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Abstract

It is well documented that since at least the 1960s investment-cash flow (I-CF) sensi-
tivity has been decreasing over time to disappear almost completely by the late 2000s.
We demonstrate that this pattern is due the observed evolution of the capital ad-
justment costs in a neoclassical investment model with costly external financing. In
particular, we estimate the magnitude of the capital adjustment cost parameter across
different periods and show that the negative trend in the I-CF sensitivity can be ex-
plained by the gradually increasing costs of capital adjustment. The main results are
further corroborated in a robustness analysis, which exploits the cross-country and
cross-industry variation of capital adjustment costs, as proxied by the level of techno-
logical advancement. Consistent with the prior literature, we find no evidence of the
evolution of financing constraints significantly contributing to the observed time-series
pattern. More generally, our findings demonstrate that I-CF sensitivity should only be
interpreted as a joint measure of real and financial frictions.
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1 Introduction

One of the key research areas in corporate finance studies the effect of capital market imper-

fections on corporate investment. According to the standard q-investment model (Mussa,

1977), the optimality condition requires that the marginal value of capital (measured by the

marginal q) is equal to the marginal cost of investment. In this framework, marginal q is the

sole factor relevant to the investment level. Financial factors, such as cash flow, are expected

– in the absence of capital market frictions – to play no role.

At the same time, a number of empirical studies that rely on a reduced-form regression

model, in which investment is a dependent variable and q and cash flow are regressors, show

that investment is sensitive to cash flow. Fazzari, Hubbard and Petersen (1988) interpret

this investment-cash flow (I-CF) sensitivity as the evidence of financial constraints as these

are financially constrained firms that may link their investment to the availability of inter-

nal funds (see also Hoshi, Kashyap and Scharfstein, 1991; Gilchrist and Himmelberg, 1995;

Lamont, 1997; Rauh, 2006; Cao, Lorenzoni and Walentin, 2019). However, Fazzari et al.’s

(1988) view of I-CF sensitivity as a measure of financial constraints has been challenged

by, among others, Kaplan and Zingales (1997), Cleary (1999), Moyen (2004), Alti (2003),

and Gomes (2001). In particular, Erickson and Whited (2000, 2002) point out that the

observed empirical I-CF sensitivity can be spurious as Tobin’s average q is a not a valid

proxy for investment opportunities, due to measurement error (see also Bond and Cummins,

2001; Cummins et al., 2006; Ağca and Mozumdar, 2017, among many others).1 Inasmuch

as empirical q fails to adequately capture investment opportunities, part of the information

content about capital productivity is captured by cash flow (see, e.g., Gilchrist and Himmel-

berg, 1995). Consistent with the information role of cash flow, Chen, Goldstein and Jiang

(2007) show that investment-q (I-q) sensitivity is higher and thereby I-CF sensitivity is lower

1The (observable) Tobin’s average q is equal to the marginal q if and only if the production function
displays constant returns to scale in a competitive market and the adjustment cost function is linearly
homogeneous to investment and capital (Hayashi, 1982).
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when the stock price is more informative.2 Therefore, I-CF sensitivity can be an outcome of

low stock price informativeness or the poor quality of an empirical proxy for marginal q.

The above contributions, however, base their conclusions on the cross-sectional compar-

ison of I-CF sensitivity. Relatively few papers exploit its time-series pattern. Allayannis

and Mozumdar (2004) are the first to conclude declining I-CF sensitivity between periods

1977-1986 and 1987-1996. Their paper spurred an active debate about the economic drivers

behind the negative trend of I-CF sensitivity, which has since remained largely unresolved.

Ağca and Mozumdar (2008) find that I-CF sensitivity decreases with factors that reduce cap-

ital market imperfections but do not directly link the decline of I-CF sensitivity over time

to the evolution of those factors. Chen and Chen (2012) conclude that financial constraints

cannot explain the declining pattern of I-CF sensitivity as there is no indication of finan-

cial constraints becoming more relaxed over time. They also document that the declining

pattern of I-CF sensitivity still exists with measurement-error-corrected estimates (Lewellen

and Lewellen (2016) and Ağca and Mozumdar (2017) provide evidence consistent with that

result). Although Brown and Petersen (2009), Moshirian et al. (2017) and Wang and Zhang

(2020) conjecture that the declining I-CF sensitivity is due to the shift of importance or

productivity from physical capital to intangible assets, Chen and Chen (2012) show that it

is also R&D-cash flow sensitivity that disappears by late 2000s.3

In this paper, we use a neoclassical investment model with costly external financing to

demonstrate that the negative trend is due to the evolution of the capital adjustment costs.

Most previous studies examine how the financial situation of a firm affects its investment

policy by adding cash flow to the regression and comparing the I-CF sensitivity across groups

of firms sorted according to the characteristics that are assumed to capture the degree of

2Similarly, Bakke and Whited (2010) employ the errors-in-variables model in Erickson and Whited (2000,
2002) and model measurement error as part of Tobin’s q that is unimportant for investment. They find that
private information from stock market reflects investment opportunities and affects investment.

3Brown and Petersen (2009) report that cash flow sensitivity of total investment (physical capital ex-
penditure and R&D expense) still decreases across periods.

3



financial constraints. In our framework, rather than relying on a priori measures of finan-

cial constraints based on (endogenous) firm-level variables, we directly incorporate external

financing costs into a dynamic investment model, which allows us to generate predictions

about the effects of both financing frictions and capital adjustment costs. To this end, we

estimate the magnitude of the capital adjustment cost parameter across different periods

and show that there has been a gradual increase in the costs of capital adjustment, which

is capable of explaining the decreasing I-CF sensitivity pattern. Consistent with the prior

literature, we find no evidence of financial frictions being able to significantly contribute to

the observed time-series pattern.

Our results are consistent with those by Chen and Chen (2012) in the sense that declining

I-CF sensitivity is not a symptom of decreasing financial constraints. (We measure the degree

of financial constraints by estimating the parameter that captures the cost of accessing

outside finance and find no evidence of the decreasing cost.) We demonstrate that the

magnitude of I-CF sensitivity is not only an increasing function of financing constraints

but also a decreasing function of capital adjustment costs. The intuition behind the latter

result is as follows: When a firm invests, it does not only increase its capital stock, which is

recorded as capital expenditure, but also incurs capital adjustment costs, which negatively

affect its income.4 Higher capital adjustment costs result therefore in a lower fraction of

an incremental $1 of cash flow earmarked for investment being allocated to increase capital

stock as opposed to being spent as operating expense. Given that capital expenditure reacts

less to the availability of internal funds when capital adjustment is more costly, a positive

time trend in the adjustment costs would result in a declining I-CF sensitivity. Our results

support the hypothesis that it is the gradual increase of the adjustment cost parameter over

time that significantly contributes to the observed declining I-CF sensitivity pattern.

4Examples of capital adjustment costs include installation costs, costs of disrupting the old production
process and fees of training staff to adapt to the new equipment. More specific examples are provided in
Section 3.

4



The increasing capital adjustment costs argument is also consistent with the observed

declining I-q sensitivity as the frictions in adjusting capital stock dampen the response of

investment to the changes in growth opportunities captured by Tobin’s q.5 It is further

supported by the evidence from the extant literature as well as our own estimation results

based on the first order condition and simulated method of moments (SMM) beginning with

the firm’s dynamic optimization problem. The evidence of the rising trend of adjustment

costs remains robust to using alternative measures of Tobin’s q as well as to the estimation

performed on the basis of the Euler investment equation, which circumvents the use of a

proxy for q. The SMM analysis, where model parameters of interest are selected to match

the actual moments with simulated ones, yields results that support prior findings.

We argue that, based on the extant literature and available data on spending on high-tech

equipment, increasing capital adjustment costs can be associated with the adoption of new

technologies, e.g., the widespread use of computers and software, network and automated

systems. According to PwC (2016), “the use of 3D printing is disrupting US manufacturing”

and “the most commonly cited barriers to the adoption is the cost and lack of talent and

current expertise”. Factories are switching to electrical vehicles, which although brings “new

ways of structuring transportation, land use and domestic energy use”, requests the instal-

lations of necessary infrastructure (Barkenbus, 2009). The adoption of high-tech equipment

and machinery requires specialist skills to install and operate and results in costly retraining.6

The relationship between I-CF sensitivity and adjustment costs is therefore corroborated in

the robustness analysis, which exploits the cross-country and cross-industry variation of the

capital adjustment costs, as proxied by the level of technological advancement.7

5The intuition is similar to that behind the effect of adjustment costs on I-CF sensitivity, where adjust-
ment costs act effectively as a tax on capital expenditure. We provide analytical expressions for both I-CF
and I-q sensitivities in Section 3.

6According to Clegg (2018), the online education program funded by AT&T to retrain the workforce
“requires at least 10 hours’ homework a week and take 6 to 12 months to complete” and SEAT’s (the Spanish
subsidiary of the Volkswagen Group) re-skilling program opens the possibility for employees to retrain during
working hours.

7To the extent that technological advancement and the resulting trend in capital adjustment costs are
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The paper contributes to the literature on corporate investment and financing decisions

in several ways. Most significantly, we demonstrate that I-CF sensitivity can capture both

financial frictions as well as capital adjustment costs. Investment is reliant on cash flow when

it is costly to access the external financing market but it is less sensitive to cash flow in the

presence of a higher capital adjustment cost. Empirically, we show that it is the increasing

magnitude of frictions generated by capital adjustment that contribute to the declining I-CF

sensitivity over time. We, therefore, highlight the role of frictions generated by the real side

of economic activities in explaining the responsiveness of investment to internal funds as in

contrast with the frictions generated by financial markets.

