which maximises the violation for the given S. This is an 

optimisation problem over π1(KP(Q)), which can be solved in pseudo-polynomial 

time (See Section 6.2). 

   Now consider the general problem once more. The first heuristic separation 

algorithm is to shrink all edges with xij = 1, then compute a minimum cut in the 

resulting graph. The set S on the opposite shore to the depot is then a candidate to 

check for violation of (5.2) or (6.2) as explained in the previous paragraph. This may 

work well in the initial stages of a cutting-plane algorithm, but will fail later on. 

   The second heuristic is to use the Hall (1993) max-flow algorithm to find a most 

violated weak multistar inequality (5.8). The resulting set S is again a candidate for 

violating (5.2) and (6.2). The third heuristic is to fix the valid inequality beforehand 

(perhaps by optimising over π1(KP(Q))), and then run the Hall algorithm with this 

particular inequality taking the place of the capacity constraint as implied by the proof 

of Theorem 6.3. 

   The sparse CARP formulation will now be briefly considered, using the 

classification (a) - (f) given in Proposition 9.7. The case (a) is trivial. Any known 

separation algorithms for the Generalised Assignment Problem (GAP) could be used 

for case (b). Since Gottlieb & Rao (1990) show that facets of the individual knapsack 

constraints are also facets of the GAP polyhedron, this includes any known separation 

routines for the Knapsack problem. As for case (c), the strong resemblance between 

between these inequalities and the KTM inequalities (6.2) suggests that the heuristics 

suggested above for (6.2) could be adapted to them. 
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   The main difficulty lies with case (d), the GP inequalities (6.3). A plausible 

approach might be to examine each possible set G of vehicles, using the edge-splitting 

strategy of Padberg & Rao (1982) with each set. The problem with this is that there 

are 2K-1 possible sets of vehicles, which leads to an running time which is exponential 

in K. The author is not aware of any way around this difficulty (a similar problem may 

exist for the RPPDC formulation in Chapter 4, as alluded to in section 4.4). Worse 

still, a similar problem seems to occur with case (e), the MC inequalities (6.4). 

   Fortunately, when it comes to case (f), the RPP-derived inequalities, all of the 

separation results of Section 2.8 and Chapter 3 carry over to the sparse CARP 

formulation. 

   Finally, when it comes to the very sparse formulation, the situation is much simpler. 

Any known separation algorithm for the RPP (Section 2.8 and Chapter 3 again) can be 

used directly to separate RPP-derived inequalities, and the only other important class 

of inequalities is (6.6), the analogue of the capacity inequalities. Some simple but 

effective heuristics for the separation of (6.6) will be considered in Section 7.4. 

 

 6.5. Comparing Formulations. 
 

   In this final section, an attempt is made to compare the three different CARP 

formulations based on the preceding discussion. 

   The complete formulation has the disadvantage that it requires a large number of 

variables, therefore making a column generation scheme necessary. However, it has 

two advantages: 

 

 (i) very good bounds can be obtained merely by adding capacity inequalities to the LP 

relaxation (Welz, 1994) 

 

(ii) any work on separation algorithms for the VRP transfer directly to the CARP as 

outlined in the previous section. 
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   The sparse formulation (Belenguer & Benavent, 1996) has two advantages: 

 

 (i) it has few variables provided that the number of vehicles K is fairly small; 

 

 (ii) it is not too difficult to adapt it to handle heterogeneous vehicle fleets, i.e. 

vehicles with different capacities, costs, etc. 

 

 However, it has three drawbacks: 

 

 (i) K, or at least a tight upper bound on K, must be determined beforehand; 

 

 (ii) a bewildering variety of cutting-planes appear necessary to obtain a feasible 

solution; 

 

(iii) there may not be a separation algorithm for the GP and MC inequalities which 

runs in a time polynomial in K, and there is no obvious heuristic either. 

 

   The very sparse formulation, being an aggregation of the sparse formulation over all 

vehicles, circumvents the second and third difficulties presented by the sparse 

formulation. The LP relaxations are also very easy to solve as they have so few 

variables. However, it appears to be strongly NP-Hard to "untangle" the optimal K-

route-set into separate routes, or even to recognise when an integral LP relaxation is a 

feasible K-route-set. 

   A tentative conclusion, based on the above analysis, is as follows: if K is large and 

an optimal or near-optimal solution is required, the complete formulation is 

preferable. If K is small (e.g., less than 5), but an optimal or near-optimal solution is 

still required, then the sparse formulation is preferable. Finally, no matter what the 

value of K, if all that is required is a very good lower bound, then the very sparse 

formulation is appropriate. 
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7. The Capacitated Arc Routing Problem with a Deadline. 

 

7.1. Overview. 
 

   This chapter is concerned with the CARP+1D as defined in Section 1.4. It should be 

clear from Chapters 5 and 6 that a variety of different formulations and solution 

techniques could be applied to the CARP+1D. It should also be clear that, whichever 

formulation is chosen, extremely sophisticated software will be needed if the goal is to 

solve realistic CARP+1D instances to optimality. 

   In this chapter, a less ambitious approach is taken which is easier to implement. In 

Section 7.2, a formulation is given for the CARP+1D which, while not facilitating the 

search for an optimal solution, does allow good lower bounds to be obtained fairly 

easily. This formulation is of the very sparse type (see the previous chapter). In 

Section 7.3, some (fairly) simple valid inequalities are presented for this formulation. 

Some heuristic separation algorithms are described in Section 7.4, along with the 

novel idea of dynamic tightening, which has implications for many other problems 

beside the CARP+1D. Finally, in Section 7.5, the lower bounding procedure is tested 

on a few test problems from Eglese & Li (1996). The resulting lower bounds are then 

compared with the lower bounds of Li (1992), and also with the best known upper 

bounds found by the LOCSAR heuristic program as reported by Eglese (1996). 

 

7.2. A Very Sparse Formulation. 
 

   It would be possible to formulate the CARP+1D using only |E| general integer 

variables, one for each edge of the network. However, when the author attempted this, 

it proved extremely difficult to derive any classes of valid inequality which took the 

time deadline into account. It also proved impossible to derive a useful lower bound 

on the minimum number of vehicles required, or to take vehicle utilisation costs into 

account. 
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   It turned out to be a great deal easier to borrow the time phase concept from Section 

4.2. In the context of the CARP+1D, it is best to regard each vehicle route as made up 

of two phases as follows: in phase 1, the vehicle leaves the depot and services a 

number of required edges; in phase 2, which must begin no later than time T, the 

vehicle returns to the depot via a shortest path. 

   Defining c*v as the cost of the shortest path from vertex v to the depot, and a route-

set as a set of feasible single-vehicle routes superimposed on each other, this 

viewpoint leads naturally to the following very sparse formulation: 

 

xe = no. times edge e is traversed without servicing, by any vehicle, during phase 1. 

 

zv = no. vehicles beginning phase 2 at vertex v. 

 

Minimise   c xe e
e E∈
∑  + ( * )c C zv v

v V

+
∈
∑  

 

Subject to: 

 

   x and z represent a route set                                           (7.1) 

 

   Note that the objective function incorporates not only the travel costs, but also a 

fixed cost C of utilising any single vehicle. It is also easy to modify this formulation to 

allow for variants of the CARP+1D in which the number of vehicles is limited/fixed a 

priori: simply add an additional equality/inequality with the sum of the z variables on 

the left-hand-side. 

   Just as for the very sparse VRP and CARP formulations (see Section 5.5), the author 

was unable to produce an explicit representation of (7.1) in terms of inequalities and 

integrality conditions. However, if all that is needed is a lower bound on the optimum 

solution value, then an explicit formulation is not necessary. All that is needed is a 

useful set of valid inequalities. 
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7.3. Valid Inequalities. 
 

   Throughout this section, just as in Chapters 4 to 6, it is assumed that the depot is 

located at vertex 1 for ease of exposition. 

   The author has discovered a large number of different valid inequalities implied by 

the condition (7.1). To present these, the following notation will be needed: Let δ(S) 

denote the set of edges in G having exactly one end-vertex in S and E(S) denote the 

set of edges in G having exactly two end-vertices in S. Also let δR(S) denote δ(S) ∩ R 

and ER(S) denote E(S) ∩ R. 

   For any F ⊆ E, let x(F) denote xe
e F∈
∑ ; for any S ⊆ V, let z(S) denote zv

v S∈
∑ . 

   The first class of inequalities are the trivial inequalities, xe ≥ 0 and zv ≥ 0. These 

clearly hold for all e and v, respectively. 

   A second, less obvious class, is based on the fact that a vehicle cannot end phase 1 

at a vertex unless it has already reached that vertex. 

