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Abstract 

Classic connectionist models of reading have traditionally focused on English, a language with a 

quasi-regular (deep) relationship between orthography and phonology, and very little work has 

been conducted on more transparent (shallow) orthographies. This paper introduces a parallel 

distributed processing (PDP) model of reading for Italian. The model was explicitly developed in 

order to deal with polysyllabic words and stress assignment. One of the core issues regarding such 

class of models is whether they can show sensitivity to large grain-sizes, as documented by the 

existence of morphological and neighborhood effects in nonword reading aloud showed by native 

Italian speakers (Burani, Marcolini, De Luca, & Zoccolotti, 2008; Arduino & Burani, 2004). The 

model is successful in simulating such sensitivity, previously accounted for by dual route 

architectures, and is also tested in order to simulate stress consistency effects. The model provides 

clear evidence that large grain-sizes in the orthography to phonology mapping can be discovered 

even in a model trained with almost perfectly shallow stimuli. 
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Introduction 

Connectionist models of reading have been originally developed to explore the general 

cognitive architecture of the reading system but also the specific psycholinguistic effects that have 

been documented over the years for the English language. Very little work has been conducted to 

extend the parallel distributed approach or other modeling approaches to reading beyond the 

English language, despite the implicit claim that the principles that govern the reading system are 

universal and should therefore apply to all orthographies, both alphabetic and logographic, deep 

and shallow. PDP models of reading for English have been trained on small sets of monosyllabic 

words and have simulated a vast collection of behavioural effects related to monosyllabic single 

word reading (Plaut, McClelland, Seidenberg, & Patterson, 1996; Harm & Seidenberg, 1999, 

2004). One of the main practical difficulties in exporting a PDP architecture developed for English 

to other orthographies is due to potential distinctions in terms of the syllabic properties of the 

language. For example, some languages have very few monosyllabic words, and therefore a 

monosyllabic model would not be representative of the language as a whole. Or alternatively, the 

modeller must account for the constraints that a polysyllabic structure would impose on the model, 

such as those posed by stress assignment. A few attempts have nonetheless been made to model 

psycholinguistic effects in languages such as German and French within a general PDP framework. 

Hutzler, Ziegler, Perry, Wimmer, and Zorzi (2004) adapted Plaut and collaborators’ (1996) 

feedforward network to read German monosyllabic words, and found a general advantage of this 

model compared to the English version in speed of learning, despite the numerous similarities of 

the two languages in terms of orthographic and phonological complexity (but not in the mapping 

between the two, German being more regular than English). Ans, Carbonnel and Valdois (1998) 

trained a polysyllabic connectionist network to read French. The model was trained on a large 

corpus of mono and polysyllabic French words, and could read successfully 96.32% of them, and 
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account for accurate nonword reading, frequency and consistency effects, and simulate 

phonological dyslexia as well. 

The reading process has generally been defined in the modeling literature in terms of 

forming a mapping between visual symbols and phonemes or syllables (Plaut et al., 1996), and as a 

mapping between visual information and meaning (Harm & Seidenberg, 2004). The orthography to 

phonology pathway and the orthography to semantics pathway are distinct in terms of the nature of 

the mapping between the representations. Spelling-sound correspondences in languages with 

alphabetic writing systems (such as English and Italian) have two critical properties. They are 

systematic, in that words that are written similarly have similar pronunciations. They are also 

componential, with individual letters, or pairs of letters, within the written word corresponding to 

certain phonemes in the pronunciation. In English, the mapping between orthography and 

phonology has many exceptions for irregular words (Plaut et al., 1996), though the properties of 

systematicity and compositionality remain generally the case. In contrast, mappings between 

written words and their meaning are largely arbitrary (Monaghan & Christiansen, 2006; Saussure, 

1916) and non-compositional. Words that are written similarly are likely to have very different 

meanings, and, equally, individual letters within the word do not provide information about 

meaning. Reading for pronunciation, then, entails a system that responds to the pronunciation of 

individual letters, or small groups of letters, within the word (Ziegler & Goswami, 2005), whereas 

reading for meaning requires a system that processes the word in its entirety. 

Learning to read can therefore be described as a process of learning to find shared “grain sizes” 

(or “what maps into what” pairs) between orthography and phonology (Ziegler and Goswami, 

2005). According to this theoretical framework, these grain sizes are language specific and allow 

for an efficient mapping between the two levels or representation. In this view the ability to 

identify and make optimal use of orthographic clusters in reading plays a major role in defining the 

ability to read. This identification process is dependent on the characteristics of the spelling to 
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sound mapping and its consistency, which varies greatly across different languages. In some 

orthographies, one letter can have more than one pronunciation, as is the case for English and 

Danish, whereas in others it is nearly always pronounced in the same way, as in Italian or Greek. 

In the same way, in some orthographies, a phoneme can have multiple spellings (e.g., English), 

whilst in others generally only one (e.g., Italian). Italian and Greek, then, have a high degree of 

spelling-to-sound consistency, whereas English and Danish have a high degree of spelling 

inconsistency. These differences are reflected in the reading development of children exposed to 

the two types of orthographies (highly consistent versus highly inconsistent): children learning 

shallow orthographies show a rapid reading acquisition compared to children learning deep 

orthographies (Seymour, Aro, & Erskine, 2003). For example, at the end of Grade 1 Greek 

children can read 90% of familiar words correctly, while the level of accuracy is only 34% for 

Scottish English children, with Danish being somewhat intermediate, with 74% correct reading. 

These percentages show that there is a clear correlation between level of performance and 

consistency in the spelling to sound mapping, with highly consistent orthographies being learned 

faster than inconsistent ones.   