To capture the evolution of the I-CF sensitivity, the paper uses time-varying model

parameters. In this way, we are able to infer the time-series trend of economic parameters

(most importantly, the capital adjustment cost). Furthermore, we address the problem of

measurement error in q by applying alternative measures of q, re-estimating the relevant

parameters based on the investment Euler equation, which does not require using q, and

with the SMM methodology. Taken together, we provide robust evidence that the capital

adjustment cost parameter is increasing over time.8

The remainder of the paper is structured as follows. Section 2 describes data sources as

well as variables used and documents the decreasing pattern of I-CF sensitivity. In Section

3, we develop testable hypotheses for the predicted sign of the changes in I-CF sensitivity

as a result of changing key parameters of the q model of investment. Section 4 presents

the estimation results for key model parameters and offers a discussion of the way they can

explain the declining pattern of I-CF sensitivity. Section 5 contains a robustness analysis,

whereas Section 6 concludes.

associated with a shift towards intangible capital, our results can be reconciled with those in Wang and
Zhang (2020).

8The linkage of model parameters with I-CF sensitivity is related to several other studies that use the
structural modeling approach, such as Riddick and Whited (2009) and Gamba and Triantis (2008).
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2 Data set and baseline results

2.1 Data sources, variables and summary statistics

The data contains all manufacturing firms (SIC between 2000 and 3999) in the Compustat

industry annual file, covering the period between 1977 and 2019. (Inside parentheses, we

provide the name of the relevant data item in the Compustat industry annual file.) Invest-

ment, I, is measured as capital expenditure (capx ) for annual data from 1977-2019. Capital,

K, is defined as net property, plant and equipment (ppent). Tobin’s average q, Q, is the

market value of capital over net property, plant and equipment. Market value of capital is

constructed as market value of asset minus the difference between the book value of assets

(at) and the book value of capital (ppent). Note that by subtracting the gap between total

asset and physical capital, we remove the value of intangible assets in computing the mar-

ket value of physical capital. This allows us to measure investment opportunities for the

physical capital. The market value of assets is the sum of market value of common stock

(csho×prcc), total liabilities (lt), and preferred stock (pstk) minus deferred taxes (txditc).

Cash flow is income before extraordinary items (ib) plus depreciation and amortization (dp).

We keep the manufacturing firms which have SIC code between 2000 and 3999 and keep

only firms incorporated in the U.S. Data variables, namely investment, Tobin’s q and cash

flow, are required to have nonmissing values for each observation. Following Almeida et al.

(2004), we remove firms that have sales or asset growth exceeding 100% to eliminate the ef-

fect of business discontinuities. We drop the firms that have asset, sales or capital less than

1 million USD (see Chen and Chen (2012) and Moshirian et al. (2017)). Finally, following

Hennessy and Whited (2007), we winsorize all regression variables at the 1% and 99% levels

to mitigate the effect of outliers by year. We keep the unbalanced panel data, as a balanced

panel may result in a huge loss of information given that a relatively large number of firms

left the market, especially during the 2007-08 financial crisis (e.g., the number of firms in
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1977-1981 (2007-2011) is 2045 (1786) and out of the 2045 firms in 1977-1981, only 389 firms

stay in the period of 2007-2011).

Table 1 provides summary statistics for the regression variables. We divide the whole

sample into five-year subsample periods, except for the latest period for which only three

years of data is available. The descriptive statistics are provided for each of the subsample

period. The mean and median levels of investment-to-capital ratio are relatively stable over

time, which fluctuate around 0.2 from 1977-1981 to 2017-2019. The mean level of cash flow-

to-capital ratio has dropped substantially in recent decades from 0.42 in 1977-1981 to -0.506

in 2017-2019, while the mean level of Tobin’s q has risen from 1.30 to 15.11 from late 1970s

to recent years. The median level of cash flow-to-capital ratio remains relatively steady,

while the median level of Tobin’s q has increased over time from 0.82 in 1977-1981 to 5.60 in

2017-2019. Both 25th percentile and 75th percentile of Tobin’s q are increasing over time too,

which suggests that the increase of Tobin’s q is not limited to the subsample of value firms

or growth firms. There is considerable variance in Tobin’s q and cash flow-to-capital ratio in

the recent periods as indicated by their great dispersions between 25th percentile and 75th

percentile and large standard deviations. We also present serial correlation coefficients of the

regression variables. The serial correlation (see Section 3 for details) of investment-to-capital

ratio indicates the smoothness of investment behavior and it rises from around 0.45 in 1980s

to 0.57 in the recent periods. The q variable is also highly autocorrelated, which can result

in the use of lagged instrumental variable to correct for the measurement error in q being

somewhat problematic (Almeida et al., 2010; Erickson and Whited, 2012).
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TABLE 1
Summary statistics for regression variables

Mean, standard deviation, percentiles and first-order serial correlation for investment to capital
ratio, cash flow to capital ratio and Tobin’s q for each five-year subsample period from 1977 to
2019. All firm-level data are collected from Compustat over 1977-2019 period. The sample contains
all manufacturing firms (SIC code between 2000 and 3999) in the U.S. for which relevant data
is available. I/K is the firm’s capital expenditure, scaled by beginning-of-period net property,
plant and equipment. CF/K is firm’s internal cash flow (income before extraordinary items plus
depreciation), deflated by beginning-of-period net property, plant and equipment. Q is Tobin’s
average q in the beginning of period, which is market value of capital over book value of capital
(measured by net property, plant and equipment).

Mean Std. Dev. p(25) p(50) p(75) Serial Corr.

Sample period:1977-1981
I/K 0.287 0.215 0.150 0.233 0.351 0.458
Q 1.335 1.992 0.322 0.815 1.693 0.819
CF/K 0.415 0.350 0.235 0.377 0.559 0.754
Sample period:1982-1986
I/K 0.260 0.228 0.120 0.198 0.320 0.390
Q 2.501 3.529 0.704 1.373 2.898 0.766
CF/K 0.307 0.490 0.135 0.295 0.495 0.687
Sample period:1987-1991
I/K 0.239 0.197 0.114 0.190 0.297 0.430
Q 3.088 4.628 0.891 1.680 3.358 0.798
CF/K 0.267 0.681 0.108 0.280 0.490 0.627
Sample period:1992-1996
I/K 0.270 0.243 0.119 0.199 0.333 0.513
Q 5.116 8.288 1.145 2.333 5.291 0.771
CF/K 0.327 0.982 0.136 0.328 0.603 0.627
Sample period:1997-2001
I/K 0.262 0.240 0.110 0.191 0.327 0.452
Q 6.547 12.250 1.135 2.575 6.437 0.682
CF/K 0.067 1.512 0.010 0.286 0.588 0.627
Sample period:2002-2006
I/K 0.225 0.225 0.090 0.156 0.276 0.494
Q 9.267 17.886 1.325 3.362 8.873 0.723
CF/K 0.035 2.091 -0.011 0.309 0.692 0.692
Sample period:2007-2011
I/K 0.235 0.227 0.097 0.170 0.289 0.471
Q 9.448 18.283 1.323 3.529 9.278 0.752
CF/K -0.009 2.525 -0.057 0.343 0.802 0.651
Sample period:2012-2016
I/K 0.240 0.213 0.112 0.183 0.288 0.530
Q 11.930 25.867 1.545 4.005 10.584 0.811
CF/K -0.143 3.289 0.069 0.372 0.806 0.729
Sample period:2017-2019
I/K 0.230 0.198 0.109 0.178 0.281 0.573
Q 15.105 30.026 1.930 5.596 14.590 0.845
CF/K -0.506 4.608 0.014 0.353 0.829 0.795
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2.2 Baseline regression results and time-series variation of I-CF

sensitivity

The baseline OLS regression equation for investment is:

Iit
Kit

= β0 + β1Qit + β2
CFit
Kit

+ ηi + ηt + εit (1)

where Iit
Kit

is firm’s physical investment scaled by beginning-of-period capital, CFit
Kit

is firm’s

cash flow deflated by beginning-of-period capital, Qit is the beginning-of-period Tobin’s q,

which is a proxy for investment opportunities or capital productivity, ηi denotes the firm-

specific fixed effect, ηt is the year fixed effect, and εit is a normally distributed error term.

βi, i ∈ {0, 1, 2} denotes the relevant regression coefficient. We use the OLS estimator as

well as the Erickson and Whited’s (2000, 2002) higher-order moment-based GMM estimator

(EW estimator), which are intended to address the proxy problems in Qit. We employ the

fifth-order moment-based GMM estimator and a within-transformation is applied to remove

the individual fixed effect.

Table 2 presents our baseline regression results for each subsample period from 1977-1981

to 2017-2019. For 1977-1981, I-CF sensitivity (β2) equals 0.271 and is statistically signif-

icant. Afterwards, I-CF sensitivity decreases. For 2002-2006, it becomes not significantly

different from zero and remains so for all subsequent periods. Consistent with Chen and

Chen (2012), similar decreasing pattern is observed when the EW estimator is applied to

tackle the measurement error problem in Qit. The latter result indicates that the decreasing

trend of I-CF sensitivity is unlikely to be driven by the improved proxy quality of Tobin’s

q for capital productivity or decreased information content of cash flow (Moshirian et al.,

2017).

Ağca and Mozumdar (2008) argue that the declining trend of I-CF sensitivity can be
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TABLE 2
Baseline linear regression results

Estimation results for the linear regression model employing both OLS estimator and GMM5 es-
timator (Erickson and Whited, 2000, 2002) in each five-year subsample period. The dependent
variable is investment measured as the firm’s capital expenditure, scaled by beginning-of-period
net property, plant and equipment, The independent variables are cash flow, which is defined as
income before extraordinary items plus depreciation, deflated by beginning-of-period net property,
plant and equipment, and beginning-of-period Tobin’q, which is defined as the market value of
capital over book value of capital (measured by net property, plant and equipment). β1 denotes
the coefficient on q and β2 denotes the cash flow coefficient. Robust standard errors are clustered
at firm level and reported in the parenthesis. The number of observations are also reported. The
sample contains all manufacturing firms collected from Compustat over 1977-2019 period. ∗∗∗, ∗∗,
∗indicate significance at the 1%, 5% and 10% levels.

Period OLS GMM5
β1 β2 β1 β2 Obs.