 

Theorem 7.1: For any S ⊆ V \ {1}, the following 'Balancing' inequality is valid for the 

CARP+1D: 

 

           x(δ(S))   ≥   z(S) - |δR(S)|                                                         (7.2) 

 

Proof: Consider any feasible solution to (7.1). If z(S) ≤ |δR(S)|, the rhs of (7.2) reduces 

to zero or less and the inequality is trivially true. Now suppose z(S) > |δR(S)|. Since 

z(S) vehicles finish phase 1 while within S, at least z(S) vehicles must have entered S 

during phase 1. This implies that the cutset δ(S) must have been crossed on at least 

z(S) occasions in phase 1. On at most |δR(S)|  of these occasions, this was by a vehicle 

servicing an edge. This leaves at least z(S) - |δR(S)| occasions on which a vehicle 

crossed δ(S) without servicing in phase 1. Thus, x(δ(S)) must be at least z(S) - |δR(S)|. 
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   The third class of inequalities is simply an analogue of the capacity inequalities (5.2) 

for the ordinary CARP (see Sections 5.3 and 5.5): 

 

Theorem 7.2: For any S ⊆ V \ {1}, let KCT(S) represent the minimum number of 

vehicles required to service the required edges having at least one end-vertex within 

S, taking into account the capacity and time deadline restrictions. Then the following 

'minimum crossing' inequality is valid for the CARP+1D: 

 

      x(δ(S))  +  z(S)   ≥   2 KCT(S)  -  |δR(S)|                                                         (7.3) 

 

Proof: If 2 KCT(S) ≤ |δR(S)|, the rhs reduces to zero or less and the inequality is 

trivially true. Now assume that 2 KCT(S) > |δR(S)|. At least KCT(S) vehicles must enter 

and leave S. This implies that the cutset δ(S) must be crossed on at least 2 KCT(S) 

occasions in total. On at most |δR(S)| occasions, this could be by a vehicle servicing 

an edge in phase 1. This leaves at least 2 KCT(S) - |δR(S)| occasions on which a 

vehicle must cross δ(S) without servicing. This could be done during phase 1 or phase 

2. 

 

   The author calls these minimum crossing inequalities, rather than capacity 

inequalities, to emphasise the fact that time as well as capacity is being taken into 

account. Note that, for a given S, the correct computation of KCT(S) is extremely 

difficult. This implies that the separation problem is also likely to be extremely 

difficult. A possible way around this difficulty will be discussed in the next section. 

   The next theorem shows that any known inequalities for the RPP can be adapted to 

the CARP+1D: 

 

Theorem 7.3: Let G' be identical to G, but with an additional non-required edge {v, 1} 

for each vertex v. Define an RPP instance on G' and formulate it as in Chapter 3. If 

any inequality in the form: 
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α β γe e
e E

v v
v V

x x
∈ ∈
∑ ∑+ ≥{ , }1

  

 

is valid for the resulting polyhedron RPP(G'), then the inequality 

 

                                 

α β γe e
e E

v v
v V

x z
∈ ∈
∑ ∑+ ≥

 
 

is valid for the CARP+1D. 

 

Proof: Given any feasible solution to (7.1), construct a multigraph G*(V, E*) as 

follows:  Let E* consist of xe copies of each e ∈ E \ R, xe + 1 copies of each e ∈ R 

and, for each v ∈ V,  zv copies of edge {v, 1}. Note that G* may contain one or more 

'loops', viz., edges having {1} at both ends. By construction, G* is Eulerian and E* 

contains at least one copy of each e ∈ R. But this means that G* represents a feasible 

solution to the RPP defined on G'. The inequality follows from the construction of G*. 

 

   There is a strong similarity between the proof of Theorem 7.3 and the proof of 

Theorem 4.1 in Section 4.3. As an application of Theorem 7.3, we have: 

 

Corollary 7.4: If S ⊆ V \ {1} is such that |δR(S)| is odd, then the R-odd cut inequality 

 

           x(δ(S))  +  z(S)   ≥   1                                                                                (7.4) 

 

is valid for the CARP+1D. 

 

   For sets S with |δR(S)| odd, the inequalities (7.3) and (7.4) will both be applicable. If 

2 K(S) ≤ |δR(S)|, the latter will dominate the former; if 2 K(S) ≥ |δR(S)| +2, the former 

will dominate the latter; if 2 K(S) = |δR(S)| +1, they will be identical. Whatever the 

case, however, the balancing inequality (7.2) will always apply and will not be 

dominated by either. 
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   Due to the difficulty of finding an appropriate right-hand-side for (7.3), the author 

was led to search for another useful class of inequalities which take the time deadline 

into account. This led to the discovery of the following set of inequalities: 

 

Theorem 7.5: For a given t, 0 < t < T, let Vt be the set of all vertices i such that the 

time taken for a vehicle leaving the depot to reach i is t or more. For any S ⊆  Vt, let 

δt(S) represent the (possibly empty) set of edges with one end-vertex in S and the other 

in Vt \ S and let δtR(S) represent δt(S) ∩ R. The 'T-radius' (TR) inequality: 

 

   x(δ(S)) + z(S)   ≥   
2

T t−
  t t xe

e E S S
e e

e E S SR
t
R

t∈ ∪ ∈ ∪
∑ ∑+













( ) ( ) ( ) ( )δ δ
  - |δR(S) |           (7.5) 

 

is valid for the CARP+1D. 

 

Proof: Since t units of time must have elapsed before any given vehicle can enter Vt, 

the time taken by any such vehicle while within E(Vt) can be at most T - t. Hence, if 

exactly k vehicles enter Vt in some feasible solution to (7.1), the total time spent by the 

k vehicles within Vt must be no more than k(T-t). This implies that the inequality 

 

                      t t xe
e E S S

e e
e E S SR

t
R

t∈ ∪ ∈ ∪
∑ ∑+
( ) ( ) ( ) ( )δ δ

≤    k (T - t) 

 

must hold for this feasible solution. Now observe that, for this same feasible solution, 

the inequality  x(δ(S)) + z(S)  ≥   2k - |δR(S)|  must also hold (see the proof of Theorem 

7.2). These two inequalities imply that (7.5) holds for the feasible solution in question 

and therefore that (7.5) is valid in general. 

 

   By analogy with Theorem 6.3 of Chapter 6, the inequalities in (7.5) could be 

tightened by defining an auxiliary polytope for the CARP+1D instance, the extreme 

points of which represented feasible routes for a single vehicle. The resulting 
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tightened T-radius (TTR) inequalities would dominate (7.5), but have a much more 

complex separation problem. This is not pursued here in detail because a) the ordinary 

TR inequalities appear to perform adequately, b) the minimum crossing inequalities 

(7.3) appear to be far more important for improving the LP lower bound and c) 

ordinary TR inequalities can be separated in polynomial time. Point (c) is discussed in 

the next section. 

 

7.4. Separation Algorithms. 
 

   In this section, some exact and heuristic separation algorithms are given for the 

inequalities mentioned in the previous section. 

   The separation problem for the balancing inequalities (7.2) is fairly easy to solve. 

Recall that for these to be valid, the depot is not permitted to be in the vertex set S. 

Now, rewrite the inequality as: 

 

      x(δ(S)) + |δR(S)| + z(V - S) ≥   z(V)                                                         (7.6). 

 

For a given LP relaxation, the rhs of (7.6) is a constant. Hence, a set S yielding a most 

violated balancing inequality is one which minimises the lhs of (7.6). Now construct a 

graph G' with vertex set V ∪ {1*}, where {1*} represents a copy of the depot, and an 

edge set equal to E plus an additional edge {v, 1*} for every v ∈ V. Give the edges in 

R a weight of xe + 1, the edges in E \ R a weight of xe and each new edge {v, 1*} a 

weight zv. By sending a maximum flow from {1} to {1*}, a minimum weight cut such 

that {1} and {1*} lie on opposite shores can be found, and G' has been constructed so 

that the set of vertices lying on the same shore of the cut as {1*} is a set S minimising 

the lhs of (7.6). 

   Because the graph G' has |V| + 1 vertices and |E| + |V| edges, this yields the 

following result: 
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Theorem 7.6: The separation problem for balancing inequalities can be solved in the 

time taken to solve a maximum flow problem on a graph with O(|V|) vertices and 

O(|E|) edges. 

 

   Now consider the minimum crossing (MC) inequalities (7.3). These are very 

important inequalities for obtaining strong lower bounds but, as mentioned previously, 

the appropriate rhs is hard to compute. Therefore exact separation is out of the 

question. However, call an inequality a weak MC inequality if it is like (7.3) but has a 

lower bound on KCT(S) in the rhs expression. At least three heuristics present 

themselves for finding weak MC inequalities. 

   The first heuristic takes the capacity constraint into account, but not the time 

deadline. Note that the quantity 

 

                                qe
e E S SR R∈ ∪

∑
( ) ( )δ

/ Q                                                     (7.7) 

 

is a lower bound on KCT(S). The maximum flow algorithm of Harche & Rinaldi 

(1995) could then be adapted to find a violated inequality of the weaker form: 

 

         x(δ(S))  +  z(S)   ≥   2 qe
e E S SR R∈ ∪

∑
( ) ( )δ

/Q   -  |δR(S)| 

 

Once the set S is found, any valid lower bound on the Bin Packing Problem could be 

used to generate a weak MC inequality. 

   As discussed in Section 6.2, the lower bound (7.7) could be strengthened by 

considering an appropriate Knapsack polyhedron. This would lead to a different 

variant of the first heuristic. 

   The second heuristic is much easier, but requires that at least one weak MC 

inequality has already been added to the LP: 

 

i) Pick any vertex set S ⊂ V \ {1} for which a weak MC is currently binding or near-

binding. 
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ii) Put the elements of V \ (S ∪ {1}), in any order, into a list L. 
 

iii) Add head(L) to S. Calculate a lower bound on KCT(S) for the new S. 

 

iv) If the weak MC for the new S has a smaller surplus than, or is more violated than, 

the weak MC for the previous set S, remove head(L) from L and go to (v). Otherwise, 

remove head(L) from both L and S and go to (vi). 