The spelling inconsistency is related to the problem of orthographic granularity: relying on 

smaller grain sizes (e.g., single letters) in deep orthographies would result in a high degree of 

irregularity in the orthography-phonology mapping, and so larger grain sizes (e.g., bigrams or 

trigrams) are generally more consistent. Readers have to learn to rely on different grain sizes 

according to the level of inconsistency present in the orthography to phonology mapping, and the 

size of the orthographic window in recoding might vary according to the specific language 

considered. According to the psycholinguistic grain size theory (Ziegler & Goswami, 2005), 

readers of shallow orthographies will tend to rely more on small grain sizes, like letters, as they 

prove consistent and also highly frequent units within the language; conversely, readers of deep 

orthographies will develop different recoding strategies at more than one grain size, varying the 
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window of the orthographic recoding. However, the reliance on small grain sizes does not 

automatically exclude the possibility that large grain sizes might help reading development in 

young readers and define reading strategies in skilled adult readers even for languages with 

transparent orthographies. 

Models which implement distributed forms of representations can successfully discover these 

different functional units, as shown by Pagliuca and Monaghan (2008). Pagliuca and Monaghan 

(2008) lesioned an adapted version of Harm and Seidenberg’s (1999) model of reading and showed 

that the damaged network could perform better when tested with words containing multiletter 

graphemes (as SH in the word shine) as compared to control words with no multiletter graphemes. 

The model could reproduce the multiletter graphemes at the phonological level because it had 

learned to associate the two letters belonging to the grapheme to one single phoneme, and could 

generate the correct target even when activation from each single letter slot was reduced, as the 

combined activation of the pair of letters was still enough to generate the right phoneme. As the 

model did not use localist units in the orthographic layer to code for multiletter graphemes, but 

used only single letters, this sensitivity shows that parallel distributed neural networks can 

successfully detect shared grain sizes in the orthography to phonology mapping, at least at the level 

of two-letter graphemes.  

Traditionally, PDP models have been successfully implemented to explore consistency effects 

in word and nonword reading, effects that require the model to capture different shared grain sizes 

in the orthography to phonology mapping (Zevin & Seidenberg, 2006). Given the potential that 

PDP networks have to discover appropriate grain sizes in the orthography to phonology mapping, a 

core question is whether such a class of models can discover grain sizes larger than a single unit in 

an almost completely regular and shallow orthography, one for which the single-letter to single-

phoneme mapping alone allows for an almost perfect compositional recoding of orthography, and 

therefore almost perfect pronunciation. A way to test this possibility is offered by the Italian 
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language, whose spelling to sound mapping is almost entirely regular, with a one to one 

correspondence between letters and phonemes for most letters. Nonetheless, several effects at the 

lexical and morpholexical level have been documented for Italian, suggesting that Italian readers 

show sensitivity to reading units larger than the single letter or pairs of letters in word naming and 

word recognition.  

In this paper we report a fully distributed model of reading for Italian, conceived in order to 

expand the PDP framework to transparent orthographies and further investigate the relationship 

between orthography and phonology in the light of a grain size perspective on reading. We first 

report the orthographic properties of Italian and studies that indicate a larger grain-size than the 

single letter in this language. 

 

Properties of Italian orthography and phonology 

Italian is an alphabetic orthography with an almost entirely compositional one-to-one mapping 

between spelling and sound. In Italian each letter regularly translates in a single phoneme, with 

few exceptions fully predictable by the orthographic context. For example, the letter B is always 

pronounced /b/, irrespective of the surrounding letters, but the letters C and G can obtain two 

different pronunciations according to the following vowel: /!/ and /"/ when followed by the 

vowels I and E, /k/ and /#/ when followed by the vowels O, U, A or by the letter H, which in 

Italian is unvoiced. The letter G can also be pronounced as a liquid if followed by the letter L in 

combination with I, as /$/ (see Burani, Barca & Ellis, 2006, for a full list of contextual rules for 

Italian). 

There are very few monosyllabic words in Italian, and most of them are function words. Given 

the polysyllabic structure of most words, Italian readers are confronted with the problem of stress 

assignment, which is perhaps one of the most interesting feature of Italian. Stress assignment in 
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Italian is considered quasi-regular: for the vast majority of words (about 80%), stress is placed on 

the penultimate syllable, as in al’bergo (hotel), but there are many exceptions to this rule, with 

stress placed on the antepenultimate syllable in 18% of cases, as in ‘albero (tree) (see Thornton, 

Iacobini, and Burani, 1997, for the estimated count). A small proportion of words, about 2%, have 

final stress, but in these cases the words are marked with diacritics in the written form, as in papà 

(dad), therefore final stress assignment is fully predictable from these orthographic cues. Words 

with the most frequent (dominat) stress pattern are considered to be “regular”, while words with 

the less frequent one (non-dominant) are considered “irregular”.  

Colombo (1992) was the first author to explore systematically stress assignment in Italian, and 

found an interaction between regularity and frequency, with regularly stressed low frequency 

words read aloud faster then irregularly stress low frequency words. This effect has been 

interpreted within a dual route framework (such as Coltheart, Rastle, Perry, Langdon, & Ziegler, 

2001): according to this interpretation, low frequency words are more likely to be processed by a 

non-lexical mechanism, which generates a “default” regular stress pattern. This pattern is in 

conflict with the correct “irregular” stress assignment activated in the lexicon, and causes a delay 

in pronunciation. 

However, stress assignment in Italian words also correlates with the word ending (nucleus of 

the penultimate plus the final syllable): for example, words ending in –oro are mainly regularly 

stressed , with only about 17% of these words being irregularly stressed, while words ending in –

ola take mostly irregular stress, with only a minority of them being stressed regularly. Four 

different combinations can result from this classification: regularly stressed words with many 

friends, regularly stressed words with many enemies, irregularly stressed words with many friends, 

irregularly stressed words with many enemies (Burani & Arduino, 2004). 