1977-1981 0.021∗∗∗ 0.271∗∗∗ 0.101∗∗∗ 0.207∗∗∗ 7994
(0.004) (0.021) (0.009) (0.020)

1982-1986 0.022∗∗∗ 0.131∗∗∗ 0.060∗∗∗ 0.069∗∗∗ 8033
(0.003) (0.015) (0.006) (0.016)

1987-1991 0.016∗∗∗ 0.058∗∗∗ 0.037∗∗∗ 0.046∗∗∗ 7714
(0.002) (0.009) (0.003) (0.009)

1992-1996 0.010∗∗∗ 0.046∗∗∗ 0.026∗∗∗ 0.022∗∗∗ 8357
(0.001) (0.008) (0.002) (0.008)

1997-2001 0.007∗∗∗ 0.022∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 8680
(0.001) (0.006) (0.002) (0.006)

2002-2006 0.006∗∗∗ 0.005 0.012∗∗∗ 0.002 7497
(0.001) (0.005) (0.001) (0.005)

2007-2011 0.007∗∗∗ 0.000 0.010∗∗∗ -0.002 6436
(0.001) (0.004) (0.000) (0.003)

2012-2016 0.004∗∗∗ -0.002 0.008∗∗∗ -0.001 5451
(0.001) (0.004) (0.001) (0.004)

2017-2019 0.003∗∗∗ -0.004 -0.001 -0.009 2917
(0.001) (0.004) (0.001) (0.005)
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explained by the decreasing financial constraints as indicated by the rising fund flows, the

increasing number of analyst following, the number of firms with bond rating and the in-

creasing proportion of large institutional ownership. By constrast, Chen and Chen (2012)

show that I-CF sensitivity still decreases even for financially unconstrained firms and there

is no sign of loosening financial constraints as the volume of new external financing remains

relatively stable.

3 Capital adjustment costs and I-CF sensitivity

The extant literature on investment-cash flow sensitivity has largely focused on the effects of

financial constraints (e.g., Ağca and Mozumdar, 2008; Chen and Chen, 2012). Yet, relatively

little attention has been devoted to investigating the impact of capital adjustment costs on

the responsiveness of investment to additional cash flow. The presence of convex adjustment

costs results in only a partial adjustment of capital towards its desired level and leads to

a positive serial correlation of investment (see, e.g., Cooper et al., 1999; Caballero and

Engel, 2003). Although Cooper and Haltiwanger (2006) report that the serial correlation of

investment is low at the plant-level (estimated at 0.058), we show that the serial correlation

is economically significant at the firm-level (see Table 1). To further motivate the choice

of the convex adjustment costs (as opposed to fixed, or generally non-convex costs) in the

modeling set-up, we allow the function of capital adjustment costs to take a more general

form and test for its convexity in Section 4.

A capital adjustment cost is the expenditure incurred before the equipment or plant can

be put to full use and it comprises installing costs (e.g., loss in production during installation),

expenses associated with the training of labor to accommodate new physical capital, lost

expertise due to the adoption of new technologies, overtime costs, costs of disrupting the

old system and reorganising the production process. Kiley (2001) concludes that adjustment
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costs related to the installation of high-tech equipment, such as the costs of training workers

to use the technologies and reorganizing activities associated with the installation of new

capital, are of first-order importance. Brown et al. (2009) argue that R&D involves spending

on highly skilled technology workers who are costly to hire, train and replace, and thus has

high capital adjustment costs (see similar evidence from Peters and Taylor (2017)).

Capital adjustment costs are regularly explicitly mentioned in company reports. Nestlé

Group (2016, p16) has expensed the costs of disruption as “impairment of property, plant or

equipment”, which are mainly concerned about “the plans to optimise industrial manufactur-

ing capacities by closing or selling inefficient production facilities” and the expenses amount

to 201 million of CHF. Equipment and facilities used for manufacturing are undergoing a

costly technological change. According to Intel Corporation (2016, p36), their R&D spending

has increased by 5% in 2016 from 2015 and a significant part of the rise comes from the high

development costs for the new process technology, and manufacturers of semiconductors are

now facing “the increased costs of constructing new fabrication facilities to support smaller

transistor geometries”. From the perspective of sustainability, costs may occur to meet the

high environmental standards when building existing plants or constructing new sites.

If firms had an unrestricted access to external finance market, they could invest whenever

valuable projects arise and internal funds would be irrelevant. With a limited access to the

external capital market, the sensitivity of investment to cash flow is positive and does not

only depend on the costs of obtaining outside financing, but also on the costs of adjusting

the capital level. Financially constrained firms will boost their investment to a smaller

extent upon receiving cash windfall when capital adjustment is costly. In this section, we

formulate specific predictions on how external financing costs and adjustment costs affect I-

CF sensitivity and provide evidence supporting the link between the trend of I-CF sensitivity

and the intertemporal evolution of capital adjustment costs.

In the presented framework, time is discrete, It is investment at time t, Kt is capital stock
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that satisfies the standard intertemporal condition Kt+1 = It+(1−δ)Kt, with δ ≥ 0 denoting

the depreciation rate. The adjustment cost, G(I,K), depends on both investment and in-

stalled capital. The unit price of output and price of capital goods equal 1. To operationalize

the notion of the adjustment cost, we set the adjustment cost function G(I,K) = 1
ψ
γ( I

K
)ψK,

where the multiplier γ > 0 and ψ reflects the elasticity of adjustment cost to investment

rate. Parameter ψ equals 2 in a model with a quadratic adjustment cost and the assumption

of the quadratic cost is essential in deriving the linear baseline regression (cf. Lewellen and

Lewellen, 2016). By allowing the adjustment cost function to take a more general form, we

can provide a test for the functional form of capital adjustment cost function, specifically the

test of ψ = 2.9 Π(A,K) = AKα denotes profit function and A is the stochastic profitability

shock that determines the exogenous state of the firm and α is the curvature on the profit

function (in Appendix A, we derive the form of the profit function). As in Gomes (2001) and

Cooper and Ejarque (2003), we consider cash flow as a means to supply firms with internal

funds to finance investment.

The way to model financial constraints is generally complex and we do not attempt to

endogenize financial policy along the lines of Li, Whited and Wu (2016). As we are only

interested in comparing the magnitude of the financial frictions over time, we simply impose

a form for external financing cost as in Gomes (2001) and Cooper and Ejarque (2003).

H(X,K) is external financing cost function where X is the amount of external financing

funds one needs to raise to meet its investment demand (cash flow shortfall). We assume

equity is the sole source of financing and is only issued when the firm is not able to fund

the investment with its internal cash flow. Hennessy and Whited (2007) argue that cost

of external equity decreases with size of firm, hence external financing cost is a function of

capital K, whereas Krasker (1986) finds that shadow cost of equity increases with the number

of shares issued, hence external cost function is assumed to convex and quadratic. We assume

9In Section 4, we empirically verify whether this assumption is plausible.
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that the form for external financing cost function H(X,K) is H(X,K) = 1
2
bΦ(X

K
)2K. As

in Cooper and Ejarque (2003) and Lewellen and Lewellen (2016), the amount of external

financing funds X is defined as the gap between investment and cash flow. (Including the

capital adjustment cost in X complicates calculations but does not substantially affect the

main results.) Cash flow is the profit generated by the capital in place, and hence X = I−Π.

Φ is an indicator which is equal to one if I ≥ Π and zero otherwise. Parameter b reflects

the cost of external financing. Fazzari et al. (1988) characterize financial constraints as the

wedge between the cost of internal capital and the cost of accessing external capital. The

higher the cost embedded in raising funds from outside capital market (such as information

asymmetric costs in Myers and Majluf, 1984), the higher the degree of financial constraints.

Equity holders choose an investment policy to maximize the firm value taking into account

the cost of external financing

V (At, Kt) = max
It

[(Π(At, Kt)− It −G(It, Kt)−H(Xt, Kt)) + θEAt+1|AtV (At+1, Kt+1)], (2)

where θ denotes the discount factor. The marginal Tobin’s q (denoted subsequently by qt)

is defined as θEAt+1|AtVK(At+1, Kt+1), where Vs(A,K) denotes the partial derivative of firm

value V with respect to s ∈ {A,K}. The first order condition with respect to I, which

equates marginal return with marginal cost of investment, yields the following q equation:

1 + γ

(
It
Kt

)ψ−1

+ bΦ

(
It
Kt

− Πt

Kt

)
= qt. (3)

Based on the q equation, we can derive the partial derivative of investment with respect to

cash flow

∂I/K

∂Π/K
=

bΦ

γ(ψ − 1)( I
K

)ψ−2 + bΦ
. (4)

Details of the derivation are outlined in Appendix B. Provided that γ > 0, a smaller mag-

nitude of b is associated with a more muted response of investment relative to cash flow.
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As it is possible that the decreasing I-CF sensitivity is the result of declining financing cost

parameter, we formulate the following empirical prediction:

H1: Cash flow sensitivity of investment decreases as a result of lower costs of external

financing.

From (4), we obtain that γ is negatively related to the partial derivative of investment

with respect to cash flow. (In Appendix C, we also derive the expression for the firm value

considering a fixed capital adjustment cost based on Whited (2006) and demonstrate that

such a form of that cost can also lead to a negative relationship between capital adjustment

cost and I-CF sensitivity.) This result can be explained as follows. If the firm is financially

constrained, its investment depends on the availability of internal funds. But this depen-

dence becomes weaker with a higher adjustment cost as the firm is not willing to increase

capital upon receiving one unit of cash flow when making such capital adjustment is costly.

Therefore, an alternative explanation for the decreasing I-CF sensitivity over time could

be the gradually increasing adjustment costs. Hence, we formulate the second empirical

prediction:

H2:Cash flow sensitivity of investment decreases due to higher capital adjustment costs.

The above discussion implies that the changes in I-CF sensitivity may be a joint result

of the evolution of both financing constraints as well as capital adjustments costs. What is

worth pointing out is that the imperfections on the real side of firm’s activities (adjustment

costs) have an opposite effect on this sensitivity compared to imperfections from financial

markets (financing constraints).