 

v) If S = V \ {1}, stop. Otherwise, go to (ii). 

 

vi) If L is empty, stop. Otherwise, go to (iii). 

 

   When calculating the lower bound on KCT(S) in step (iii), one could merely use a 

Bin Packing lower bound. However, since S has grown, and KCT(S) clearly increases 

as S grows, one could use the previous value of KCT(S) if this is larger than the Bin 

Packing bound. 

   Other variants on this second heuristic include a version in which S shrinks at each 

step, or even a sophisticated local search technique which allows the insertion and 

deletion of vertices according to various rules. 

   Note that the second heuristic utilises the surplus values in the current LP relaxation, 

rather than the x and z vectors alone. The third heuristic does the same, but in a more 

sophisticated fashion: Choose, from the current LP tableau, a binding or near-binding 

T-radius inequality, or a weak MC inequality with a surplus not equal to an integer 

multiple of two. Calculate a lower bound K* (such as a Bin Packing bound), on 

KCT(S). Temporarily add the following equality to the LP relaxation: 

 

                             x(δ(S)) + z(S) = 2 K* - |δR(S)|. 

 

If the resulting LP is feasible, remove the equality from the relaxation and stop. No 

weak MC was found. Otherwise, keep incrementing K* by 1, adjusting the new 
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equality accordingly, until feasibility is attained. At this point, the equality can be 

changed into a "greater-than-or-equal-to" inequality. It is now a new weak MC. 

   This third heuristic differs radically from most known separation algorithms for 

routing problems. The author calls the underlying technique dynamic tightening. It is 

conceivable that a similar approach would work for classes of inequality known for 

other hard routing problems. Note also that the procedure can be further extended if a 

good feasible solution to the routing problem is known. In this situation, it is not 

necessary for the LP to become infeasible; it is only necessary for the cost of the LP 

relaxation to exceed that of the upper bound. 

   No such sophisticated ideas are necessary for the R-odd cut inequalities (7.4). 

Simply construct a graph G' with vertex set V and an edge set equal to E plus an 

additional edge {v, 1} for every v ∈ V. Give the edges in E a weight of xe and each 

new edge {v, 1} a weight zv. For each v ∈ V, label v odd if and only if |δR({v})| is 

odd, otherwise label it even. Find a minimum weight odd cut in G' (Padberg & Rao, 

1982). If the weight of the cut is less than 1, then setting S to the shore of the cut not 

containing the depot yields a violated R-odd cut inequality. 

   Let NODD be the number of odd vertices in G'. The Padberg & Rao (1982) minimum 

weight odd cut algorithm involves the solution of NODD maximum flow problems and 

therefore: 

 

Theorem 7.7: The separation problem for R-odd cut inequalities can be solved in the 

time taken to solve NODD maximum flow problems on a graph with O(|V|) vertices and 

O(|E|) edges. 

 

   Finally, the T-radius inequalities (7.5) are considered. These can be re-written as: 

 

x(δ(S)) + z(S) + |δR(S)| + 
2
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                (7.8) 

 

Now, for a fixed value of t, the rhs of (7.8) is a constant. Hence, a set S minimising the 

lhs of (7.8) will yield a most violated TR inequality for this particular t. To find such a 

set, construct a graph G' as follows: copy G and add a copy of the depot, {1*}. Give 

each e ∈ R a weight of xe + 1, each e ∈ E \ R a weight of  xe. For each v ∈ V, add an 

edge {v, 1} of weight zv. Split each e ∈ E(Vt) into two halves (see Sections 2.7 and 

4.5) by inserting a new splitting vertex in the middle. Each half should retain the 

previous weight. For each splitting vertex v thus created, corresponding to some 

original e ∈ E(Vt), add an edge {v, 1*} of weight 2 (se + te xe) / (T - t). Now, shrink V 

\ Vt (see Section 2.7). Finally, send a maximum flow from {1} to {1*} to find a 

minimum weight cut separating {1} from {1*}. The graph G' has been constructed so 

that the set of vertices on the same shore of the cut as {1*} is the desired set S. 

   Now recall that 0 < t < T. Within this range, 2 / (T - t) increases monotonically with 

t. Therefore, it is only worth looking for violated TR inequalities for values of t such 

that the vehicle takes exactly t units of time to travel from {1} to some vertex in G. 

That is, only O(|V|) values of t need be considered. Hence: 

 

Theorem 7.8: The separation problem for T-radius inequalities can be solved in the 

time taken to solve O(|V|) maximum flow problems on a graph with O(|E|) vertices 

and O(|E|) edges. 

 

   Since this running time is unattractive, the author also recommends a local search 

heuristic along the same lines as that for the weak MC inequalities outlined above. 

   It was said in Section 7.3 that it might be possible to tighten the TR inequalities 

using advanced polyhedral arguments. It may not, however, be worthwhile seeking 

separation algorithms for tightened TR inequalities, since the potential weakness of 

TRs can be alleviated by dynamic tightening as outlined above. 
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7.5. Computational Experiments. 
 

   In this section, the above results are used to find lower bounds for a number of 

CARP+1D instances. Since, to the author's knowledge, the only previous work done 

on the CARP+1D is that cited by Eglese & Li (1996), it was thought useful to use 

some of the CARP+1D examples which were examined therein. The advantage of this 

is that there are already useful lower and upper bounds available for these instances. 

   These problems are based on real-life winter gritting problems, on rural road 

networks. Two road networks were used to define the CARP+1D instances, labelled 

EAST and SOUTH. The EAST network has 77 vertices and 111 edges, of which 84 

are required. The SOUTH network has 140 vertices and 203 edges, of which 160 are 

required. It is also larger physically. 

   In reality, the EAST and SOUTH networks contain a few one-way streets. In Eglese 

& Li (1996), as in this chapter, these were treated as two-way for simplicity. 

   Two main problems are defined on each network: EASTA and EASTB differ only 

in the edge lengths and times, SOUTHA and SOUTHB differ only in the location of 

the depot. Each of these four problems in turn has two variants depending upon 

whether the capacity constraint is included or ignored. Furthermore, for each of the 

eight resulting versions, two different objective functions were minimised: First, the 

total number of vehicles and second, the total distance travelled. This led to sixteen 

subproblems in total. 

   The precise data for these problems are given in Appendix 2. To give the reader a 

feel for these problems, the following characteristic features are noted: 

 

- There is a high proportion of vertices of degree 3, compared to urban road networks. 

Other vertices have degrees ranging from 1 (on the periphery) to 8 (a dual carriageway 

intersection). 

 

- There are a few parallel edges, i.e. edges having identical end-vertices. This does not 

affect the validity of any of the inequalities discussed. 
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- The network in the SOUTH examples is planar. The network in the EAST examples 

would be planar if one edge (representing an underpass) was removed. 

 

- There are a small number of components in the subgraph induced by the required 

edges and the depot. This is because it is the motorways and A-roads which tend to 

require service, and these tend to be connected to each other. For the EAST problems, 

there are only 2 components; for SOUTHA, there are 6 and for SOUTHB there are 5. 

 

- Edge costs ce are measured in metres. They normally, but not always, obey the 

triangle inequality. Moreover, they follow a roughly lognormal distribution. 

 

- The time deadline, T, is set at precisely  1 hr 55 minutes ≅ 1.917 hrs. 
 

- Times are correlated with costs. To be precise, te = ce/40000 and se = ce/25000. That 

is, the vehicle travels at 40kph when traversing, but 25kph when servicing an edge. 

 

- Demands too are correlated with costs. For simplicity, it is assumed that qe = ce if e 

∈ R, 0 otherwise. This means that the vehicle capacity, Q, can be expressed as 40 km. 

 

   The cutting-plane lower bounding procedure uses all of the inequalities (balancing, 

minimum crossing, R-odd cut, T-radius), described in Section 7.3. However, as 

mentioned in Section 7.4, only a 'weak' variant of the minimum crossing inequalities 

could be used. It was not found necessary to use other classes of inequality implied by 

Theorem 7.3, due to the small number of connected components of required edges. 

   When attempting to minimise the number of vehicles used, a single additional 

inequality, not discussed in Section 7.3, was found to be essential and was therefore 

added to the LP relaxation. The author calls it the vehicle inequality. It is: 
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The quantity in the brackets represents the total amount of time spent in phase 1, 

summed over all vehicle routes. The validity of the inequality follows from the fact 

that  each vehicle has only T time units available in phase 1. 

   In the cutting-plane algorithm, the initial LP relaxation consists of a subset of the R-

odd cut inequalities - those in which i is merely a single vertex - plus the vehicle 

inequality where appropriate. For the uncapacitated problem variants, a subset of the 

TR inequalities is also added, by randomly selecting some large vertex sets S. On the 

other hand, for the capacitated problem variants, a subset of the weak MC inequalities 

is added, by randomly selecting some large vertex sets S. 

   For the problems under consideration, it turned out to be easy to identify violated 

balancing and R-odd cut inequalities by eye. For the weak MC and TR inequalities, 

the local search separation heuristics outlined above appeared to perform adequately. 

   The results of the experiments are displayed in Tables 7.1 - 7.4 on pages 113 & 114. 