Colombo (1992) found that low frequency irregularly stressed words with a high number of 

stress friends were named aloud faster than low frequency irregularly stressed ones, but no such 
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effect of stress neighbourhood was found for regularly stressed words. This finding supported the 

claim that stress assignment in regular words is generated by default.  

However, Burani and Arduino (2004) found instead that the effect of stress neighborhood was 

not simply restricted to irregular words, but extended to regular words as well. Moreover, no effect 

of stress regularity in reading aloud low frequency three and four syllables words was found. The 

authors suggested an interpretation of the finding that does not involve a system of default rules, 

but is in line with general parallel distributed principles: the extraction of stress assignment cues 

(word endings) is favoured when these cues are shared by many words, and is not favoured when 

shared by only a few. This debate about stress regularity or stress consistency would benefit 

greatly from a model that could simulate stress assignment for Italian words, which is one of the 

aims of this paper. 

The Italian spelling to sound mapping has been studied extensively in the last few decades and 

a few benchmarks have been established for this transparent orthography. The strong regularity in 

the spelling to sound mapping might alone promote the use of a nonlexical reading strategy with 

word naming primarily mediated by a sublexical code, and reliance on  the use of grapheme-to-

phoneme correspondence rules, as suggested in previous studies (Frost, Katz, & Bentin, 1987). 

However, a marked lexicality effect and a frequency effect have been documented for Italian, even 

when using completely transparent stimuli (Pagliuca, Arduino, Barca, & Burani, 2008), effects that 

cannot be explained solely by the use of sublexical conversion mechanisms at the level of single 

letters or bigrams. 

Lexical contributions have nonetheless been found in nonword reading as well, challenging the 

claim that nonwords are solely read via a nonlexical serial mechanism (Frost et al., 1987), 

suggesting again that Italian readers do not simply rely on a set of rules to convert single letters 

onto phonological representations when reading nonwords. Arduino and Burani (2004) found that 

nonwords which had a large cohort of lexical neighbours (nonwords that vary from other words by 



10 

one letter only) were named faster than nonwords which had very few neighbours. This effect was 

found irrespective of the frequency of the neighbouring words. The effect was ascribed by the 

authors to the contribution of a lexical lookup mechanism alongside a grapheme to phoneme set of 

rules within a dual route framework (Coltheart et al., 2001) with both mechanisms being active 

when reading nonwords as words. 

What these results primarily show is that Italian readers can discover and make use of multi-

letter representations perhaps up to the word level shared by many words which provide 

information that goes beyond the reach of a strictly rule-base mechanism. 

Morphological effects have also been documented for Italian. Italian readers seem to benefit 

from the presence of a morpheme in reading nonwords (Burani, Marcolini,  De Luca, & Zoccolotti, 

2008). Nonwords containing real morphemic units (donnista, made up of a real root donn- and a 

real suffix –ista) were named faster than control nonwords (dennosto, which has no real root and 

no real suffix) matched for bigram frequency and length both by adult readers, young readers 

(sixth grade) and dyslexic children (Burani et al., 2008). Dyslexics and younger children (second 

and third grades) also benefited from morphological structure in reading aloud real words. The 

authors suggest that the morpheme is an effective reading unit for Italian, complementary to 

whole-word lexical information, which again represents a unit larger than single letters or pairs of 

letters. It may well be that the morpheme is one of the units employed by the reader of Italian in 

decoding the orthography into a phonological form. Morphemes occur highly frequently in the 

Italian lexicon, and the morphological effect could therefore be an effect due to processing of high-

frequency trigrams, or higher order n-grams that assist in the mapping between orthography and 

phonology. We assume that any regularity between letters and sounds that frequently occurs is 

likely to be exploited by the reader. In line with this view the morphological effect described in 

this study is likely to stem purely from orthographic and phonological redundancy and it is 

possible that it emerges within the orthography to phonology pathway rather than the orthography 
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to semantics pathway. In Italian, a morphologically rich language, there is evidence that 

morphological effects in word naming are non-semantic in nature (Burani, Dovetto, Spuntarelli, 

Thronton, 1999), contrary to morphological effects reported for English (Plaut & Gonnerman, 

2000). In the study by Burani and collaborators (1999), the authors found that morphologically 

complex nonwords which had a high degree of semantic interpretability were recognized faster 

than nonwords with a low degree of semantic interpretability in a lexical decision task, but that 

was not the case in a naming task. In naming nonwords aloud, there was no effect of their degree 

of semantic interpretability. Yet, nonwords containing real morphemes were still named faster than 

nonwords which did not include any morpheme, confirming the presence of a general advantage 

for morphologically complex stimuli. The authors suggest that the effect might depend on a lexical 

(morphological) non-semantic pathway rather than on a lexical semantic one. 

In this respect, the model we introduce here is suitable for testing the hypothesis that in Italian 

morphological effects in naming aloud do not necessarily depend on the semantic pathway, as our 

model does not employ a semantic layer nor an orthography to semantic pathway. The model has 

then to develop internal representations for morphemes during learning the mapping between 

orthography and phonology only. Though Burani et al. (2008) controlled for bigram frequency, 

they did not (and presumably could not) control for these higher-order n-grams that are present in 

the language and so it remains a possibility that the morpheme effects are due to the multiple 

grain-sizes useful in the orthography-phonology mapping rather than requiring an intermediate 

morphological route. One of the aims of the Italian model was to establish whether such 

morphological effects were consistent with a model that can only compute the multiple regularities 

between written and spoken words, and that does not contain a semantic or morphological system. 