Similarly, we can also obtain the partial derivative of investment with respect to q

∂I/K

∂q
=

1

γ(ψ − 1)( I
K

)ψ−2 + bΦ
. (5)

One can see from (5) that the partial derivative of investment to q is inversely related to
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both capital adjustment costs and financial frictions. The investment demand will vary less

with the growth opportunities reflected in q if the firm’s investment behavior is constrained

by frictions from either financial market or from real economic activities. With that in mind,

we offer a preliminary test of our predictions by looking at the time trend of I-q sensitivity.

If I-CF sensitivity declines alongside with the decrease of financial constraints, we should

observe an increasing trend for I-q sensitivity. On the other hand, if I-CF sensitivity declines

as a result of higher capital adjustment costs in late years, we should observe a decreasing

trend for I-q sensitivity as well.

The baseline OLS regression results in Table 2 indicate both a declining q sensitivity

of investment as well as a downward-sloping I-CF sensitivity. This combination of results

supports the second prediction that decreasing I-CF sensitivity is driven by the rising capital

adjustment costs. Nonetheless, with the documented shortcomings of the OLS (and even

GMM) estimators when the regressors, such as q, are measured with an error (e.g., Erickson

and Whited, 2000, 2002, 2012; Almeida et al., 2010), in Sections 4 and 5 we provide a

much deeper empirical assessment of the evolution of capital adjustment cost and financial

frictions.

4 Empirical evidence

4.1 Empirical implementation of q equation

4.1.1 Estimation results with Tobin’s q

In the baseline regression equation (1), cash flow is added to the investment-q equation

typically in an ad hoc way and, therefore, little can be said a priori about the expected

magnitude of I-CF sensitivity. A notable exception is Lewellen and Lewellen (2016), who in-

corporate the cost of external financing to the neoclassical investment model with quadratic
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adjustment costs to obtain the baseline I-CF sensitivity equation. While Abel and Eberly

(2011) provide theoretical micro-foundations for the existence of I-CF sensitivity in the ab-

sence of financing constraints, they do so under strong assumptions of no capital adjustment

costs and a sufficient time-series variation in the drift rate of productivity.

In our approach, we follow Lewellen and Lewellen (2016) but relax the standard assump-

tion of the quadratic adjustment cost. In addition, instead of relying on the baseline linear

regression, in which q and cash flow are regressors, we provide estimates of model parameters

based on the q equation, which is directly based on the first-order condition. Consequently,

we let q become the dependent variable (with investment and cash flow taking the role of

regressors) so that the measurement error in q does not affect parameter estimates as long

as it is independent of both explanatory variables.

We start by estimating the model parameters based on the q equation.10 The correspond-

ing estimation equation of (3) is

Qit−1 = 1 + γ

(
Iit

Kit−1

)ψ−1

+ bΦ

(
Iit

Kit−1

− CFit
Kit−1

)
+ ηt + ηj + εit, (6)

where ηt captures the year fixed effect and ηj is dummy variable for each two-digit SIC

industry level.11 Other variables are as those described in Section 2.1. Estimated parameters

are b, ψ and γ and they all expected to be positive in an economically relevant scenario. We

10Even though it is may be more accurate to infer relevant parameters by matching the moments from
a dynamic structural model that endogenizes a firm’s investment policy to the moments observed in the
sample, it is helpful first to understand the intuition about how model parameters affect I-CF sensitivity
by looking at the partial derivative of investment with regard to cash flow derived from the q equation. (In
a more complex model of firm dynamics, such as Hennessy and Whited (2007), it is generally not possible
to obtain a closed-form expression for the I-CF relationship.) Later, we provide the parameters estimates
based on the structural methods of moments in Section 4.3

11We use industry dummies instead of firm dummies due to the additional computational complexity
associated with using the latter. Moreover, it may be more reasonable to aggregate short panel data at a
higher level as regression may fail to capture the characteristics of firms who have single observation during
the five-year subsample period if one uses firm-specific fixed effect. (Similarly, Lewellen and Lewellen (2016)
are reluctant to include firm fixed effect to avoid imposing survivorship requirements and/or bias slope
estimates if the number of observations per firm is low.) We find that between 10%-17% of the firms have
single observation and around 30% of the firms have only two-year observations in the subsample period.

18



select the set of parameters that produce the least sum of squared error
∑
ε2
it. We present

the estimation results in Panel A of Table 3.

As discussed, the likely mismeasured q variable is the dependent variable in this setting.

As a result, we still expect to obtain consistent estimates of relevant parameters as long as the

measurement error is independent of the explanatory variables.12 Therefore, the estimates

of the parameters based on the q equation that has q as the regressand fare better than the

ones implied from the reciprocal of β1 and the ratio of β2 and β1 from regression (1). The

adjusted R2 shown in Column 5 of Panel A Table 3 indicates that the model’s goodness-of-fit

improves over time, which is consistent with the finding in Chen and Chen (2012) that the

measurement quality in Tobin’s q is improving.

The estimates of the elasticity parameter ψ are reported in Column 3 of Panel A Table

3. They are all significantly different from (larger than) zero, which supports the choice of

the convex form of the capital adjustment cost function. Column 6 in Panel A of Table 3

presents the t statistics under the null hypothesis that ψ = 2. Most of the estimates of

ψ are not significantly different from 2 at the 1% significance level, which yields support

for the commonly used quadratic cost assumption. Even though Cooper and Haltiwanger

(2006) argue that non-convex adjustment costs are more prominent for the plant-level data,

we show that investment behavior at the firm level is consistent with convex (and quadratic)

adjustment costs. Hence, from now on, we adopt a quadratic function for capital adjustment

costs.

The parameter b, which measures the cost of external financing, reflects the degree of

12In Erickson and Whited (2000), measurement error is assumed to be independent of I
K and CF

K . Error
that causes the deviation between marginal q and average q such as market power and interest rate might
be considered as exogenous. Even if the measurement error in not independent, the biases induced by the
measurement error in the explained variable can be translated into omitted variable biases. The factor vari-
ables that cause empirical average q to deviate from marginal q is regarded as omitted variables. Therefore,
one can deal with the measurement error by incorporating into the estimation equation the factor variables
that could possibly cause such difference between empirical average q and marginal q. We find that the
parameter estimates including factor variables do not change too much.
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financial constraints. The relevant estimates are reported in Column 4 of Panel A, Table

3. The estimate of b is significantly positive in most of the periods (it is not significantly

different from zero only in 1977-1981).13 The estimated b is much higher in late 2000s than in

the earlier sample periods. If one interprets I-CF sensitivity solely as a measure of financial

constraints, one would expect a declining b over time, which would correspond to a negative

trend of coefficient β2 in eq. (1). The degree of financial constraints, as captured by b,

is, however, increasing over time. This result is consistent with Chen and Chen’s (2012)

evidence that financial constraints have not become more relaxed in recent years. Also,

studies such as Almeida, Campello and Weisbach (2004) and Faulkender and Wang (2006)

argue that constrained firms are more inclined to hold cash and Bates, Kahle and Stulz

(2009) show that there is an increase in cash holding of U.S. firms. Therefore, we again do

not find support for hypothesis H1 that decreasing financial constraints explain the negative

trend of I-CF sensitivity.

The estimate of the adjustment cost parameter γ, which is reported in Column 2 of Panel

A Table 3, fluctuates around 5 in early sample periods, increases to mid-teens in the 1990s

and to above 25 in the 2000s. The positive trend of the adjustment cost parameter is therefore

consistent with I-CF sensitivity declining over time. Investment responds less strongly to

cash flow in late periods because making capital adjustment is more costly. With respect to

the magnitude of γ, the studies that infer the adjustment cost parameter from the reciprocal

of the q coefficient, obtain generally too high estimates for γ for them to be plausible.14 For

example, Gilchrist and Himmelberg (1995) obtain a γ as high as 20 during 1985-1989, which

is similar to Hayashi (1982), who uses data from 1952-1978. The adjustment cost parameter

estimated in our setting looks therefore more realistic – γ in the comparabke poriod 1977-

1991 is closer to 5, which is lower by the factor of 4. As stock-market-based Tobin’s average

13Since we do not include cash savings into the funding gap, b measures the combined cost of using
external equity funds and spending out of cash, with the latter being effectively zero.

14For the quadratic adjustment cost function, an additional $1 of investment leads to an incremental
capital adjustment cost of $γ I

K .
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q is considered as less reliable in measuring the investment opportunities (e.g., Cummins,

Hassett and Oliner, 2006, among others), we provide further empirical evidence of the trend

and the magnitude of capital adjustment costs in the following sections.

4.1.2 Estimation results with alternative measures of q

Average q (market-to-book capital ratio) is not a good proxy for marginal q if any of the linear

homogeneity assumptions in Hayashi (1982) does not hold. To address the concern that the

estimated upward trend of adjustment costs is driven by the imperfect proxy for marginal

q, we rerun the estimation with alternative measures of q. Gala (2014) proposes a state-

space measure of marginal q using capital stock and profitability shock.15 The magnitude

of profitability shocks can be inferred from net profit (as A = Π/Kα), given the provided

estimate of the curvature on the profit function (α = 0.51). Denote average q (market-to-

book capital ratio) by Q. Following Gala (2014), we estimate log(Q) = a0 + a1log(A) +

a2log(K)+a3log(A)2 +a4log(K)2 +a5log(A)log(K)+ε in each subsample period and obtain

the fitted value for Q̂ as well as coefficient sets for capital stock and profitability shock. Since

marginal q can be written as q = ∂V
∂K

= V
K

(
1 + ∂log(Q)

∂log(K)

)
, one can compute marginal q by

differentiating the expression for log(Q) to obtain q = Q̂(1 + â2 + 2â4log(K) + â5log(A)).