Table 7.1 shows the results for the uncapacitated versions, when minimising the 

number of vehicles. The first column shows the Li (1992) lower bound. The next four 

columns show the number of binding balancing (7.2), minimum crossing (7.3), R-odd 

cut (7.4) and T-radius (7.5) inequalities at the optimum solution of the LP relaxation. 

The next column gives the lower bound found by the cutting-plane approach and the 

final column gives the best known upper bound from Eglese (1996). 

   Table 7.2 is analogous to Table 7.1, but for the capacitated versions. An additional 

column gives the Bin Packing lower bound (see Section 5.8). Table 7.3 is equivalent 

to Table 7.1, but the objective is now to minimise total distance travelled. There is an 

additional column on the right, showing the percentage of the gap between the Li 

bound and the upper bound closed by the cutting-planes. Finally, Table 7.4 is like 

Table 7.3, except that it concerns the capacitated versions. 

   The total number of inequalities actually generated during the algorithm was 

normally between two or three times the number of binding inequalities, apart from 

the case of the T-radius inequalities, as explained below. 
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Instance Li LB Bal MC Odd TR LP LB UB 

EASTA 6 4 8 43 1 6 6 

EASTB 6 4 8 44 1 6 7 

SOUTHA 9 9 11 111 0 10 10 

SOUTHB 9 15 8 103 0 9 10 

 

          Table 7.1: Number of vehicles: uncapacitated variants. 

 

 

 

Instance Li LB BPP LB Bal MC Odd TR LP LB UB 

EASTA 6 6 4 10 45 0 6 7 

EASTB 6 6 4 11 44 0 6 7 

SOUTHA 9 9 6 25 109 0 10 11 

SOUTHB 9 9 14 16 101 0 9 10 

 

          Table 7.2: Number of vehicles: capacitated variants. 

 

 

 

   Three things are apparent from Tables 7.1 and 7.2. First, the Bin Packing lower 

bound equalled the Li (1992) bound in all cases. This must be merely coincidendental, 

as different capacities or deadlines would give different results. Second, few T-radius 

inequalities were binding at the LP optimum. This is because dynamic tightening 

converted some of them into minimum crossing inequalities. Third, the cutting-planes 

did little to improve the lower bounds on the number of vehicles required. It is hard to 

know, however, whether this is due to a poor quality lower bound or a poor quality 

upper bound. The author has no opinion either way. 
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Instance Li LB Bal MC Odd TR LP LB UB %Close

d 

EASTA 89371 3 9 42 3 133584 159671 62.89 

EASTB 93074 4 9 45 3 138936 170413 59.30 

SOUTHA 209207 2 17 86 7 287609 381944 45.39 

SOUTHB 154815 1 10 93 15 274760 319770 72.71 

 

Table 7.3: Distance: uncapacitated variants. 

 

 

 

Instance Li LB Bal MC Odd TR LP LB UB %Close

d 

EASTA 89371 1 17 45 0 147144 166233 75.16 

EASTB 93074 1 14 41 0 153982 170413 78.75 

SOUTHA 209207 8 24 84 5 293260 395776 45.05 

SOUTHB 154815 2 11 89 15 276641 319770 73.85 

 

Table 7.4: Distance: capacitated variants. 

 

 

 

   The results from Tables 7.3 and 7.4 are rather more encouraging. In all cases it was 

possible to make significant improvements to the Li (1992) bound. 

   Because EAST is physically small, inequalities derived from the capacity aspect of 

the problem were more important than those derived from the time aspect. For the 

SOUTH problems, the reverse holds. Thus, the difference between the LP lower 

bounds of the capacitated and uncapacitated versions is much larger for the EAST 

problems than for the SOUTH problems. This also explains why many more T-radius 

inequalities are binding for the SOUTH problems than for the EAST problems. 
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8. Conclusions and Suggestions. 

 

8.1. Comments on Previous Chapters. 
 

   The scope of this thesis has been fairly wide: Four different (though related) Arc-

Routing problems have been examined, and an attempt has been made to present 

formulations, valid inequalities and/or separation algorithms for each of them, along 

with (limited) computational experiments. 

   From a theoretical perspective, the research effort has been very fruitful, not least in 

terms of papers accepted for publication. The author was particularly pleased with the 

considerably increased understanding of the RPP polyhedron presented in Chapter 3, 

particularly the discovery of the path-bridge inequalities (PBIs). Moreover, the 

separation algorithm for PBIs worked better than expected. This has led the author to 

believe that truly large-scale RPP instances will become solvable in the very near 

future. 

   The results found on the RPPDC and CARP (Chapters 4 and 6), were almost as 

encouraging. The RPPDC formulation worked very well and an automated branch-

and-cut algorithm would probably have no problem solving realistic instances to 

optimality. The discovery of an array of valid inequalities for the various CARP 

formulations, along with the analysis of the Bin Packing lower bound, in Chapter 6, 

led to an increased understanding of these problems and also shed light on the 

standard Vehicle Routing Problem. 

   The results obtained for the CARP+1D were more mixed. Although the LP-based 

lower bound on distance was invariably a strong improvement over the Li (1992) 

bound, it had been hoped that the T-radius inequalities would frequently lead to an 

improved lower bound on the number of vehicles required. The remaining gaps 

between the LP-based lower bounds and the LOCSAR solutions indicate that there is 

room for improvement either to the lower bound or to LOCSAR. The author believes 

that it is likely to be the lower bound that is underperforming here. 
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   The other drawback to the research is the somewhat limited nature of the 

computational experiments. Given more time, and the availability of commercial 

branch-and-cut software, it might have been possible to devise fully automated 

branch-and-cut algorithms for all four problems. This would have permitted a 

thorough testing of the formulations on more comprehensive sets of test problems. 

   Inevitably, due to time limitations, some theoretically interesting issues were left 

untouched. These are the subject of the next section. 

 

8.2. Some Open Research Problems. 
 

   During the research, the author had to make decisions as to which issues were worth 

exploring in detail. Many other apparently less important questions were therefore left 

unanswered. Some of these are nevertheless of theoretical interest, and are therefore 

mentioned in this section. Presented below is a list of open questions, for each of the 

four routing problems, which seem most relevant from the author's point of view: 

 

The RPP: 

 

i) Are there polynomial-time exact separation algorithms for any of the new classes of 

inequality outlined for the RPP in Chapter 3? 

 

ii) Can the recent results of Carr (1996), which essentially provide polynomial 

separation routines for a plethora of TSP inequalities, be transferred to the RPP? This 

may be possible via the RPP to SGTSP transformation given in Chapter 3. 

 

iii) Can the different RPP inequalities be ranked according to their relative power to 

improve the LP lower bound, as Goemans (1995) did for various TSP inequalities? 

Here, the appropriate measure of the strength of a class of inequalities appears to be 

the maximum percentage improvement obtainable by adding the inequalities to the LP 

relaxation consisting of non-negativity, connectivity and R-odd cut inequalities. 
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The RPPDC: 

 

i) Is there a truly polynomial (i.e., not exponential in L) separation routine for the most 

general form of the parity inequalities for the RPPDC (Section 4.4)? If the answer is 

no, can the separation problem be proved to be NP-Hard? 

 

ii) Alternatively, is there a different formulation for the RPPDC which avoids the 

pitfalls of the author's formulation, yet still exploits the structure of the problem? 

 

The CARP: 

 

i) Under what conditions do blossom inequalities (6.1) induce facets of the complete 

CARP formulation? Is it sufficient for |F| ≥ 2 K(en(S)) + 1 to hold? 
 

ii) Under what conditions do knapsack-tightened multistar (KTM) inequalities induce 

facets of the complete CARP formulation? 

 

iii) Is there a pseudopolynomial-time exact separation algorithm for the KTM 

inequalities? The author believes this may be possible using convex quadratic 

programming. 

 

iv) Is it true that all facets of the polyhedron associated with the complete CARP 

formulation are either blossom inequalities or VRP-derived inequalities? 

 

v) Is there some way of adapting the very sparse formulation so as to avoid the 

problem of "tangled" routes, yet retain the advantage of having few variables? Perhaps 

it could be possible to add new variables (and constraints) dynamically, to 

progressively untangle the routes. 

 

vi) Could the CARP be solved more effectively by a Set Partitioning approach as done 

for the VRPTW in Desrosiers et al. (1995)? It does seem certain that the column 

generation subproblem could not be solved effectively by dynamic programming. 
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The CARP+1D: 

 

i) Is there a separation routine for the T-radius inequalities (Section 7.3) with a smaller 

worst-case running time? 

 

ii) The T-radius inequalities are rather weak, in a theoretical sense. Can a useful 

separation routine be found for any of the tightened forms of the T-radius inequalities? 

 

iii) Is there some other useful formulation and/or class of valid inequalities which 

could lead to stronger LP lower bounds? 

 

8.3. More General Routing Problems. 
 

   Another limitation of the research was the (deliberate) restriction to four particular 

undirected arc-routing problems: the RPP, RPPDC, CARP and CARP+1D. One 

direction for further research is to attempt to extend the results to routing problems of 

greater generality. 

   A common generalisation of all four problems, as mentioned in Section 1.4, is the 

Capacitated Arc-Routing Problem with Deadline Classes or CARPDC. The 

formulations for the RPPDC (Chapter 4) and the CARP+1D (Chapter 7) suggest a 

formulation for the CARPDC which has separate variables for each route and each 

time phase. The author in fact attempted this during the research but found that the 

resulting formulation had a vast array of possible valid inequalities, none of which 

appeared to have an easily solvable separation problem. Hence this line of research 

was abandoned. Some other formulation, however, might prove more viable. 

