CSim 3 phase simulation routines. © M.Pidd, January 1996

LANCASTER UNIVERSITY

THE MANAGEMENT SCHOOL

DEPARTMENT OF MANAGEMENT SCIENCE

VCSIM: Visual C Three Phase Simulation Routines

These routines provide the basis for a three phase simulation library. There are parallel libraries available for Turbo Pascal, C, C++ and Visual Basic v3 and v5. The basic principles of all the libraries are the same, though their precise implementation depends on the vagaries of the language being used.

This version is designed for use as a console application in Microsoft Visual C/C++. This provides no proper cursor control, which makes the run-time output much less satisfactory than that in the Borland/Turbo C version.

(1). Basic principles

In a three phase simulation, it is normal to have an executive or control program to ensure that the entities are properly scheduled for future activities (known as Bs) and also to ensure that current activity (often known as Cs) are properly sequenced. In the case of these libraries, this is managed by representing the entities in the following simple form.

Each entity forms a single row of a Control Array, known as Details. Thus, if there are 20 entities, then Details will have 20 rows, one row per entity. As provided in the libraries, the Details array contains the minimum information needed to run a sensible three phase simulation. Thus the columns of the array are designated as follows.

1
Name
A String ID that may be useful to identify an entity in a report of some kind.

2
Avail
A Boolean type that indicates whether the entity is available for committal to a B. True means the entity is available, False means it is not.

3
TimeCell
The time at which the entity is next due to change state. This is only meaningful if Avail = False for this entity.

4
NextAct
The next activity in which the entity is due to engage at the time indicated by TimeCell. This activity must be a B. This field is only meaningful if Avail=False for this entity.

5
Util
The total time that this entity has been active since the start of the simulation.

The easiest way to identify an entity is by its row number in the Details array.

The Details array is examined during the A Phase, so as to find the time of the next event. This involves a simple search for the minimum TimeCell, disregarding any rows in which Avail is True. The row numbers (often referred to as the entity ID) of entities with minimum TimeCells are placed in the CurrEntArray.

During the B Phase, the focus is on the CurrEntArray. This is worked through, one element at a time and the B Phase function/procedure/sub-program takes the entity ID and then executes the B indicated by the entity’s NextAct field in the Details array.

When entities need to be committed to Bs some time in the future, then it is best to use the Schedule or Commit function/procedure/sub-program for this purpose. It is always dangerous to directly access the Details array from your model.
(1). The routines provided.

CSim is based around the following , each of which represents a .c and .h file. The runtime program is produced by compiling and linking these files within the Borland or Turbo C Interactive Development Environment (IDE).

GenLib
Contains useful functions for frequently needed tasks such as input:output.

Executil
Contains functions that are used mainly by the simulation executive and the model..

CExec
Contains the 3 phase executive

Model
Contains the simulation model, in the example this is the Harassed Booking Clerk

(2). GenLib.*

This two files contains the following functions which may be accessed by any file includes GenLib.h and which is linked to GenLib.Obj. String is a typedef for char*.

void AnyKey(void);
Invites the user to press any key and reads any key from keyboard.

int GetInt(String, int, int);
Writes Blurb (String) on screen, returns with an integer between Min (int)and Max(int) inclusive.

char GetYNAns(String);
Writes Blurb (String) as a question on screen and accepts Y, N, y, n as responses.

void Error(String);
Writes Message (String) to screen and halts execution.

void OpenDBFile(void);
Opens an event trace file for run-time debugging.

void CloseDBFile(void);
Closes an event file if one was opened for run-time debugging.

(3). Executil.*

This contains the following functions and procedures, which may be accessed by any file that includes Executil.h and is linked to Executil.Obj.

void Display(String, int, String, int);
Writes run-time output to an event trace file if TraceOn is true. TraceOn is set in EventTraceQuery.

void ShowEntDetails(void);
Displays the event calendar.

void Schedule(int, void (*)(), float);
Commits an Entity (int) to engage in the Activity (void (*)()) after RTime (float) time units have passed.

void Release(int);
Releases an Entity (int) immediately from whatever its is doing.

void InitEntFree(int, String);
Creates ThisEnt (int), gives it a String ID of Nom (String) and sets it free.

void InitEnt(int, void (*)(), float, String);
Creates ThisEnt (int), gives it a String ID of Nom (String) and commits it to Activity (void (*)()) after RTime (float) time units have passed.

void AddC(void (*)());
Adds CActivity (void (*)()) to the list of Cs to be controlled by CExec.

int GetObsInt();
Queries user on-screen about the desired regular observation interval.

void InterruptMessage(void);
Displays a message on-screen inviting the user to interrupt the running simulation.

float RandNum(void);
Simple random number generator.

float NegExp(int);
Computes a negative exponential variate given its mean value (int).

void EventTraceQuery()
This asks whether the user wishes to create and use an event trace file. If so, then TraceOn is True.

(4). Cexec.*

This contains the following functions which may used in any files that include CExec.h and which are linked to CExec.Obj.

void APhase(void)
Does the time scan and finds any entities now due to change state. Puts them into CurrEntArray.

void BPhase(void)
Takes CurrEntArray and carries out the Bs that are scheduled for those entities.

void CPhase(void)
Tries all Cs until no activity.

void CheckInterrupt(void)
Used to check whether the user has pressed any key so as to interrupt the running simulation. Allows user to continue or halt and interrupted simulation.

void Simulate(void)
The simulation loop.

-1-