In the standard investment theory, marginal q is based on managers’ evaluation of firm’s

fundamentals and any deviations of market valuations from managers’ assessed fundamentals

will be regarded as “misvaluation” (Blanchard, Rhee and Summers, 1993). To alleviate

the concern that the parameter estimates are confounded by the misvaluation component,

we follow Goyal and Yamada (2001) and Campello and Graham (2013) as an alternative

approach to estimating marginal q and use their fundamental q as a proxy for the firm’s

investment opportunities. The fundamental q is the portion of the market-to-book ratio

that can be explained by observable fundamental variables, which are the lagged value of

15Similar to this approach, Gala et al. (2019) express investment policy as a function of state variables.
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cash flow-to-capital ratio, sales growth, current asset-to-capital ratio, debt-to-capital ratio,

capital spending, capital expenditure, size (market capitalization), industry sales growth,

industry capital investment growth and industry R&D growth.

Finally we repeat the nonlinear estimation of regression (6) but this time with Gala’s

marginal q and fundamental q. (In both cases, we use the quadratic adjustment cost function

given that the previous estimates ψ do not significantly differ from 2.) The results with

Gala’s q (reported in the first panel of Panel B Table 3) demonstrate that the estimate of

the adjustment cost parameter γ rises across periods from 0.029 in 1977-1981 to 4.213 in

2012-2016 and 6.291 in 2017-2019, respectively. The estimation results based on fundamental

q (reported in the second panel of Panel B Table 3) yield a similar picture – the adjustment

cost parameter γ increases steadily over time from 1.072 in 1977-1981 to 8.572 in 2017-2019.

The results based on the alternative measures of q support the earlier conclusion that the

financing cost parameter is increasing over time and, equally importantly, that the upward

trend of the adjustment cost parameter is clearly present.
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4.2 Empirical implementation of Euler equation

As an alternative way of estimating capital adjustment costs, we use the investment Euler

equation framework. The Euler equation, which equates the marginal cost of investment

today with the expected discounted cost of waiting to invest tomorrow, has the advantage

of avoiding the use of q and mitigating endogeneity concerns arising in the reduced-form

regression approach (Kang et al., 2010). Using an intertemporal investment model and

denoting the risk-free rate by r, one can express the maximization problem of the firm as

shareholders

V (At, Kt) = max
{Kτ+1,Iτ}∞τ=t

Et
∑
τ=t

(
1

1 + r
)τ−t(Π(Aτ , Kτ )− Iτ −G(Iτ , Kτ )−H(Xτ , Kτ )), (7)

subject to

Kt+1 = It + (1− δ)Kt, (8)

where the right-hand side of eq. (7) is the expected net present value of cash flows, which

takes into account the expected quadratic adjustment cost as well as the cost of financing

constraints. Following Gomes, Yaron and Zhang (2006), we assume linear homogeneity of

the profit function Π (·). 16 By differentiating (7) with respect to Kt+1 and adding an

expectation error εt+1, where Et(εt+1) = 0 to remove the expectation operator, we arrive

at the estimation equation for the Euler equation (details of the derivation are presented in

Appendix D):

1

1 + r

[
(1− δ)

(
1 + γ

(
I

K t+1

)
+ bφ

(
I

K t+1
− Π

K t+1

))
+

Π

K t+1
+

1

2
γ

(
I

K t+1

)2

+
b

2
φ

(
I

K t+1
− Π

K t+1

)(
I

K t+1
+

Π

K t+1

)]
+ εt+1

= 1 + γ

(
I

K t

)
+ bφ

(
I

K t
− Π

K t

)
. (9)

16The linear homogeneity assumption implies that ∂Π
∂K = Π

K
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We follow Whited (1998) and employ two-step GMM to estimate the parameters in (9).

Any information set at time t is orthogonal to the expectation error at time t+1. Therefore,

we use GMM to estimate the parameters with the moment condition of E(Ztεt+1) = 0, where

Zt denotes a set of instruments. The instrument set consists of time fixed effects, lagged

value of investment-capital ratio, cash flow-capital ratio, debt-capital ratio, current assets-

capital ratio, capital spending, sales growth and cash reserves. The estimation results are

provided in Table 4. The results of the test for overidentifying restrictions (J test) indicate

that the overidentifying restrictions are rejected in most of the early periods. This can be

largely expected due to the large cross-sectional variations in the data (Gomes et al., 2006).

The J statistic decreases over time, which demonstrates that the model’s goodness-of-fit is

better in the later periods. In the first column of 4, it can be seen that the adjustment cost

parameter estimates oscillate around zero in the early periods and reach approximately 9 in

2010s. The estimation results based on the Euler equation strongly support hypothesis H2

that it is an upward trend in capital adjustment costs that results in the decreasing pattern

of I-CF sensitivity.

4.3 Evidence based on structural estimation of parameters

4.3.1 Constant adjustment cost parameter

To complement the analysis of sections 3 and 4.1-4.2, we estimate relevant model parameters

using the simulated method of moments (SMM). SMM does not require a proxy for q and

avoids having to choose instruments, as in the estimation of the Euler equation. We perform

the simulation study based on the investment-q model. The functional form of the profit,

adjustment costs and financing costs are the same as in Section 3. We are interested in

identifying parameter values of our model that would result in matching relevant properties

of the actual data, which in this case are the coefficients of the baseline regression (1). The
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TABLE 4
Estimation of investment Euler equation

The two-step GMM estimation results of eq. (7). The instrument sets consist of time dummy
variables, lagged value of investment-capital ratio, cash flow-capital ratio, debt-capital ratio, current
asset-capital ratio, capital spending, sales growth and cash reserve. The weighting matrix in the
first step is identity matrix and the weighting matrix for the second step is the inverse of robust
standard errors clustered at firm level. Standard errors clustered at firm level for the estimated
coefficients are reported in the parenthesis. The J statistics and the corresponding p-value (reported
in parentheses) are presented in the last column.

Period γ b J statistic

1977-1981 0.428∗∗∗ 0.000 390.615
(0.075) (0.179) (0.000)

1982-1986 -0.159∗∗ 0.000 324.293
(0.058) (0.102) (0.000)

1987-1991 0.908∗∗∗ 0.000 23.705
(0.119) (0.084) (0.022)

1992-1996 0.247 1.762∗∗∗ 58.320
(0.265) (0.234) (0.000)

1997-2001 1.300∗∗∗ 0.151∗∗∗ 30.046
(0.183) (0.058) (0.003)

2002-2006 1.654∗∗∗ 0.395∗∗∗ 46.388
(0.505) (0.077) (0.000)

2007-2011 6.192∗∗∗ 0.198∗∗∗ 19.960
(0.633) (0.046) (0.068)

2012-2016 8.141∗∗∗ 0.222∗∗∗ 12.388
(1.285) (0.060) (0.415)

2017-2019 8.206∗∗∗ 0.000 10.635
(1.595) (0.019) (0.560)

key parameters of interest are the capital adjustment cost (γ) and the magnitude of financing

constraints (b). For simplicity, we first assume that firms are myopic and γ is perceived as

constant within each five-year period. For each period, we estimate the relevant model

parameters, namely γ and b, by matching the actual moments with the moments generated

from the simulated data. The moments we aim to match are q sensitivity of investment, β1,

and cash flow sensitivity of investment, β2.

Our estimation framework is as follows. Denote (A,K) as the state of the firm, the value

of which is maximized. The productivity shock A is the only source of economic uncertainty.
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Numerical solutions for the firm value and level of investment are based on the iterative value

iteration algorithm. To simplify notation, denote xt as x and xt+1 as x
′
. The logarithm of

this shock variable, defined as a = log(A), is assumed to follow a first-order autoregressive

process with zero drift:

a
′
= ρaa+ ε

′
,

where ρa is an autoregressive coefficient and ε
′ ∼ N(0, σa), identically independently dis-

tributed across time. We transform the first-order autoregressive process into a discrete-

state Markov chain following Tauchen (1986) where the value sets and corresponding tran-

sition probability are determined by [ρa σa]. We let a take Na = 10 points from the

discretized set of [−3σa/
√

(1− ρ2
a) 3σa/

√
(1− ρ2

a)] and define the interval between each

point as w = 6σa/(
√

(1− ρ2
a)(Na − 1)). We denote the probability that the log stochas-

tic shock a
′

becomes āi given that the log stochastic variable in the last period a is āj as

p(j, i) = Pr[a
′
= āi|a = āj]. Then the probability matrix for j = 1 . . . Na and i = 1 . . . Na is

p(j, i) = Pr[āi − w/2 ≤ ρaāj + ε
′ ≤ āi + w/2]

= N(
āi − ρaāj + w/2

σa
)−N(

āi − ρaāj − w/2
σa

).

The discretized set for capital stock K is defined as:

K̄, K̄(1− δ), . . . , K̄(1− δ)49,

where the maximum value of capital K̄ is determined by Π(Ā, K̄) = δK̄ where the profit

function is Π(A,K) = AKα (see Gomes (2001)). Remaining parameters broadly follow

Gomes (2001) and Hennessy and Whited (2007). The curvature of the profit function α is

equal to 0.45. We set autoregressive coefficient ρa to 0.65, whereas σa is 0.15. Finally, the

depreciation rate δ is set to 0.15 and risk-free rate r to 0.05.
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Now, for a given set of parameters Θ = [γ b], we solve for the value function and the

optimal policy function. The goal is to identify the parameters that match the actual data

moments, denoted as Md, with simulated moments, denoted as ms(Θ). The parameter

estimates therefore are chosen to minimize the weighted distance between actual moments

and simulated moments:

Θ̂ = argmin
Θ

[Md −
1

S

S∑
s=1

ms(Θ)]W [Md −
1

S

S∑
s=1

ms(Θ)], (10)

where W is the optimal weighting matrix which is given by the inverse of the variance-

covariance matrix of Md. We create S = 6 artificial panels containing 1000 firms (paths)

with 40 time periods. For each path, the log state variable a is restricted to the discretized

set of values. We simulate 60 periods for each firm and drop the first 20 periods to allow the

firms to move away from a possibly suboptimal starting point (see Hennessy and Whited,

2005). At the end of each panel, we run the baseline regression of investment on q and cash

flow. Finally, we take the average of the cash flow coefficients and q coefficients over the S

panels and form our simulated moments.