   Another obvious generalisation is to permit a mixture of vertices and edges to 

require service, rather than just edges. The four problems would then become the GRP 

(General Routing Problem), GRPDC, CGRP and CGRP+1D. The first of these has 

been studied by Orloff (1974), Lenstra & Rinnooy-Kan (1976) and Corberán & 

Sanchis (1996). A variant of the last is studied in Laporte, Nobert & Desrochers 
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(1985). It is in fact not difficult to generalise all of the polyhedral results in this thesis 

to these problems. This has been demonstrated in Letchford (1997, 1996a) for the case 

of the GRP and in Letchford & Eglese (1996b) for the CGRP and CGRP+1D. 

   A third generalisation would be to allow mixed networks, i.e., networks in which 

there is a mixture of one-way and two-way streets. Nobert & Picard (1996) have 

devised an effective algorithm for the Mixed Chinese Postman Problem; the more 

general Mixed RPP is currently being studied by Corberán & Sanchis (1997). 

   Finally, and most challenging, it would be interesting to study problems in which 

general time deadlines are allowed. That is, problems in which each vertex or edge 

requiring service is permitted to have its own deadline. The author believes that a 

complete formulation (see Section 5.1 ff.) would be most appropriate here, and that it 

may be possible to produce a useful generalisation of the T-radius inequalities for 

such a formulation. 

 

8.4. A Recent Breakthrough. 
 

   Very recently (at the time of writing), Caprara & Fischetti (1996) have made an 

important breakthrough in the search for efficient separation algorithms for some 

special classes of valid inequalities. It is worth describing this in some detail here, as 

the author believes that it will lead to a significant increase in the size of routing 

problems which will be solvable in the coming years. 

   Suppose a problem is formulated as an integer programme (IP) with integral 

coefficients. Without loss of generality, it can be assumed that the constraint set is of 

the form AX ≤ B, where A is an n by m matrix, X is the column vector of variables, 

and B is the column vector of right-hand sides (a greater-than-or-equal-to inequality 

can be multiplied by -1, and an equality written as two inequalities). Assume also that 

the non-negativity conditions are included explicitly in the constraint set. It is often 

possible to produce useful valid inequalities, or even facets, in the following way: 

Choose some of the original inequalities in the formulation, sum them together 
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anddivide the resulting inequality by 2. If the resulting inequality has the property that 

all coefficients on the left-hand-side are integral, but the right-hand-side is equal to an 

integer plus 1/2, then it can be strengthened by rounding down the rhs. 

   For example, summing the inequalities x1 + x2 ≤ 1, x1 + x3 ≤ 1 and x2 + x3 ≤ 1 

yields 2 x1 + 2 x2 + 2 x3 ≤ 3; dividing this by two yields x1 + x2 + x3 ≤ 3/2, and 

rounding down yields x1 + x2 + x3 ≤ 1, which is clearly valid if the variables are 

restricted to be integral. 

   Caprara & Fischetti call a valid inequality which can be found by the above method 

a {0, 1/2}-Chvátal-Gomory cut, or {0, 1/2}-cut for short (as explained in the paper, the 

procedure for yielding a {0, 1/2}-cut is a special case of a more general technique for 

producing valid inequalities, known as Chvátal-Gomory rounding). They then review 

a variety of integer programming formulations of combinatorial optimisation 

problems, and note that in many cases, there are known facet-inducing inequalities 

which are {0, 1/2}-cuts. 

   They show that the set of all possible {0, 1/2}-cuts corresponds to the set of 

solutions to the following system of linear congruences modulo 2: 

 

                                  

A

B
Y D

T

T













≡

 

 

where Y is a column vector of 0-1 variables, one for each of the m inequalities in the 

formulation, and D is a column vector with n + 1 entries, the first n being 0 and the 

last one being 1. 

   Now suppose that one is also given an LP relaxation for the IP, i.e., an X vector 

satisfying AX ≤ B. From this it is easy to construct a column vector S representing the 

values of the m slack variables. The problem of finding a most violated {0, 1/2}-cut 

then becomes equivalent to the problem of finding a minimum weight solution to the 

system of congruences (that is, the problem of minimising STY subject to (8.1)). 
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   Using this result, Caprara & Fischetti prove that the separation problem for {0, 1/2}-

cuts is NP-Hard in general (it contains the max-cut problem as a special case). 

However, it can be solved in polynomial time for some special cases, yielding new 

polynomial-time separation routines, for certain valid inequalities and facets, for a 

wide variety of IP problems. 

   Now say that a {0, 1/2}-cut is maximally violated if all of the inequalities used in its 

derivation are binding in the LP relaxation. That is, it is violated by as much as 

possible given that the LP relaxation satisfies AX ≤ B. Although not explicitly 

observed by Caprara & Fischetti, it is clear that a {0, 1/2}-cut is maximally violated if 

and only if the reduced system 
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which only has variables for binding inequalities, has a solution. Provided that there 

are only a polynomial number of such binding inequalities, the system (8.2) can be 

easily solved in polynomial time by a form of Gaussian elimination. 

   The relevance of this to routing problems is as follows: it has been known for some 

time (see, e.g., Nemhauser & Wolsey, 1988), that the comb inequalities for the TSP 

polytope are {0, 1/2} cuts with respect to the subtour elimination inequalities, degree 

conditions and bounds. Recall from Section 2.7 that it is known that there are at most 

O(N2) sets S of vertices satisfying x(δ(S)) = 2 in an LP relaxation of a TSP on N 

vertices. Since there are only O(N2) bounds and O(N) degree conditions, this implies 

that the matrix A' has O(N2) rows. Therefore we can conclude that: 

 

Theorem 8.1: If W is the set of all {0, 1/2}-cuts derivable from the TSP formulation 

(2.1) - (2.3), then: 

 

a) W contains all comb inequalities, and 
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b) Given an LP relaxation, the presence of a maximally violated inequality in W can 

be detected in polynomial time. 

 

   This result significantly generalises the result of Fleischer & Tardos (1996), which 

only guarantees the detection of a maximally violated comb inequality when the 

support graph of the LP relaxation is planar. The author conjectures that a similar 

technique will work to identify maximally violated 2-regular PBIs for the RPP. This 

would immediately lead to a polynomial algorithm to detect the presence of 

maximally violated general PBIs, as outlined in Section 3.4. 

   Just as exciting would be the application of a similar idea to the VRP and CARP: 

One of the arguments given by Araque (1990) to derive strengthened comb 

inequalities for the complete VRP formulation is in fact an application of the {0, 

1/2}approach. Hence, one might be able to find maximally violated, strengthened 

comb inequalities for the VRP in polynomial time. From the results in Section 6.3, 

this would immediately apply to the complete CARP formulation also. 

   The author would thus like to end on an optimistic note: it seems entirely probable 

that the coming years will lead to exciting breakthroughs in the search for new 

formulations, valid inequalities and separation algorithms. Together with the growing 

availability of branch-and-cut software, it seems that the range of real-life problems 

which are amenable to solution to optimality will be significantly extended in the near 

future. 
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Appendix 1: RPP and RPPDC Instances. 

 

   The eleven RPP instances solved in Chapter 3 were previously described and solved 

in Christofides et al. (1981) and Corberán & Sanchis (1994). The data, reproduced 

below, was obtained from Angel Corberán. However, the ordering of the edges has 

been altered somewhat, for reasons outlined at the end of this appendix. 

   For each problem, the first line gives the instance number and the number of 

vertices, required and non-required edges. The following lines list the required and 

non-required edges in ascending order of label. For each edge, the two end-vertices 

are given in ascending order, followed by the cost ce. 

   In five of the problem listings, an asterisk appears in brackets. This is of no 

relevance to the RPP instances, but is of use when converting them to RPPDC 

instances as explained at the end of the appendix. 