It seems evident from these reported studies that Italian readers can exploit the spelling to 

sound mapping beyond the smallest possible grain size (single letter), even when the mapping 

itself allows for an apparently sufficient and efficient one-to-one letter to phoneme recoding 
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strategy. Italian readers show sensitivity to different grain sizes (graphemic, morphological, 

lexical), according to the stimuli they are asked to name aloud. However, this sensitivity does not 

necessarily imply that graphemic, morphemic and lexical information is stored and accessed 

independently, nor does it entail that there are intermediate units of representation between 

orthography and phonology that code explicitly for this kind of information. Nor does it require 

separate mechanisms that interact to generate the observed effects. A single-route PDP model that 

maps orthography onto phonology can in principle be used to explore some of the effects described 

for reading in Italian, and indicate how multiple grain-sizes can be discovered in learning to map 

orthography onto phonology in order to determine how such grain-sizes can explain the observed 

psycholinguistic effects of reading in Italian. More importantly, a PDP architecture could 

potentially discover the appropriate grain sizes that emerge in mapping Italian orthography onto 

phonology – we argue that such grain sizes are a matter of empirical discovery from the entire 

lexicon, and their role for particular words, or subsets of words, cannot be determined by 

examining the general properties of the Italian language. This result would be even more striking 

given the extreme regularity of the mapping. 

Next, a PDP model of reading is described, which, in line with other fully distributed 

architectures, does not implement localist units to represent lexical information nor does it 

instantiate distinct lexical and sublexical mechanisms to generate the appropriate phonology for 

each word and to assign the correct stress pattern. 

 

Simulation1: Modelling Italian Reading 

Method 

Architecture and Representation 

The architecture of the model is closely based on Harm and Seidenberg’s (1999) model of 

reading, and is shown in Figure 1. The orthographic layer comprised 476 units, the hidden layer 
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had 100 units and the phonological layer contained 204 units. A set of 50 cleanup units was added 

to the network and connected bidirectionally to the phonological layer in order to create a set of 

phonological attractor units. The phonological layer was self-connected to itself with connection 

weight of 0.75. This was to ensure that the phonological attractor units were involved in 

maintaining the phonological representation at the output – due to these self-connections, the 

activitation would gradually decline, unless the units connecting to it provided a boost to the 

activity. Orthography in the model was represented in a slot based manner, with 3 slots for the 

onset, 2 for the vowels, and one for the coda for each syllable. The last syllable had no slot for the 

coda as typically Italian words do not end with a consonant (the few words that do end in a coda 

tend to be loan-words, and we omitted these from the lexicon). Up to three syllables could be 

represented in the orthographic layer, for a total of 17 slots (6 slots each for the first 2 syllables, 5 

slots for the third syllable). The syllables in a word were left aligned, with monosyllabic words 

occupying up to the first 6 slots, two-syllables words occupying up to the first 12 slots, and three 

syllables words occupying all 17 slots. Within each letter position slot, a total of 28 distinct letters 

were represented in the model’s input. Vowels with accents were represented in the orthography as 

distinct letters.  

Phonology in the model was implemented in terms of phonological features, in line with recent 

PDP models of reading (Harm & Seidenberg, 1999, 2004). Each phoneme was described by a set 

of 11 standard binary phonological features (Harm & Seidenberg, 1999). An extra feature was 

added to the phonological features in order to distinguish stressed vowels from unstressed ones, 

bringing the total number of features to 12 for each phoneme. The set of phonological features 

used was taken from Canepari (1980). Open and closed vowels (i.e., open and closed “o” and open 

and closed “e”) were treated as separate phonemes. 
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Training corpus 

In order to create a sizeable corpus of words to train the model with, two different databases 

were combined. Orthographic forms were initially extracted from the “Corpus e Lessico di 

Frequenza dell'Italiano Scritto” (CoLFIS) database (Bertinetto, Burani, Laudanna, Marconi, Ratti, 

Rolando, & Thornton, 2005). This database contains frequency information from a corpus of 3 

million words, and this frequency information was extracted as well. Plurals and inflected forms 

were included. The database contained both mono and polysyllabic words. Words beginning with 

the letters H, J, Y, W, X were excluded from the corpus, as in Italian they appear almost only in 

loan words. Words containing the letters J, Y, W, X in any other position in the word were 

excluded as well for the same reason. Two more types of information about the lexicon were 

needed: syllabic boundaries for each word and stress position. This information was extracted from 

the De Mauro Italian Dictionary (De Mauro, 2000). This database contains stress placement 

information and syllabic boundaries: each word is split into its constituent syllables 

(typographically separated by a hyphen) and the stressed syllable is marked by the use of a 

diacritic above the stressed vowel. Only primary stress is represented. The two databases were then 

co-indexed and only  those words that were present in both dictionaries were used for training the 

model. A total of 29336 words resulted from this combination. Only monosyllabic, bisyllabic and 

trisyllabic words with three or fewer vowels in the nucleus were further selected, resulting in a 

total of 9911 words. 

A phonological representation for each word was created using an algorithm to translate 

orthography onto phonology. Double consonants are true geminates in Italian and were coded as 

two separate phonemes, one each in the coda and onset of adjacent syllables. Diphtongs were not 

coded as different phonemes but were broken down into their constituent vowels. Frequency for 

each word was capped at 1000 and then compressed (square root compression). 
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Training and testing 

The model was trained with the continuous recurrent backpropagation algorithm (Harm & 

Seidenberg, 2004). In the first stage of training, the phonological attractor system learned to 

represent all the words in the lexicon up to the point where the mean square error for the output of 

each pattern was below 0.01. For 4 time ticks all phonological units were clamped with the 

appropriate values for the target word. Then, for ticks 5-11 the output of each phonological unit 

was compared with the actual value of the word, and the difference was propagated backwards 

thought the network, generating error gradients for each word, and the weights were then updated 

according to the backpropagation learning algorithm to enable the model to produce an output 

closer to the target. The trained weights for the phonological attractor system were then fixed in 

the reading model.  