The estimation output for each subsample period is reported in Table 5. It shows that the

capital adjustment cost parameter estimated with simulated method of moments displays an

increasing time trend, which is consistent with our previous findings. It further illustrates

that the increasing pattern of capital adjustment costs is robust to using a different estimation

methodology.

4.3.2 Time-varying adjustment cost parameter

To relax the assumption of the firms’ myopia, we reexamine the value-maximization problem

with a time-varying adjustment cost parameter. In this set-up, firms are fully rational and

correctly update the distribution of the adjustment cost parameter in the next period based
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TABLE 5
Parameter estimation with simulated method of moments in each subsample period

β1 is q sensitivity of investment from baseline regression and β2 is cash flow sensitivity of investment.
The second and third columns display β1 and β2 computed from actual data in each subsample
period. The third and fourth column display β1 and β2 computed from data simulated with the
relevant model parameters. The last two columns report the estimated model parameters γ and b
that minimize the weighted distance between the actual moments and the simulated moments.

Actual Moments Simulated Moments Parameter Estimates
Period β1 β2 β1 β2 γ b
1977-1981 0.021 0.271 0.028 0.280 0.477 0.698
1982-1986 0.022 0.131 0.020 0.150 0.829 0.692
1987-1991 0.016 0.058 0.007 0.074 1.220 0.671
1992-1996 0.010 0.046 0.006 0.068 1.583 0.647
1997-2001 0.007 0.022 0.002 0.056 1.373 0.657
2002-2006 0.006 0.005 0.001 0.001 6.617 0.507
2007-2011 0.007 0.000 0.003 -0.001 3.914 0.734
2012-2016 0.004 -0.002 0.004 -0.001 2.748 0.727
2017-2019 0.003 -0.004 0.004 -0.001 2.748 0.672

on its current level. We allow γ to vary according to a finite-state Markov-chain process.

This results in three state variables for the firms’ optimization problem: profitability shock

A, capital stock K and adjustment cost parameter γ. We rewrite the firm’s value as

V (A,K, γ) = max
I

[(Π(A,K)− I −G(I,K, γ)−H(X,K)) + θE{A′ |A;γ′ |γ}V (A
′
, K

′
, γ
′
)]. (11)

We assume that γ follows a AR(1) process in logs

log(γ
′
) = µg + ρglog(γ) + σgε

′

g,

where εg ∼ N(0, 1) represents the aggregate shock to investment frictions. This specific

process captures the nature of mean reversion, which is important to obtain the stationarity

for capital adjustment costs in the long run. The difference 1 − ρg captures the speed of

mean reversion and it holds that 0 < ρg < 1 to ensure that capital adjustment cost does

not explode. The volatility of the adjustment cost process is denoted by σg. Parameter µg
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is the constant term, where µg
1−ρg defines the mean level that log(γ) tends to revert to. The

initial level of γ (denoted as γ0) matters as it determines the trend of the process. The mean

level of γ is computed as e
µg

(1−ρg)
+0.5

σ2g

(1−ρ2g) . If the initial level is lower (higher) than the mean

level, then γ tends to rise (fall) over time. The parameters that we estimate to match as

closely as possible the empirical time-series pattern of investment-cash flow sensitivity are

[γ0 ρg µg σg b α ρa σa], where the subset [γ0 ρg µg σg] determines the dynamics of capital

adjustment costs. For the parameter set chosen, we solve for the model and simulate one

time-series of γ for all firms and one time-series of A for each of the firm. Our simulation

consists of 10 panels, each of which includes 1000 firms and 80 model periods. We start the

simulation with the randomly-drawn firm-specific profit shocks (A) and the corresponding

no-adjustment-cost steady-state capital (K). We allow γ to be fixed at γ0 for the first 20

periods before we remove them to eliminate the impact of the initial condition. We intend to

match the simulated cash flow coefficients (β2) estimated per model period to those estimated

yearly from the actual data. This is equivalent to matching 40 moments, each corresponding

to the cash flow coefficient in one year.

Estimation is carried out to match the time-series variation of β2. The parameter set that

delivers the pattern closest to that in the actual data is outlined in Table 6. The left graph in

Figure 1 plots the process of adjustment cost parameter simulated with the parameter set. It

starts from the value of around 1.7 and increases up to 3.3. The corresponding investment-

cash flow sensitivity regressed with the model-simulated data is plotted in solid line on the

right graph. The deviations of simulated β2 from actual β2 are generally small except for a

few years at the beginning. Again, the rising trend of γ is observed (with estimated γ0 being

lower that the long-run mean), which is consistent with the decreasing pattern of β2
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TABLE 6
Parameter estimation results (SMM)

Parameters of capital adjustment costs:
Mean reversion coefficient ρg 0.931
Initial γ γ0 1.717
Mean of log(γ) µg 0.083
Volatility of log(γ) σg 0.040

The long-run mean e
µg

(1−ρg)
+0.5

σ2g

(1−ρ2g) 3.335
Other parameters:
Financing cost b 0.500
Returns to scale α 0.701
Mean reversion coefficient of productivity ρa 0.651
Volatility of productivity σa 0.151

4.4 Evidence based on the industry-level data

4.4.1 Technological changes and capital adjustment costs

The innovation of technology has evolved significantly over the past 40 years. In 1977, Ken

Olsen, co-founder of the Digital Equipment Corporation, is quoted as saying “There is no rea-

son for any individual to have a computer in his home” (Boaz and Crane, 1985), while rather

the opposite has been true in recent years. According to Hindle (2012), technological break-

throughs can be disruptive as “they completely overturn existing products and markets”. An

industry report from PwC refers to 3D printing as a disruptive technology lists the shortage

of talent, the need to establish digital platforms and restructure the current operations as

well as the demand for a new system to permit integration of activities as to associated costs

of its adoption (PwC, 2016). According to McKinsey & Company (2017), manufacturing

organizations have entered a new era with the advances in automation, robotics and artificial

intelligence, which necessitate the adaption, integration and development of the technology

into business solutions and the time costs for labor to retrain into the high-skill positions.

Extant academic literature, which typically relies on the industry-level data, offers similar

insights referring to the technological progress as a significant contributor to the increase of
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FIGURE 1
Simulated process of γ and estimated β2

The left graph plots the evolution of adjustment cost parameter simulated with the parameter set

in Table 6. The solid line in the right graph plots the corresponding investment-cash flow sensitivity

regressed with the model-simulated data and the dots display the cash flow coefficients regressed

with actual data.

capital adjustment costs. Hornstein and Krusell (1996) and Greenwood and Yorukoglu (1997)

suggest that technological improvement can cause productivity slowdown as the adoption of

new capital introduces high costs of learning. Kiley (2001) presents evidence of substantial

costs associated with training and maintaining information technology, while Bessen (2002)

attributes increasing adjustment costs to an increase in spending on information technology,

for instance, on customization of software. Groth (2008) estimates that it is particularly

costly to install capital in ICT-intensive industries (see also Bessen (2002), who reports high

adjustment costs estimates for high-tech industries). Uchida, Takeda and Shirai (2012) iden-

tify significant costs of capital adjustment for the sectors that have undergone a technological

change in automobile electronics. One of the few examples of the opposite view is Meghir,

Ryan and Van Reenen (1996), who argue that innovative firms face lower adjustment costs as
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innovation brings more flexibility (see also Smolny (1998)). However, their approach differs

from ours as they base their conclusions on the evidence from the labor market.

As documented in Gordon (1990), the rate of technology growth, as implied by the de-

cline in the relative price of investment goods, has been significant (Oliner and Sichel, 2000;

Jorgenson and Stiroh, 2000). Panel (a) of Figure 2 illustrates the increasing trend (with the

exception of the aftermath of the dotcom bubble) in the acquisition of ICT equipment and

software in the U.S. The adoption of new technologies results in firms needing to provide

adequate training to enable their workforce to achieve expected productivity gains associ-

ated with it. In the short-run, when workers devote extra hours to acquiring new skills and

effectively to forgo some output, capital adjustment costs arise. In panel (b) of Figure 2,

we refer to the evolution of the rate of participation in educational and training programs

in European countries to demonstrate the broader trend prevailing in highly industrialized

economies. Specifically, using Eurostat data (the training participation rate has been re-

ported since 1992), we plot the average of participation rate in education and training by

employed persons across 17 Western European countries between 1992 and 2017. The per-

centage of employees taking part in eduction and training rise to approx. 14% in most years

from around 6% in 1992. This observed increase in the participation rate in education and

training programs are symptomatic of higher adjustments costs associated with the adoption

of new technologies.

4.4.2 Estimation with industry-level data

Following the literature that relates adjustment costs to the productivity growth, we adopt

the approach of Bessen (2002) and estimate the trend of adjustment costs with 4-digit SIC

code industry-level data from “NBER-CES Manufacturing Industry Database” that covers

years 1977-2011. The adjustment cost is defined as the deviation of the actual output from

the potential output. For each industry j, we have Yt = Y ∗t (1 − Gt) where the potential
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FIGURE 2
The acquisition of high-tech equipment and participation of training by workers

(a) ICT acquisition (b) Participation in education and training

The acquisition of equipment and computer software between 1985 and 2011 for the U.S (panel (a))
and the average percentage of employed persons in 17 European countries that have taken part in
education and training between 1992 and 2017.

output is Y ∗t = AtK
αK,t
t M

αM,t
t L

αL,t
t (At denotes productivity shock, Mt defines material

input, Lt is labor input, αK,t (αM,t, αL,t) is capital (material, labor) share) and the actual

output is Yt. Gt = γ It−1

Kt−1
is the adjustment cost per unit of potential output, which is linearly

related to the lagged investment-capital ratio. 1−Gt is analogous to the speed of adjustment

(SOA), as in the partial adjustment model of Lintner (1956). For the industry j at time t,

we transform levels into logarithms, take the difference and rearrange Yjt = Y ∗jt(1 − Gjt) to

obtain (̂. denotes log change):

Ẑjt ≡ Ŷjt − αK,jtK̂jt − αM,jtM̂jt − αL,jtL̂jt = Âjt − γ∆
Ijt−1

Kjt−1

. (12)

Parameter γ can be estimated by regressing Ẑjt on ∆
Ijt−1

Kjt−1
. In order to gauge the time-series

pattern of adjustment costs, we include the period trend variable T which is 1 in 1977-1981,

2 in 1982-1987 and so forth. Table 7 presents the regression output for the pattern of ad-

justment costs. The coefficient on T × ∆
Ijt−1

Kjt−1
shows that the adjustment cost parameter

increases by 0.05 in each period when time fixed-effects are not included and by 0.015 (al-
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though not statistically significant at standard levels) once they are added. Even though the

upward trend of adjustment costs is less pronounced when aggregate shocks are controlled

for, the coefficient of T ×∆
Ijt−1

Kjt−1
has the expected sign, consistent with an increase in adjust-

ment costs. To sum up, combining the time-series evolution of adjustment cost parameter γ

with its negative impact on I-CF sensitivity, we find further support for hypothesis H2 that

the negative trend of I-CF sensitivity is caused by the increasing adjustment cost parameter.