 

 
RPP I2: V = 14 R = 12 NR = 21 

 

R:    2  3  9     3  4 11     5  6  8     5  7 10     9 10  8 

      9 12 13     1  3  5     6  7  2     8  9  4    10 11  1 

     11 12  7    13 14  2 

 

NR:   1  4  9     1  5 17     1  7 19     1  8 27     1 10 22 

      1 13 13     2  5 14     2  7 21     2  8 29     2 10 24 

      3  5 18     3  7 23     3  8 31     3 10 26     5 10 20 

      5 13 26     7  8 10     7 10 13    10 12  3    10 13 10 

     10 14 10 

 

 
RPP I4: V = 17 R = 22 NR = 13 

 

R:    1  2  3     1  4  3     7 12  3    13 14  3    13 17  3 

     14 15  3    14 16  4    14 17  3    15 17  4    15 16  3 

     16 17  3 (*) 2  3  1     2  4  2     3  4  1     4  5  2 

      6  7  2     6  8  2     7  8  2     7 10  2     9 10  2 

      9 12  2    11 12  2 

 

NR:   1 16 12     3  6  6     4 17  9     5  6  4     5  8  3 

      5 13 11     5 17  9     6 13  8     7  9  1     8 10  1 

      9 11  1    10 13  8    12 13  7 
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RPP I5: V = 20 R = 16 NR = 19 

 

R:    1  2  5     1  6  7     4  5  3     7  8  3     8  9  7 

     12 13  6    14 15  3    15 16  9    17 18  5    18 19  3 

     19 20 10     2  3  2     3  4  1     5  6  1     8 10  2 

     10 11  2 

 

NR:   2  5  2     4  7  7     4 12 19     4 14 17     5 16  8 

      5 20 10     7 11  5     7 14 17     9 10  4     9 12  9 

      9 14 15     9 16 24    12 14 10    12 16 19    13 16 14 

     13 17 10    16 17 12    16 20  8    18 20  3 

 

 
RPP I14: V = 28 R = 31 NR = 48 

 

R:    1  4  4     2  3  4     2  4  5     6  7  7     6  8  6 

      9 14  8    10 11  5    11 12  4    11 14 11    12 13  9 

     13 14  6    15 16  4    18 19  7    18 20  6    20 21  4 

     22 23  4    22 24  8    23 24  5    24 26  6    25 28  4 

 (*)  1  2  2     3  4  3     5  6  3     9 10  3    12 14  3 

     16 17  3    19 20  3    24 25  2    25 26  3    26 27  2 

     27 28  1 

 

NR:   1 28  3     2 28  3     3  5  7     3  8  5     3 22 11 

      3 25  9     4 22 11     4 25  9     5  8  3     5 22 12 

      5 25 10     6  9  9     6 10  8     6 13 19     6 19 19 

      6 21 16     7  8  2     7  9  8     7 10  7     7 13 14 

      7 14 13     7 19 14     7 21 11     7 22 11     8 22 10 

      8 25  8     9 19 16     9 21 13     9 22 13    13 15  1 

     13 19 12    13 21 17    13 22 17    14 19 11    14 21 16 

     14 22 16    15 17  5    15 19 12    16 19 10    17 18  8 

     17 19 11    17 20  9    17 26 20    18 26 17    20 23  8 

     20 26 13    21 23  5    22 25  8 

 

 
RPP I16: V = 31 R = 34 NR = 60 

 

R:    1  3  4     2  3  5     6  7  6     7  8  9    10 12  4 

     12 14  5    16 17  7    16 20  4    17 18  6    18 19  4 

     19 20  6    22 23  7    24 25  5    25 26  8    27 28  6 

     28 29  5    28 30  5    29 30  8    30 31  4 (*) 1  2  1 

      3  4  3     4  5  2     8  9  3    10 11  2    11 12  1 

     12 13  3    13 14  2    15 16  2    15 17  3    17 19  1 

     17 20  1    19 21  3    20 21  2    28 31  2 

 

NR:   1  6 12     1  7 10     1 23 12     2  5  8     2 30  9 

      2 31  7     3 30 11     3 31  9     4  7  9     5  6  7 

      5 23  7     5 30  9     5 31  7     6  8  1     6 23  5 

      6 29 18     6 30 11     7  9  2     8 11  8     8 14  9 

      8 18 14     8 21 15     8 22  7     9 10  6     9 14  9 

      9 18 14     9 21 15     9 22  7    10 13  3    11 14  3 

     11 18  8    11 22  7    13 15  3    14 18  7    14 22  8 

     18 22  9    18 24 12    18 26 12    18 29 14    18 30 19 

     21 22 10    21 24 13    21 26 13    21 29 15    21 30 20 

     22 24 11    22 26  8    22 29 10    22 30 15    23 24 14 

     23 26 11    23 29 13    23 30 11    24 26  9    24 29 11 

     24 30 16    26 27  8    26 29  7    26 30 13    27 29  3 
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RPP I17 V = 19 R = 17 NR = 27 

 

R:    1  2  3     2  4  5     3  4  4     5  8  4     6  7  6 

      7  8  3     8  9  5    10 12  3    13 14  6    14 15  4 

     14 16  3    17 18  9     2  3  1     5  6  2     7  9  1 

     10 11  2    18 19  2 

 

NR:   1 19  7     3  5  7     3  6  8     3 14  5     3 17  5 

      4 14  6     4 17  6     4 19 13     5 13  9     5 14  7 

      6 14  8     8 13  6     9 10  4     9 12  5     9 15 10 

      9 16 10     9 17 16    11 12  4    11 16 14    11 17 20 

     12 16 13    12 17 19    13 15  4    14 17  6    14 19 13 

     15 16  5    17 19 10 

 

 
RPP I20: V = 50 R = 63 NR = 35 

 

R:    1  2  4     1  7  5     5  7  4     8 15  5     9 14  6 

     10 11  8    11 12  6    12 13  7    14 15  4    15 16  4 

     17 18  9    17 20  5    18 19 10    19 21  6    20 21  4 

     21 22  4    22 23  8    25 26  4    26 27  5    26 31  6 

     26 32  6    27 28  4    28 31  9    29 30  7    31 32  5 

     33 35  5    35 38  6    36 37  7    37 38  6    39 42  4 

     41 42  5    41 43  8    41 46  6    43 46  4    44 45  5 

     45 46  8    47 48  4    47 49  7    48 50  4    49 50  8 

 (*)  1  4  2     2  3  3     3  4  1     4  5  3     5  6  1 

      6  7  2     8  9  3     9 10  2    10 13  1    13 14  3 

     14 16  2    20 23  3    20 24  2    23 24  1    28 29  3 

     30 31  2    34 35  3    35 36  2    36 38  1    39 40  2 

     40 41  3    43 44  2    44 46  3  

 

NR:   4 15  7     4 39 21     4 46 18     5 15  5     5 39 19 

      5 45 17     5 46 16     5 48  9    12 17  9    12 24 10 

     12 33 24    12 36 18    12 39 27    13 33 24    13 36 18 

     15 39 15    15 45 19    15 46 12    16 17 17    16 24 18 

     16 25 30    16 33 22    16 36 16    17 36 23    17 39 32 

     23 27  3    24 36 21    24 39 33    26 33  6    33 34  4 

     36 39 24    36 40 25    39 48 23    45 48 14    46 48 19 

 

 
RPP I21: V = 49 R = 67 NR = 43 

 

R:    1  6  4     2  3  6     2  6  5     4  6  9     5  8  5 

      6  7  7     7  8  4     9 10  8     9 13  6    10 13  5 

     11 12  7    12 13  9    12 16  6    13 14  4    17 18  6 

     18 22  4    20 21  5    23 24  6    23 25  9    24 26  5 

     25 26  4    27 28  8    27 29  6    28 29  7    28 31  4 

     29 32  4    30 32  7    31 32  6    32 34  5    33 34  4 

     39 40  7    40 41  4    43 49  9    44 49  5    45 46  4 

     46 48  5    47 48  5    48 49  7 (*) 1  2  3     3  4  3 

      4  5  2     6  8  1    10 11  3    10 12  3    11 16  2 

     14 15  3    15 16  2    17 20  2    19 21  1    20 23  2 

     21 22  3    28 30  2    29 30  3    30 31  3    31 33  2 

     32 33  1    35 37  2    36 38  1    37 38  3    38 39  3 

     41 42  1    43 44  2    43 47  2    44 45  3    45 48  3 

     46 47  3    47 49  3 

 

NR:   1  7  8     1 17 17     1 18 15     7 17 18     7 18 13 

      8  9  8     8 18 12     8 22 15     8 26 11     8 27 10 

      8 29 10     8 34 18     8 45 17     9 18 17     9 22 20 

      9 26 16     9 27  8     9 35 14     9 45 22    15 35  7 



126 

     18 26  9    18 29  8    18 34 16    18 45 15    21 24  2 

     22 24  3    22 29 11    22 34 15    22 45 14    26 29  7 

     26 34 11    26 43  6    26 45 10    28 35  4    29 45 11 

     31 35  2    31 39  3    34 41 11    34 45  3    35 36  6 

     38 40  8    39 41  7    41 46 17 

 

 
RPP I22: V = 50 R = 74 NR = 110  

 

R:    2 10  8     3 10  9     4  7  7     6  7 10     7  8  8 

     11 14 11    13 15  7    13 16  9    15 16  8    17 19  7 

     20 21  8    20 26  9    21 25 11    22 25  9    23 24  7 

     23 25  8    25 26  7    28 31 10    28 32  8    31 32  7 

     31 33 11    32 34 10    33 34  8    34 35  7    36 37  7 

     36 39 15    37 39 11    38 39  9    39 41  9    40 41  8 

     42 43  7    43 44  8    43 46  9    45 48  7    45 50  9 

     46 48  8    48 49  7    48 50 12     1  2  6     1 10  3 

      2  3  5     3  4  5     4  5  3     4  9  6     5  6  4 

      8  9  6     9 10  4    11 12  5    11 15  6    12 13  4 

     14 15  2    14 17  6    16 17  5    17 18  5    20 27  4 

     21 22  5    21 26  6    22 23  2    24 25  4    26 27  6 

     28 29  5    28 35  6    29 30  6    30 31  3    32 33  5 

     32 35  4    36 40  3    37 38  6    42 45  6    43 45  4 

     45 46  5    45 47  5    47 50  3    49 50  6 

 