In the second stage of training, the model was trained to map between the orthographic input of 

the model and the phonological output. A learning rate of 0.005 and momentum of 0.9 were used. 

The model was trained for 1.2 million word presentations, after which training was stopped and the 

model’s performance was assessed. 

 

Results and Discussion 

Naming accuracy and sum squared error (SSE) were computed to test the model’s general 

performance. Euclidian distances were computed for each phoneme and the closest phoneme to the 

target was selected and reported as the models’ final solution. A word was judged to be generated 

correctly if all of its phonemes were reproduced in each slot. SSE was computed from the model’s 

output, as well as determining the nearest phonological output target. 

After 1.2 million word presentations the model could read correctly 93.7% of all words. Of the 

errors 10% were classified as true phonological errors (debacle reads as debaple, with a phoneme 

substitution), while 26% were classified as “stress placement” errors (im’pala read as ’impala). 
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64% of errors affected the reproduction of the vowels “o” and “e” along the open/closed dimension 

(an open “o” generated instead of a closed “o”). However this last type of response is usually not 

classified as an error in the behavioural literature, due to large regional variation in the use of these 

2 vowels. With the exclusion of this type of error, the model was 98% correct at reading the words 

in the corpus. The model was therefore successful in extending previous models of reading to 

apply to reading Italian. The model demonstrated that polysyllabic phonological output could be 

produced, and appropriate stress could also be determined for a large, representative lexicon of 

Italian. 

 

Nonword Reading 

An additional benchmark for computational models of reading is nonword performance. A model 

that fails to generalise to reading novel stimuli that conform to the general pattern of the language, 

as human reader’s are able to do, would not provide an effective model of human reading 

behaviour. Three sets of nonwords were selected from the literature: 48 bisyllabic nonwords from 

Pagliuca et al.’s study (2008), 60 bisyllabic nonwords from Arduino et al.’s study (2004), and 32 

trisyllabic nonwords taken from Burani and collaborator’s study (2008). The nonwords extracted 

from the Pagliuca et al. (2008) study were all bisyllabic nonwords, four to six letters long, derived 

from high-frequency and low-frequency words, by changing at least one letter (or in most cases 2) 

of the original word. The set of stimuli used by Arduino et al. (2004) contained five to six letters 

long bisyllabic nonwords. The stimuli used in Burani et al. (2008) were all trisyllabic nonwords, 

half of which composed of a root (e.g., donn-, ‘woman’) plus a derivational suffix (e.g., –ista, ‘-

ist’) resulting in a combination not existent in Italian (e.g., donnista, ‘womanist’), and half were 

simple nonwords (e.g., dennosto) which did not include any existing morpheme. The roots were of 

high frequency and suffixes were among the most frequent and productive in Italian nominal and 

adjectival derivatives. The two nonword sets were matched for initial phoneme, syllabic structure, 
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length, bigram frequency, orthographic neighborhood size and orthographic complexity. 

The model was successful in reading correctly 98% of the nonwords, which is a level 

comparable to human performance (Pagliuca et al., 2008). The model therefore shows a good level 

of generalization to novel stimuli. 

 

Frequency Effect 

In addition to the performance on words and nonwords, one of the benchmark effects that 

every computational model of reading should simulate successfully is the frequency effect. The 

frequency effect has been documented for all orthographies studied so far, from deep to shallow, 

including Italian, and has proven to be the most robust finding, with frequency being the 

psycholinguistic variable that accounts for the largest portion of variance in naming reaction times 

(Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004). The model was trained 4 times with 

random initial weights and then each of the four simulations was tested on the 48 words (24 high 

frequency words and 24 low frequency words) from Pagliuca et al.’s study (2008). These stimuli 

do not contain any context-dependent rule and each letter in each word entails a perfect one to one 

mapping with phonology. The stimuli were also matched for the first 2 phonemes, length and 

summed bigram frequency. A Linear Mixed Effects analysis (Baayen, 2007) was run on the data, 

with frequency as a fixed effect, number of simulations and stimuli as random effect, and SSE as 

the dependent variable. The model showed sensitivity to frequency for completely shallow Italian 

words, with high frequency words having lower SSE than low frequency words (F(1, 47.49) = 

7.83, p<.01, see Figure 2). The model confirms the frequency effect for Italian, an effect that has 

been taken as evidence for a lexical route in the reading system, even for transparent 

orthographies. We return to this point in the discussion below, in terms of the extent to which 

connectionist models can illuminate the debate on whether such a lexical route is necessary to 

simulate reading behaviour. 
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Morphological effect 

The study conducted by Burani and collaborators (2008) sheds light on the sensitivity to large 

sublexical clusters that Italian readers develop in the course of learning to map orthography onto 

phonology. A PDP model of reading with no separate mechanisms for reading words and 

nonwords should still show sensitivity to large grain sizes that are shared by many words in the 

corpus. That should equally apply to a model that is trained with an extremely shallow orthography 

such as Italian. Moreover, a model with no semantic pathway should provide support to the 

hypothesis that morphological effects in naming aloud Italian are non-semantic in nature (Burani et 

al., 1999). 

The two sets of 16 three-syllable pseudowords, morphologically complex (donnista) and 

simple (dennosto) from Burani et al. (2008) were selected. Errors accounted for 3.9% of all 

responses. The model was tested as before, with  four runs to  simulate 4 “participants”. A Linear 

Mixed Effect analysis was conducted on the SSE as a dependent variable, morphological status as 

a fixed effect, number of simulations and stimuli as random effects. As Figure 3 shows, the model 

developed sensitivity to large “morphological” units, and performed better when tested with 

morphologically complex words than with control words, F(1, 29.98) = 4.1, p = .05. 