TABLE 7
Adjustment to the potential output level

Regression output based on data from NBER-CES Manufacturing Industry Database covering
periods between 1977 and 2011. The dependent variable is productivity residual growth Ẑjt as
described in Bessen (2002). The explanatory variables are lagged change of investment-capital

ratio ∆
Ijt−1

Kjt−1
, interaction term between period trend variable T and lagged change of investment-

capital ratio. Period trend variable is defined as 1 in 1977-1981 and 2 in 1982-1986 and so forth.
Standard errors are clustered in industry level and reported in parenthesis. Adjusted R square is
also reported. ∗∗∗, ∗∗, ∗indicate significance at the 1%, 5% and 10% levels.

Variables Dependent variable is Ẑjt

∆
Ijt−1

Kjt−1
-0.094 -0.099 -0.196∗∗

(0.085) (0.098) (0.087)

T ×∆
Ijt−1

Kjt−1
-0.053∗∗ -0.052∗∗∗ -0.015

(0.019) (0.021) (0.019)
Industry dummies Yes Yes
Year dummies Yes
R2
a 0.015 0.014 0.127

5 Robustness analysis

5.1 Cross-country evidence

Moshirian et al. (2017) examine the difference in I-CF sensitivities between firms from devel-

oped economies and those from developing countries. They demonstrate that the decrease in

I-CF sensitivity is quite substantial for the former group and only moderate for the latter. It

is argued that the declining importance or the productivity of tangible assets combined with
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a reduction in income predicability leads to the decreasing pattern of I-CF sensitivity in the

“new economy”.We replicate the least squares analysis of Moshirian et al. (2017) and com-

plement it with the error-corrected generalized-method-of-moments (GMM) approach, to

mitigate concerns associated with the measurement error in q. As in Moshirian et al. (2017),

we estimate the time-series trend of I-CF sensitivity for developed countries (excluding the

U.S.) and emerging economies (excluding China and India).17 The level of a country’s eco-

nomic development is defined according to the MSCI classification. We estimate coefficients

of investment on cash flow over a rolling window of five years for both sets of economies. As q

is more likely to be measured with error for this international sample, we apply an additional

filter and remove the observations where its magnitude exceeds 100 or is below 0. We begin

from year 1995 to ensure that there are at least 200 observations each year for each devel-

oping country. We present the estimation output using OLS, weighted least squares (WLS)

with firm observations in countries with fewer (more) observations receiving greater (lower)

weight by year (Moshirian et al., 2017), and Erickson-Whited errors-in-variables panel re-

gression with highest order of moment equal to 5 (GMM5), which combines cross-sections

using a minimum distance estimator (Erickson and Whited, 2000, 2002, and 2012).

The rolling-window estimated coefficients are shown in Figure 3. The time-series pattern

of I-CF sensitivity shown for developing countries is less pronounced. Based on the OLS and

WLS analysis, we conclude that I-CF sensitivity is declining over time in advanced economies

but remains flat and does not drop until most recent periods in developing economies. The

decreasing trend of I-CF sensitivity for developed economies and non-decreasing trend for less

developed economies is still present, albeit less pronounced, when error-corrected estimator

GMM5 is used (the bottom panel of Figure 3). The estimated I-CF sensitivity in developed

economies starts from 0.07 in 1995-2000 and drops to 0.00 in 2010-2018 for GMM5 estimator.

The estimate of I-CF sensitivity for GMM5 estimator in less developed economies fluctuates

17The exclusion of China and India is motivated by Moshirian et al. (2017) as driven by their fast pace
of adopting new technologies, which makes them less comparable with other developing countries.
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FIGURE 3
Investment-cash flow sensitivity of developed economies vs. developing countries

OLS WLS

GMM5

Note: The first graph show estimates using ordinary least squares (OLS), the second graph show
estimates using weighted least squares (WLS) and the third graph show estimates using Erickson-
Whited error-corrected estimator with highest order of moment equal to 5 (GMM5). The solid line
shows the estimates of I-CF sensitivity for developed economies outside the U.S. and the dashed line
shows the estimates of I-CF sensitivity for emerging countries excluding China and India. Shaded
areas denote confidence interval at the 95% level.

around 0.10 until almost 2003 before it experiences a sudden drop.

We provide an alternate explanation for the observed difference in I-CF sensitivities be-

tween developed economies and developing economies based on the implications of capital

adjustment costs. Firms in the developed countries are faster in adopting the technology-
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intensive physical capital and hence should witness their capital adjustment costs increase

year by year. Therefore, their I-CF sensitivities decline substantially, also when the produc-

tivity of physical capital, as proxied by q, is fully controlled for and the measurement error

in q is corrected for. Firms in the developing economies, however, face a moderate pace of

their technological change and a slower increase in their capital adjustment costs. Therefore,

their I-CF sensitivities decline at a lower pace or face no decline at all until recently.

5.2 Cross-industry regression results

In the final robustness check, we classify manufacturing firms into belonging to either non-

high-tech or high-tech industries. According to Chen and Chen’s (2012), high-tech firms are

those with SIC codes 3840-3849, 3820-3829, 3670-3679, 3660-3669, 3570-3579, and 2830-2839.

Within each industry group, we run the baseline regression from 1977-1981 to 2017-2019.

As high-tech firms are likely to have a higher proportion of technology-intensive capital

compared to non-high-tech groups, we expect that the high-tech firms undergo a higher

rate of increase in capital adjustment costs over time and thereby a steeper decline in I-CF

sensitivity.

Table 8 shows a decreasing pattern of I-CF sensitivity regardless of the industry group

the firms belong to. It also demonstrates that I-CF sensitivity for the high-tech industries

has declined in 2000s more rapidly than for other industries. For the former group, I-

CF sensitivity starts to disappear and become statistically not significant in 2002-2006.

It also remains lower in the most recent sample periods compared to the non-high-tech

group. In order to quantify the magnitude of the difference in the decline of I-CF sensitivity

between high-tech and non-high-tech industries, we estimate β2 by year and regress the

natural logarithm of β2 on year trend variable which is equal to 1 for 1977, 2 for 1978 and

so on (the corresponding regression estimates is denoted as η). Table 9 shows that I-CF

sensitivity drops by 6.7% for the non-high-tech group every year while it decreases by 8.6%
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every year for the high-tech group. The reported t statistics and the corresponding p values

for the null hypothesis that the declining trend of β2 is the same between high-tech and

non-high-tech groups indicate that the declining trend of β2 (captured by η) is significantly

more prominent for the high-tech firms than that for the non-high-tech companies.
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TABLE 8
Estimation across industry groups

Estimation results for the industry group in each of the panel. The second and third column
report q coefficient and cash flow coefficient estimated from baseline linear regression. The results
are displayed for two industry classes: non-high-tech and high-tech industries. p value for the null
hypothesis that the coefficients are the same between the first period and the last period is reported
below. ∗∗∗, ∗∗, ∗indicate significance at the 1%, 5% and 10% levels.

High-tech: Non-high-tech:
Period β1 β2 β1 β2

1977-1981 0.032∗∗∗ 0.276∗∗∗ 0.015∗∗∗ 0.268∗∗∗

1982-1986 0.022∗∗∗ 0.113∗∗∗ 0.021∗∗∗ 0.144∗∗∗

1987-1991 0.017∗∗∗ 0.054∗∗∗ 0.013∗∗∗ 0.062∗∗∗

1992-1996 0.011∗∗∗ 0.044∗∗∗ 0.010∗∗∗ 0.049∗∗∗

1997-2001 0.006∗∗∗ 0.013∗ 0.011∗∗∗ 0.036∗∗∗

2002-2006 0.006∗∗∗ -0.001 0.007∗∗∗ 0.017∗

2007-2011 0.006∗∗∗ -0.002 0.008∗∗∗ 0.001
2012-2016 0.004∗∗∗ -0.006 0.004∗∗∗ 0.009
2017-2019 0.002∗∗∗ -0.007 0.005 0.010
p value 0.000 0.000 0.000 0.000

TABLE 9
Comparisons of the trend in β2 across industry groups

Estimates of the declining trend for β2, denoted as η, across each industry group, i.e., non-high-
tech group and high-tech group. η is estimated by regressing β2 on the natural log of year trend
variable, which is equal to 1 for 1977, 2 for 1978 and so forth. Standard errors are st statistics
and corresponding p values for the null hypothesis that the declining trend is the same between
high-tech and durables (nondurables) are reported. ∗∗∗, ∗∗, ∗indicate significance at the 1%, 5%
and 10% levels.

High-tech Non-high-tech

η -0.086∗∗∗ -0.070∗∗∗

(0.004) (0.003)
H0: η(High-tech)=η(Non-high-tech)
t stats. : -3.005 p value: 0.000

The comparison of the declining trends is further illustrated in Figure 4 with scatter

plots and exponential curve fitting. It shows that high-tech firms have experienced a more

substantial decline in their I-CF sensitivities, which is consistent with the view that they

are more affected by the increasing costs of capital adjustment due to their higher share of

technologically advanced machinery and equipment. Also, based on the increasing adoption
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of ICT equipment as well as computer software (as shown in Figure 2), the lower I-CF

sensitivity we observe in the later sample periods years is consistent with the fact the firms

has shifted towards advanced technologies associated with higher adjustment costs.