NR:   7 11 16     7 14 17     7 18 19     7 20 29     7 31 19 

      7 33 27     7 39 32     7 42 38     7 43 39     7 45 40 

      7 47 39     8 11 15     8 14 15     8 18 15     8 20 24 

      8 30 15     8 31 14     8 33 22     8 39 27     8 42 33 

      8 43 34     8 44 38     8 45 35     8 47 34     9 14 17 

      9 18 17     9 20 23     9 29  6     9 31 13     9 39 26 

      9 42 32     9 43 33     9 44 37     9 45 34     9 47 33 

     10 28  3    11 29 26    11 31 19    11 33 27    11 34 34 

     11 39 32    14 18  6    14 31 12    14 33 20    18 19  8 

     18 21  6    18 31 12    18 33 18    18 34 21    18 39 19 

     19 21 10    19 23 16    20 31 18    20 33 12    20 34 15 

     20 39 13    25 33 26    25 34 25    25 39 23    25 42 15 

     25 43 14    25 44 11    25 45 17    25 47 16    26 33 20 

     26 34 19    26 39 17    26 42  9    26 43  8    26 44 12 

     26 45 11    26 47 10    27 34 16    27 39 14    27 42 10 

     27 43 11    27 44 15    27 45 12    27 47 11    28 37 12 

     31 39 21    31 42 27    31 43 28    31 44 32    31 45 29 

     31 47 28    33 39 14    33 42 21    33 43 22    33 44 26 

     33 45 23    33 47 22    34 38 11    34 39  7    34 42 19 

     34 43 21    34 44 25    34 45 21    34 47 20    35 37  8 

     39 42 16    39 43 19    39 44 23    39 45 18    39 47 17 

     41 47 17    41 50 16    42 47  5    44 46 13    44 47 16 

 

 
RPP I23: V = 50 R = 78 NR = 80 

 

R:    1  2  5     1  8  9     2  3  4     2  5  4     3  4  6 

      3  6  7     4  5  9     5  6  5     5  7  7     6  8  6 

      7  8  8    10 11  5    10 12  4    10 13  7    11 13  9 

     13 14  6    13 16 10    14 16  4    15 17  8    16 17  6 

     16 18  4    19 20  6    19 24  6    20 21  9    21 22  4 

     22 23  5    23 24  6    23 26  5    24 25  7    25 26  4 

     27 28  9    27 31 11    28 29  8    28 30  9    30 31  4 

     30 33  6    34 35  6    35 36  9    35 37  5    36 38  4 

     37 40  7    39 40  6    40 41  4    42 43  9    42 45  5 
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     44 49  4    45 46  9    45 49  6    47 48  4    47 50  6 

     48 50  4     1  6  3     2  6  1     3  5  3     7  9  2 

      8  9  1    12 13  3    13 15  1    15 16  3    17 18  3 

     19 25  3    20 25  2    20 26  1    21 26  2    29 30  3 

     31 32  2    32 33  1    34 37  2    35 38  3    37 39  3 

     39 41  2    43 44  2    43 49  3    44 50  2    46 47  3 

     46 49  1    47 49  2    49 50  3 

 

NR:   1 19 22     1 23 25     1 34 21     1 36 28     1 43 34 

      4  7  9     4 12  5     4 19  8     4 21 15     4 23 13 

      4 27 22     4 32 23     4 34  9     4 36 16     4 43 22 

      4 44 22     4 48 27     5  8  3     7 19 11     7 23 16 

      7 34 12     7 36 19     7 43 25    12 21 16    14 18  6 

     18 21 11    18 22 11    18 27 10    18 32 11    18 36 15 

     18 38 14    18 40 15    18 42 17    18 43 10    18 44 10 

     18 48 15    19 34  7    19 36 14    19 43 20    21 27 13 

     21 32 14    21 43 13    21 44 13    21 48 18    22 27 11 

     22 32 12    22 36 13    22 38 12    22 40 13    22 42 15 

     22 43 10    22 44 11    22 48 16    23 25  6    23 34  8 

     23 36 15    27 30  5    27 32  3    27 43  2    27 44  2 

     27 48  7    29 33  3    30 32  4    32 43  3    32 44  3 

     32 48  8    33 48  8    34 36 11    36 43  7    38 40  3 

     38 42  7    38 43  6    38 46  9    40 42  8    40 43  7 

     40 46 10    41 42  8    41 46 10    42 49  7    43 48  7 

 

 
RPP I24: V = 41 R = 55 NR = 70 

 

R:    1  3  7     2  3  6     2  4  7     6  7  5     6  9  8 

      7  8  6    12 13  6    12 14  5    14 16  9    15 16  6 

     16 17  7    19 21  6    19 22  8    20 22  5    24 25 13 

     24 26  9    25 27  7    25 28  8    26 27 11    26 29  6 

     27 28  5    28 30  6    31 32  5    32 35  6    33 34  5 

     33 35  6    34 35  9    36 39  5    37 39  8    39 40  7 

     40 41  8     1  2  3     3  5  4     8  9  4     8 10  2 

      9 10  3    11 12  4    13 14  3    14 15  4    18 19  4 

     18 21  3    19 20  3    21 22  1    21 23  3    22 23  4 

     27 29  4    29 30  3    31 33  3    32 33  2    32 34  4 

     36 37  4    37 38  3    37 40  3    38 40  4    38 41  2 

 

NR:   3 18  9     4  5  9     4  8 19     5 20  5     7  9  4 

      7 11 10     7 13 14     7 16 14     7 17 14     7 25 12 

      7 30 23     7 31 15     7 38 27     8 20  9     8 24 14 

      8 29 17     8 36 19    10 11 11    10 16  9    10 17  9 

     10 25  7    10 30 18    10 31 10    10 38 22    11 13  8 

     11 16 14    11 17 14    11 20 18    11 24 23    11 25 12 

     11 30 23    11 31 15    11 36 28    11 38 27    13 15  3 

     15 17  5    16 20 16    16 24 21    16 25 10    16 30 21 

     16 31 13    16 36 26    16 38 25    17 20 16    17 24 21 

     17 25 10    17 29 16    17 30 15    17 31  7    17 36 21 

     17 38 19    20 24 13    20 25 14    20 29  9    20 31 17 

     20 36 11    20 38 16    23 29 13    23 31 23    23 36 15 

     23 38 20    24 31 22    24 36 23    25 31 11    29 31 12 

     29 36 11    29 38  9    30 31 11    31 36 17    33 38 10 
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   The RPPDC test problems were based on five of these eleven RPP instances: I4, 

I14, I16, I20 and I21. As explained in Section 4.6, each of these five instances yielded 

two RPPDC instances; one with L = 1 and one with L = 2. 

   The L = 1 versions are formed by letting te = ce (∀e ∈ E) and se = 3 ce / 2 (∀e ∈ 

R), and setting the deadlines to 105, 260, 263, 522 and 490, respectively, for the five 

problems. 

   The L = 2 versions have the same costs and times as the L = 1 versions. The first 

deadline, T1, was 92, 236, 229, 498 and 468, respectively. The second deadline, T2, 

was 110, 321, 268, 624 and 500. In the above listings for RPP instances I4, I14, I16, 

I20 and I21, the required edges have been ordered so that those edges which become 

members of R1 in the L = 2 version precede those which become members of R2. The 

small asterisk indicates the division between the two classes of edges. 
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Appendix 2: CARP+1D Instances. 

 

   The CARP+1D instances examined in Chapter 7 were previously described by Li 

(1992); see also Eglese & Li (1996). The data was obtained from Richard Eglese. The 

four problem instances are called EASTA, EASTB, SOUTHA and SOUTHB. The 

networks on which these problems are defined are given below (further information is 

given at the end of the appendix). For each problem, the first line gives the instance 

name, the number of vertices, required and non-required edges, and the sum of the 

costs (lengths) of the required edges in metres. The following lines list the edges in 

ascending order of label. For each edge, the two end-vertices are given in ascending 

order, followed by the cost (length) ce in metres and an indication of whether the edge 

is required or not. Note that SOUTHA and SOUTHB are defined on the same 

network; they only differ in the location of the depot. 

 

EASTA: V = 77, R = 84, NR = 27, servicing distance = 231429 m. 

 
    1  2 3166 R     2  1 3166 R     2  3 1389 R     3  2 1389 R 

    2  4 1741 R     4  2 1741 R     4  5 5565 R     5  6  759 N 

    5  7  636 R     7  8 1798 R     8  9 2613 R     9 10 2008 R 

   10 11 1157 N    11 12 3212 R    12 11 3212 R    12 16 2913 R 

   16 12 2913 R    16 13 1343 R    13 14  675 R    14 15  745 N 

   13 77 1201 N    15 17 2585 R    15 18 3817 R    18 19 4130 R 

   19 20 3247 R    20 18 2092 N    21 19 3819 R    21 22 1743 R 

   22 75 2396 R    22 24  446 R    24 25 2705 R    75 25 1628 R 

   25 26 1720 R    26 23 1241 R    26 27 1540 R    26 28 1754 R 

   28 29 1600 N    29 25 2690 R    30 31 1406 N    23 31 3989 R 

   31 32 5835 R    32 33 3044 R    32 34 4329 R    32 35 8581 R 

   33 36 2726 R    33 37 7500 N    37 38  759 N    37 39 2101 N 

   39 40  457 N    39 35  743 N    35 41 1456 R    40 41  904 N 

   41 42 1769 N    42 43 1099 N    43 44 7777 R    44 45 1186 R 

   45 46 1191 N    44 46 1257 R    46 47 3269 R    47 48 1020 R 

   48 11 7886 N    47 49  938 R    49 50  828 R    49 51 1012 R 

   50 52  241 R    51 53  405 R    53 52  433 R    52 54  352 R 

   53 24 2416 R    19 50 2986 R    56 55  648 R    56 42 2586 N 

   42 57 1420 R    57 42 1420 R    57 58 7782 R    58 57 7777 R 

   58 59 2476 R    59 58 2476 R    59 11 7783 R    11 59 7783 R 

   60 58 3349 R    60 61 3904 R    60 62 2292 R    62 63 3012 R 

   63 64  924 R    63 65 2077 R    62 66 1603 R    66 68 4512 R 

   58 69 3231 R    59 69 1095 R    69 59 1095 R    69  4 7459 R 

    4 69 7459 R    70 71 5589 N    71 72  588 N    73 71  493 R 

   73 72  500 R    73 74 2536 R    72 18 9150 R    56 67 3573 N 

   75 23 1668 R    12 76  742 N    76 20  752 R    15 77 1341 N 

   77 76 3543 N    21 51  202 R    44 59 2765 R    44 59 2765 R 

    7  8 1984 N    60 67 2853 N    62 67 3120 N 
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EASTB: V = 77, R = 84, NR = 27, servicing distance = 238374 m. 