 

Neighbourhood effect 

The study conducted by Arduino and Burani (2004) provides helpful insights on the ability 

that readers of a shallow orthography as Italian have to discover and make efficient use of multiple 

grain sizes, larger than the single letter or bigram. In their study, the authors show that nonwords 

which share a large cohort of neighbours (or Nsize, as classically describe by McCann & Besner, 

1987) are named faster than nonwords with a small cohort of neighbours, irrespective of the 

frequency of these words (Arduino and Burani, 2004). The effect has been ascribed to the 
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supposed interaction between a lexical mechanism and a nonlexical one in reading these nonwords, 

with the lexical route boosting reaction times for nonwords that share many lexical neighbours, but 

not for nonwords with few neighbours. A different view on this effect is adopted by distributed 

approaches to reading, which assumes the reading system to be fully inherently interactive, with no 

partitions or separate modules for words and nonwords. A PDP model of reading with no separate 

mechanisms for reading words and nonwords should still show sensitivity to grain sizes that are 

shared by many words in the corpus. That should equally apply to a model that is trained with an 

extremely shallow orthography such as Italian. 

The 32 bisyllabic nonwords from Arduino and Burani (2004) were selected. Half of these 

nonwords (16) have a large Nsize (as the nonword bento, which has many lexical neighbours that 

vary only by the first letter, i.e. vento, sento, cento, lento, pento etc.), while half (16) a low Nsize 

(the nonword biore, which only has the word fiore as neighbour). The model was tested as before, 

with 4 runs to simulate 4 “participants”. A Linear Mixed Effect Analysis was conducted with SSE 

as the dependent variable, neighbourhood size and frequency as the fixed effect and stimuli and 

simulations as random effects. The effect of neighbourhood size was not significant (F (1, 53.5) = 

0.13, ns).  

The lack of an Nsize effect could be ascribed to the necessity that the model has to be 

exposed to the corpus of words for a reasonable amount of time in order to capture subtle effects 

such as the Nsize effect for a specific dataset of nonwords. Even if the model does not show 

sensitivity to the nonwords used, it could still show an overall effect of Nsize on the whole corpus. 

In order to test this hypothesis a multiple regression analysis was carried on the whole corpus of 

words at the item level, with the Nsize, frequency and bigram frequency used as predictors of SSE 

value. As table 1 shows, the model is sensitive to word Nsize above and beyond variables such as 

frequency and bigram frequency, with words with large Nsize having lower SSE than words with a 

low Nsize. These results suggests that the model is sensitive to the number of neighbours and is 
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processing information coming from N grams larger than 2-3 letters.  

One possible explanation of the lack of N size for the model on the behavioural data might 

have to do with the extent of training needed for the model to fully capture these large 

orthographic clusters. It is possible that the number of iterations the model was trained with did not 

suffice and did not enable the model to develop the sensitivity needed to capture this subtle effect. 

To test this hypothesis, training was extended from 1.2 million to 2 million repetitions, with the 

same settings described above and the model was retested with the new weights on the same 

testing material. 

This time the model showed a marginally significant effect of neighbourhood effect size for 

the Arduino and Burani (2004) material, with nonwords belonging to a large cohort of neighbours 

having lower SSE than nonwords belonging to a small cohort of neighbours (F(1, 55.7) = 3.64, 

p=.06, see figure 4). 

 

Stress assignment 

The study by Burani and Arduino (2004) argues that stress assignment is not generated 

through the application of a default rule, as suggested by Colombo (1992), but instead is 

modulated by the number of words which share the same ending and are consistent with the target 

word’s stress pattern. In this light, the word endings used as cues to address stress assignment 

might be thought of as shared grain sizes between orthographic information and stress patter 

information. The model we introduced in this paper doe not implement a set of rules to assign 

stress, and is suitable for testing whether such a rule mechanism is necessary to assign stress to 

Italian polysyllabic words and whether a connectionist network can show sensitivity to the cues 

that help adult readers in determining the appropriate stress assignment. Such a simulation would 

then provide a useful test for the stress consistency versus stress regularity hypothesis. 

From the Burani and Arduino (2004) study we selected all the stimuli from experiment 1, 
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with the exclusion of 8 four syllables words, which the model can not process due to architectural 

constraints. The stimuli were divided in four groups: regular stress with many friends, regular 

stress with many enemies, irregular stress with many friends, irregular stress with many enemies. 

After training the model did not produce any orthographic error for this subset of words, 

but for 27% of the stimuli it generated a stress patter which did not match the target. These 

mismatches were considered as stress assignment errors and were excluded from the analysis of 

sum squared error, and analysed separately. A Linear Mixed Effect Analysis was conducted with 

SSE as the dependent variable, stress neighbourhood size and regularity as the fixed effect and 

stimuli and simulations as random effects. The effect of stress neighbourhood size was not 

significant (F (1, 34.3) = 0.081, ns) nor was the effect of regularity (F (1, 34.3) = 2.094, ns). 

A separate Linear Mixed Effect Analysis was conducted with number of errors as the 

dependent variable, stress neighbourhood size and regularity as the fixed effect and stimuli and 

simulations as random effects. The effect of stress neighbourhood size was not significant (F (1, 

44) = 0.256, ns) nor was the effect of regularity (F (1, 44) = 0.529, ns), but there was a significant 

interaction between regularity and stress neighbourhood size (F (1, 44) = 4.52, p<0.05), with post 

hoc analysis revealing that irregular words with many stress friends were read significantly more 

accurately than irregular words with many stress enemies. 