FIGURE 4
Investment-cash flow sensitivity across groups by year (fitted with an exponential curve)

High-tech v.s. Non-high-tech

Note: The graph shows the scatter plots of investment-cash flow sensitivities estimated for high-tech
(blue) v.s. non-high-tech (red) industry fitted with an exponential curve.

6 Conclusions

The gradual decrease of I-CF sensitivity is a phenomenon that has remained largely unex-

plained in the extant literature. By focusing on two key factors inspired by a neoclassical

investment framework with costly external financing: financial frictions and capital adjust-

ment costs, we provide evidence that goes towards settling the ongoing debate. To evaluate

whether either of those factors contribute to the declining pattern of I-CF sensitivity, we

use a broad range of tests ranging from a nonlinear estimation of the first order condition,
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a GMM estimation of the Euler equation, to the structural estimation of the parameters

capturing financial and real frictions.

We demonstrate that while I-CF sensitivity can be expressed as a specific function of

both financial constraints and capital adjustment costs, it is predominantly the evolution

of the latter that is capable of explaining the declining I-CF sensitivity pattern. As firms

need to divide available financial resources between covering actual investment and capital

adjustment costs, higher adjustment costs lead to a lower sensitivity of investment to avail-

able cash flow. Our estimates unequivocally show that capital adjustment costs exhibit an

upward time trend, which explains why I-CF sensitivity has declined over time. The gradual

increase of capital adjustment costs is also consistent with the documented decrease in I-q

sensitivity.

In line with several recent contributions, we do not find evidence of a sufficient variation

in the magnitude of financing frictions that would be consistent with the observed I-CF

sensitivity pattern. (The hypothesis of a decline in the magnitude of financing constraints

is not supported by the observed negative trend in I-q sensitivity either.)

More generally, our results demonstrate that I-CF sensitivity should be interpreted as a

joint measure of financial and real frictions. This observation has implications for the design

of empirical tests of financing constraints that rely on using I-CF sensitivity. Namely, a lower

sensitivity of investment to cash flow may be symptomatic of a higher cost of adjusting capital

stock rather than of an improved access to external financing.
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A. Derivation of the profit function

To derive the profit function of the firm, consider first its Cobb-Douglas production function

F (Ã,K, L,M) = ÃKαKMαMLαL ,

where Ã indexes technology shock, K is physical capital input, M is material input and L
is labor input. Denote p as output price and assume price is taken as given in a competitive
market. pM is price for material, W is wage (price for labor input). Assume labor and
material input are short-run flexible factors, we had the profit (operating cash flow) function
as

Π = max
L,M

pÃKαKMαMLαL −WL− pMM.

Take derivative with respect to L and M , we have

WL = pαLÃK
αKMαMLαL , (A.13)

pMM = pαM ÃK
αKMαMLαL . (A.14)

Substitute the optimal L and M back into profit function, we have

Π = AKα ,

where A = (1−αM−αL)Ã
1

1−αM−αL p
1

1−αM−αLα
αL

1−αM−αL
L α

αM
1−αM−αL
M W

αL
αM+αL−1p

αM
αM+αL−1

M and α =
αK

1−αM−αL
.

B. Derivation of I-CF and I-q sensitivities

Calculation of the partial derivative of investment with respect to cash flow is performed as
follows. Eqn (3) has that

1 + γ

(
I

K

)ψ−1

+ bΦ

(
I

K
− Π

K

)
= q. (B.1)

Differentiating ((B.1)) with respect to Π
K

on both sides

γ(ψ − 1)

(
I

K

)ψ−2
∂I/K

∂Π/K
+ bΦ

∂I/K

∂Π/K
− bΦ = 0.

After rearranging, one obtains

∂I/K

∂Π/K
=

bΦ

γ(ψ − 1)( I
K

)ψ−2 + bΦ
. (B.2)
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Similarly, we differentiate (B.2) with respect to q on both sides

γ(ψ − 1)

(
I

K

)ψ−2
∂I/K

∂q
+ bΦ

∂I/K

∂q
= 1.

This yields
∂I/K

∂q
=

1

γ(ψ − 1)( I
K

)ψ−2 + bΦ
. (B.3)

C. I-CF sensitivity with nonconvex and convex capital

adjustment costs

As in Whited (2006), we consider the fact that investment incurs fixed (nonconvex) costs
which are proportional to the capital stock, denoted as fK. The fixed costs only occur
during periods of active investment. As stated in Cooper and Haltiwanger (2006), the fixed
costs reflect the needs for restructuring and retraining of the activities and therefore they
only take place when new investment is made. The firm value V (At, Kt) is therefore written
as:

V (At, Kt) = max{V a(At, Kt), V
n(At, Kt)}, (C.1)

in which V n(At, Kt) (V a(At, Kt)) reflects the firm value when no (active) investment is made.
The corresponding Bellman equations are:

V a(At, Kt) = max
It

[(Π(At, Kt)− It− fK −G(It, Kt)−H(Xt, Kt)) + θEAt+1|AtV (At+1, Kt+1)],

and
V n(At, Kt) = [Π(At, Kt) + θEAt+1|AtV (At+1, (1− δ)Kt)].

The parameters are as defined before. The first order condition when active investment is
made is:

1 + γ

(
It
Kt

)ψ−1

+ bΦ

(
It
Kt

− Πt

Kt

)
= qt, (C.2)

where qt = θEAt+1|AtV
a
K(At+1, Kt+1). Consider 1(I > 0) as the indictor that active investment

is made, then I-CF sensitivity can be derived as:

∂I/K

∂Π/K
=

bΦ

γ(ψ − 1)( I
K

)ψ−2 + bΦ
1(I > 0). (C.3)

It can be seen that a fixed cost of capital adjustment influences I-CF sensitivity by affecting
the probability of making active investment. High fixed cost f decreases the probability of
active investment and the mean value of 1(I > 0) and leads to a lower I-CF sensitivity.
Nonetheless, in the firm-level data, we can rarely observe the inactive investment (thereby
1(I > 0) is always 1), which make it difficult to identify the effect of a fixed cost on the cash
flow sensitivity of investment.
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D. Euler investment equation: An empirical counter-

part

The estimation equation for the Euler investment equation is derived as follows. The firm
aims to maximize expected discounted value of the stream of future net profit where

V (At, Kt) = max
{Kτ+1,Iτ}∞τ=t

Et
∑
τ=t

(
1

1 + r
)τ−t(Π(Aτ , Kτ )− Iτ −G(Iτ , Kτ )−H(Xτ , Kτ )), (D.1)

subject to It = Kt+1 − (1 − δ)Kt. The functions are as previously defined. The Lagrange
function with lagrange multiplier qτ is

L = max
{Kτ+1,Iτ}∞τ=t

Et
∑
τ=t

(
1

1 + r
)τ−t(Π(Aτ , Kτ )−Iτ−G(Iτ , Kτ )−H(Xτ , Kτ )+qτ (Iτ+(1−δ)Kτ−Kτ+1)),

where qt is the shadow price of capital. First order condition with respect to It, Kt+1 have

∂L
∂It

= 0⇒ qt = 1 +
∂G(It, Kt)

∂It
+
∂H(Xt, Kt)

∂It
, (D.2)

∂L
∂Kt+1

= 0⇒ qt =
1

1 + r
Et[(1−δ)qt+1+

∂Π(At+1, Kt+1)

∂Kt+1

−∂G(It+1, Kt+1)

∂Kt+1

−∂H(Xt+1, Kt+1)

∂Kt+1

].

(D.3)
With iterative substitution of (D.3) and transversally condition that limT→∞

qt+T
(1+r)t+T

= 0,
we obtain

qt = Et

∞∑
τ=t+1

(1− δ)τ−t−1

(1 + r)τ−t
[
∂Π(Aτ , Kτ )

∂Kτ

− ∂G(Iτ , Kτ )

∂Kτ

− ∂H(Xτ , Kτ )

∂Kτ

]. (D.4)

Substitute (D.2) into (D.3), we have

1 +
∂G(It, Kt)

∂It
+
∂H(Xt, Kt)

∂It
=

1

1 + r
Et[(1− δ)(1 +

∂G(It+1, Kt+1)

∂It+1

+

∂H(Xt+1, Kt+1)

∂It+1

) +
∂Π(At+1, Kt+1)

∂Kt+1

− ∂G(It+1, Kt+1)

∂Kt+1

− ∂H(Xt+1, Kt+1)

∂Kt+1

]. (D.5)

In writing the empirical equation, we assume that production function displays constant
returns to scale in the perfect competitive market such that ∂Π(At,Kt)

∂Kt
= Πt

Kt
. Assuming

quadratic form for adjustment cost function, we have ∂G(It,Kt)
∂It

= γ I
K t

and ∂G(It,Kt)
∂Kt

=

−1
2
γ
(
I
K t

)2
. Also ∂H(Xt,Kt)

∂It
= bφ( I

K t
− Π

K t
) and ∂H(Xt,Kt)

∂Kt
= −1

2
bφ
(
I
K t
− Π

K t

) (
I
K t

+ Π
K t

)
.

Adding an expectation error εt+1 where Et(εt+1) = 0 to remove the expectation operator, we
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arrive at the estimation equation for the Euler equation:

1

1 + r

[
(1− δ)

(
1 + γ

(
I

K t+1

)
+ bφ

(
I

K t+1
− Π

K t+1

))
+

Π

K t+1
+

1

2
γ

(
I

K t+1

)2

+
1

2
bφ

(
I

K t+1
− Π

K t+1

)(
I

K t+1
+

Π

K t+1

)]
+ εt+1

= 1 + γ

(
I

K t

)
+ bφ

(
I

K t
− Π

K t

)
. (D.6)
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