 
    1  2 3261 R     2  1 3261 R     2  3 1431 R     3  2 1431 R 

    2  4 1793 R     4  2 1793 R     4  5 5732 R     5  6  782 N 

    5  7  655 R     7  8 1852 R     8  9 2691 R     9 10 2068 R 

   10 11 1192 N    11 12 3309 R    12 11 3309 R    12 16 3000 R 

   16 12 3000 R    16 13 1383 R    13 14  696 R    14 15  768 N 

   13 77 1237 N    15 17 2662 R    15 18 3932 R    18 19 4254 R 

   19 20 3345 R    20 18 2155 N    21 19 3933 R    21 22 1795 R 

   22 75 2468 R    22 24  459 R    24 25 2786 R    75 25 1677 R 

   25 26 1771 R    26 23 1278 R    26 27 1586 R    26 28 1807 R 

   28 29 1648 N    29 25 2771 R    30 31 1448 N    23 31 4109 R 

   31 32 6010 R    32 33 3135 R    32 34 4459 R    32 35 8838 R 

   33 36 2808 R    33 37 7725 N    37 38  782 N    37 39 2164 N 

   39 40  471 N    39 35  766 N    35 41 1500 R    40 41  931 N 

   41 42 1822 N    42 43 1132 N    43 44 8011 R    44 45 1222 R 

   45 46 1226 N    44 46 1295 R    46 47 3367 R    47 48 1051 R 

   48 11 8123 N    47 49  966 R    49 50  852 R    49 51 1042 R 

   50 52  248 R    51 53  417 R    53 52  446 R    52 54  363 R 

   53 24 2489 R    19 50 3076 R    56 55  667 R    56 42 2664 N 

   42 57 1463 R    57 42 1463 R    57 58 8016 R    58 57 8010 R 

   58 59 2551 R    59 58 2551 R    59 11 8016 R    11 59 8016 R 

   60 58 3449 R    60 61 4022 R    60 62 2361 R    62 63 3102 R 

   63 64  951 R    63 65 2139 R    62 66 1651 R    66 68 4647 R 

   58 69 3328 R    59 69 1127 R    69 59 1127 R    69  4 7683 R 

    4 69 7683 R    70 71 5756 N    71 72  606 N    73 71  507 R 

   73 72  515 R    73 74 2613 R    72 18 9425 R    56 67 3680 N 

   75 23 1718 R    12 76  765 N    76 20  775 R    15 77 1381 N 

   77 76 3649 N    21 51  209 R    44 59 2848 R    44 59 2848 R 

    7  8 2044 N    60 67 2939 N    62 67 3214 N 

 

SOUTHA / SOUTHB: V = 140, R = 160, NR = 43, servicing distance = 347351 m. 

 
  5   6 2728 R     6   5 2728 R      6  7 2135 N     6  8  1032 R 

  8   9 3797 R     9  10 1188 N      8 11 4910 R    11 12  2559 R 

 12  13 1236 R    13  12 1236 R     13 14 1856 R    14 13  1856 R 

 10  15 1354 N    15  16  866 N     15 17 1375 N    17 13   632 N 

 16  13 1282 R    17  18  850 N     18 19  567 N    19 10  2923 R 

 12  20 3529 R    20  21 5933 R     20 22 1002 R    21 23  5714 N 

 20  24 3389 R    23  24 5802 R     24 25 1046 R    25 26  4966 R 

 23  26 2092 N    25  27 1987 R     27 28  620 R    28 29   495 R 

 28  30  540 R    30  31 4212 R     26 31 1247 N    30 32  2912 R 

 29  33 5340 R    11  33 2484 R    139 34 5002 R    34 35  6111 R 

 35  36  414 R    35  37 1719 R     36 37 2051 R    37 36  2051 R 

 36  38 2562 R    38  36 2562 R     38 39  635 R    39 38   635 R 

 39  40 1858 R    40  41 1231 R     41 38 1006 R    41 47 10147 R 

 42  37 1797 R    42  43  522 R     43 37 1649 R    43 44  3188 R 

 44  45 1411 R    45  34  429 R     47 42  396 R    47 46   700 R 

 43  46  513 R    33 139 1301 R    139 48 5086 N    48 49  1049 R 

 48  50  811 R    50  51 3109 R     51 52 1255 N    52 53  1215 R 

 53 140 2489 R    49 140 2493 R     54 55 1015 R    55 56   404 R 

 56  57 5023 R    57  58 2027 R     58 59 4167 R    59 60  1848 R 

 60  45 1496 R    60  61 3620 R     59 61 3194 R    61 49  1375 R 

 57  62 1461 R    62  63  678 R     63 64  880 R    64 65  1527 R 
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 56  65  3082 N    62  66 3768 R     66  67 3423 R     67 68   974 R 

 67  69   425 R    69  70  826 R     70  71  919 R     69 71   637 R 

 71  72   918 R    72  73 1861 R     72  74 1524 R     73 74   525 R 

 73  44  3690 R    71  75 3663 N     75  76 4855 R     74 76  2802 R 

 76  77   983 R    46  77 1642 R     77  78 1558 R     78 79  1231 R 

 78  79  1343 R    79  80 1190 R     80  79 1190 R     79  81  952 R 

 80  81  1065 R    80  82 1666 R     82  80 1666 R     82  83 1064 R 

 81  83  1794 R    82  84 1295 R     84  82 1295 R     83  84 1846 R 

 84  85  1034 R    85  84 1034 R     85  86 2011 R     86  87  449 R 

 86  88  3355 N    88  89 1391 N     88  90 1209 N     90  91  736 N 

 90  68  6941 N    91  66 7096 N     89  92 1010 R     92  82 2722 R 

 92  84  3028 N    64  93 2870 R     63  93 2562 R     93  94 1720 N 

 94  95  4995 N    95  96  818 R     96  97 1702 R     97  98  320 R 

 96  99  1052 R    97  99 3770 R     99 100 3365 R    100  94 1798 N 

 94 101   460 N    66 101 2844 N    101 102 1756 N    102 103 4332 N 

103  91  2784 N   102 104 2142 R    104 105  583 R    104 105  797 R 

105 106  1556 R   106 107 2886 R    107 108 2590 R    106 108 3899 R 

108 109 10576 R   107 110  848 R    110 111  752 R    110 112 1375 R 

107 112  1296 R   112 113  453 R    113 103 4732 R    113 114 1259 R 

114 115  3734 N   115 116 1013 N    116   1 1834 R    116 117 1956 R 

115 117  2038 N   117   2 1661 R    117 118 5019 R    117 119 2445 R 

119 117  2501 R   119 120 1417 N    114 118 5972 R     91 118 3593 N 

118 121  1763 N   120 121 1670 N    121 122  802 N    122  87 1554 N 

122 123  1558 N   123 124 3026 N    123 120 3288 N    123 125 3289 N 

124   4  6924 R   124 126 1166 R    126 127 1591 R    127 128 2223 R 

128   3  4271 R   128 129 2339 R    129 127 1156 R    126 130 3571 R 

126 131  2649 R   131 132  466 R    132 133  754 R    133 134 1029 R 

133 135  1912 R   135 134 1394 R    134 136 3189 R    136 137 2972 R 

136 138   530 R   131 138 4829 R    138 125 2021 R     55 140 1422 R 

140  54  1805 R    11  27 5108 R     58  70 1081 R 

 

   For all of the four problems, the time deadline T is set at 115 minutes. The vehicle is 

assumed to travel at a speed of 40 km/hr when not servicing an edge, but only 25 

km/hr when servicing. The demand of a required edge is assumed to be equal to its 

cost. That is:        qe = ce (if e ∈ R) 

                        = 0  (if e ∈ E \ R). 

Because of this, the vehicle capacity can be expressed in terms of distance. It is set at 

40km. 

   EASTB is identical to EASTA except that the edge costs, times and demands are 

somewhat larger. The only difference between SOUTHA and SOUTHB is that the 

depot vertex is 91 for SOUTHA, but 73 for SOUTHB. Vertex 91 is not near any 

required edges, whereas vertex 73 is incident on several. This means that SOUTHA is 

likely to require more vehicles than SOUTHB and have a higher optimal solution cost. 
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