The model of reading that has been presented here inherits the structure, the properties, but 

also the limitations of classical PDP models of reading (Harm & Seidenberg, 1999, 2004). One of 

these limitations consists in the syllabic parsing that has been imposed to the model. The slot based 

representation here employed carries over the so called dispersion problem (Plaut et al., 1996). For 

instance, a phoneme in an initial consonant is represented separately from the same phoneme in a 

final consonant, and the model has to learn both of them independently. This problem extends to 

all phonemes within a syllable, and in our case it extends beyond it, encompassing three syllabic 

sets of slots, making the task of learning phonological representations hard for the model. 
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However, as noted by Harm and Seidenberg (1999), the presence of the connections between the 

phonological layer and the set of clean-up units enables the model to capture dependencies across 

different slots, and it also enables to model to capture the fact that phonemes in different positions 

behave differently. Interestingly, the question remains as to whether a model with no syllabic 

parsing would still be able to detect large grain sizes in a transparent orthography as Italian. It is 

also unclear whether centering the phonological code around the vowel had any impact on 

performance in our model. For English, vowels represent the major source of phonological 

variability in the orthographic-phonological mapping and centering around the vowel greatly helps 

in reducing the inconsistencies in the mapping. For Italian, this case is largely reduce, due to the 

strong consistency of the mapping itself. However, the introduction of stressed vowels in our 

phonological representation might have increased the level of inconsistency and the centering 

might have helped our model as well. There is therefore a possibility that the syllabic parsing we 

employed helped the model to detect the set of effects we simulated, and that a model with no such 

syllabic encoding would have failed to do so and would have limited its sensitivity to small grain 

sizes only (letters or bigrams), only in specific positions. 

Following we discuss a model of reading for Italian that does not employ syllabic parsing 

in the orthographic representation for the second syllable, yet it is capable of showing sensitivity to 

grain sizes that span more than one syllable. 

 

Simulation 2: Modelling Italian without orthographic parsing 

Method 

Architecture and Representation 

The architecture is largely based on the previous model, with one differences in the way 

orthography was encoded. At the orthographic layer, instead of centering each syllable around the 

vowel, we centered only the first vowel of the word on the fourth slot. The second syllable was 
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then left aligned to the first, with no parsing or empty slots separating the two syllables. A word as 

babbo (dad) was then represented as - - b a b b o - -, and a word as fabbro (smith) was inputted as - 

- f a b b r o -. In this case, the model has no way to know that the final letter “o” is the same in both 

words, as it occupies a different slot each time. Similarly, the model does not know where the 

second syllable starts, as there are no separators or empty slots between the first and second 

syllables. This type of representation greatly increasing the difficulty of learning the mapping 

between orthographic input and phonological output. Given the difficulty of the task, we only 

trained and tested the model with mono and bisyllabic words. The orthographic layer comprised 

252 units, the hidden layer had 100 units and the phonological layer contained 88 units. A set of 50 

cleanup units was added to the network and connected bidirectionally to the phonological layer in 

order to create a set of phonological attractor units, as before. The phonological representation 

used was the same as for the original model, whereby parsing was syllabic based at the output 

level. Instead of having the model generate the entire phonological output at the same time slice as 

for the previous version, we had it produce one syllable at a time (the first and then the second) 

using the same phonological units. At time ticks 10-11 the model was generating the first syllable, 

and at time ticks 22-23 the second syllable. This way of generating the output partially gets around 

the classic parallel distributed problem of producing the first and the last phonemes in a word at 

the same time, which for a polysyllabic word is implausible. However, it is important to note that 

the orthographic information was still inputted in parallel, with all the orthographic slots for a 

given word being activate at the same time. 

 

Training corpus and regime 

A total of 2424 mono and bi-syllabic words were used as training corpus. Frequency was 

compressed as before. Given the difficulty of the task the model was trained for 10 million 

iterations. In order to save on computational resources, the phonological attractor was not 
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pretrained, but was used online during training and testing. The training parameters were the same 

as before. 

 

Results and Discussion 

Naming accuracy and sum squared error (SSE) were computed to test the model’s general 

performance, as before. After 10 million word presentations the model could read correctly 96% of 

all words. Orthographic errors accounted for 2% and the remaining 2% were classified as stress 

placement errors (for bi-syllabic words stressed on the second syllable, the model failed to stress 

the last vowel). 

The main question that led to the development of this model was whether a model with no 

orthographic syllabic parsing could still show sensitivity to large grain sizes that span more than 

one syllable. We tested the model on the neighbourhood effect (Arduino et al., 2004). We chose 

this test because the current model was only trained on bi-syllabic words, and the test stimuli are 

all bi-syllabic. A main effect of neighbourhood size was again found (F(1, 56.2) = 7.09, p<.05) 

with nonwords belonging to a large cohort of neighbours having lower SSE than nonwords 

belonging to a small cohort of neighbours. The model is showing sensitivity to large grain sizes 

(word neighbours) that encompass more than one syllable, even with no explicit syllabic parsing 

employed at the input layer. 

The type of encoding employed in this simulation however is not immune to limitations. 

The model was tested on a subset of 108 bi-syllabic nonwords taken from the corpus used in the 

first version of the model. The model could read correctly 87.4% of these nonwords, which falls 

well below human performance on the same stimuli (>98%). This poor level of performance 

highlights the need to adopt an encoding scheme that facilitates the process of identifying syllabic 

boundaries and syllabic structures. However, the lack of such an encoding scheme does not seem 

to have an effect on the model’s ability to detect different grain sizes for a transparent orthography 
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as Italian. 

 

General Discussion 

This paper introduced a connectionist PDP model of reading for Italian. The model inherits 

all the properties of standard distributed models of reading and extends the reach of this class of 

architectures to a transparent orthography and to a large corpus of polysyllabic words. One of the 

main advantages of our model is the ability to effectively represent polysyllabic words and their 

stress pattern with a standard PDP model of reading. The model learned to read 98% of the Italian 

lexicon accurately, even though words varied in length from one to three syllables. The model had 

to learn, then, when the orthographic input referred to a single syllable, and when it should be 

divided up to contribute to producing multiple syllables. The model, therefore, showed that 

polysyllabic reading models are within the remit of such connectionist models, without recourse to 

the complex orthographic recoding as used by the Ans et al. (1998) model to achieve polysyllabic 

reading. The model was also successful in generalising its reading behaviour to nonwords, 

indicating that it had learned, not just the specific mappings of the lexicon, but general statistical 

relationships between letters and phonemes to enable a broad range of stimuli to be named. 

Despite the extreme regularity of the mapping between Italian orthography and phonology, the 

model managed to show sensitivity to grain sizes larger than the single unigram or bigram and to 

capture subtle effects involving the use of large orthographic and phonological clusters, effects that 

have been documented in several behavioral studies (Burani et al., 2008; Pagliuca et al., 2008), at 

the lexical and sublexical (morphological) level. The model, in line with classic PDP architectures, 

does so with no explicit localist representation of these large grain sizes (lexical and/or 

morphological units) and with no recourse to an explicit lookup mechanism to the lexicon, as 

employed in dual route models of reading (Perry, Ziegler, & Zorzi, 2007). More importantly the 

model does not explicitly implement a set of grapheme to phoneme conversion rules (Coltheart et 
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al., 2001), but it learns the relationships in the mapping during training, relationships that go 

beyond the single letter-phoneme mapping to encompass a wide range of grain sizes. 

Despite the strict and consistent one-to-one correspondence between the input (letters) and the 

output (phonemes), the model does not learn to rely exclusively on small grain sizes, a coding 

strategy that alone would prove successful in reading most words in Italian,  but learns a whole 

range of grain sizes, in some cases as large as the morpheme, and takes advantage of these shared 

clusters in generating the output, as both Italian experienced and young readers do as shown in the 

behavioural studies on reading in Italian (Arduino et al., 2004; Burani et al., 2008; Pagliuca et al., 

2008). The model also suggests along with the behavioural studies (Burani et al., 2008) that 

morphemes are useful shared grain sizes that should be considered as functional reading units at 

least in morphologically complex orthographies such as Italian. 

The model was effective in replicating the morphological effects without recourse to a 

semantic system, or an explicit lexical or sublexical system that encodes at the level of the 

morpheme. Rather the model discovers the relevant unit in terms of mapping between orthography 

and phonology. As morphemes occur frequently in the lexicon, this has the effect that certain 

patterns of letters co-occur frequently, and map reliably onto a set of phonemes. The connectionist 

model is sensitive to such regularities, and can encode all levels of granularity that are useful for 

forming the mapping.  

Similarly the model showed sensitivity to orthographic neighbourhood size (Arduino & Burani, 

2004), with nonwords with many neighbours being advantaged over nonwords with few 

neighbours. As with the morpheme, the shared grain size represented by the orthographic 

neighbours was successfully detected and provided and advantage in processing words which 

belonged to a large cohort of neighbours. This effect was replicated with a version of the model 

which did not implement orthographic parsing, thus showing that the imposed input structure had 

little effect on the model’s ability to detect different grain sizes. 
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The model was also tested in order to explore sensitivity to another grain size, represented by 

the word ending used as a cue for stress assignment in Italian (Burani & Arduino, 2004). No such 

effect of stress consistency was detected, nor a main effect of regularity, as in the Colombo’s study 

(1992). However, the model showed the same interaction found by Colombo (1992) between 

regularity and number of stress neighbours, with irregular words with many friends being read 

more accurately than irregular words with many enemies. Due to the lack of a stress assignment 

default mechanism in the model, these results do support the claim that such a rule system is 

necessary to correctly assign stress in Italian. The lack of a consistency effect as in the Burani and 

Arduino (2004) study could highlight the limitations of the current architecture of the model, and 

perhaps the corpus used to train it. In the model stress has been represented as feature within the 

phonological space, and not a suprasegmental feature as classically thought in general linguistics. 

The absence of a large corpus of four syllable words might have also hampered performance by 

reducing the model’s exposure to a larger set of stress friends and enemies in richer orthographic 

clusters within longer words. These limitations might prompt more work in the direction of 

building a model that can deal effectively with long polysyllabic words. 

In short, the model here presented shows that parallel distributed approaches to reading can 

prove a powerful tool to explore the reading system not just for deep orthographies like English, 

but for transparent orthographies as well. We have argued that the grain size for a language may be 

variable, and is a property of generalised features of the lexicon as well as the particular 

configuration of the word in question. Though Italian is more transparent in the orthography-

phonology mapping than English, still multiple letter units, and variably grain sizes, are observed 

and explained by a connectionist model that reflects the statistical properties of a representative 

lexicon of the Italian language. 
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Table 1. Hierarchical Regression on SSE. 

 

 

 

 

 

Variable Adjusted R2 % t p 

Step 1     

         Frequency  0.14 -.117 -11.77 .000 

Step 2     

         Bigram Frequency  0.17 -.061 -6.17 .000 

Step 3     

         Nsize 0.19 -.047 -4.65 .000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

List of Figures. 

 

Figure 1. Architecture of the model. 

 

 

Figure 2. Mean sum squared error (SSE) for high frequency words (HF) and low frequency words 

(LF). 

 

Figure 3. Mean sum squared error (SSE) for morphologically complex nonwords (morph) and 

simple nonwords (simple). 

 

Figure 4. Mean sum squared error (SSE) for High density neighborhood nonwords (HN) and low 

density neighborhood nonwords (LN). HF non words derived from high frequency neighbors. LF 

non words derived from low frequency neighbors. 
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