
IPv4 to IPv6 Bump In Stack

Tabitha Tipper
t.tipper@lancs.ac.uk

BSc (Hons) Computer Science
Library Card Number: 0103292

Tuesday 16th March, 2004

I certify that the material contained in this dissertation is my own work and
does not contain significant portions of unreferenced or unacknowledged ma-
terial. I also warrant that the above statement applies to the implementation
of the project and associated documentation.

1

Abstract

This project is based on integrating two different versions of the IP (Internet Protocol).
It enables an apparently IPv4 host to exist on an IPv6 only network, while appearing to
be IPv4 to the applications and users of it. This project has been implemented in Linux
(2.4.x) as a pair of kernel modules to filter network packets by means of a transparent
Bump In Stack (BIS) and a kernel module and userland process that together handle the
IP address inconsistencies which will occur in this host.

Contents

1 Introduction 4
1.1 A basic overview of the architecture. 4
1.2 This Report . 4

2 Background 6
2.1 IP version 4 and its limitations . 6

2.1.1 Address space . 6
2.1.2 Classes . 7
2.1.3 NAT . 8

2.2 IP version 6 and its advantages . 9
2.3 Transitioning to V6 . 11

2.3.1 Tunnelling . 11
2.3.2 Translation . 13
2.3.3 Dual Stack . 13

2.4 DNS . 14
2.5 The GNU/Linux Operating System . 15

2.5.1 Brief description and history of the OS 15
2.5.2 Impact on this project . 15

3 Implementation Background (Technical Unix Information) 16
3.1 Root and other users . 16
3.2 Userland, Kernel Space and the design of the Linux kernel 17
3.3 Devices and the File System . 18

3.3.1 Communication between Kernel Space and Userland 18
3.4 Networking and Unix . 20

3.4.1 Sockets . 20
3.4.2 DNS and Unix . 20
3.4.3 Netfilter overview . 20
3.4.4 Netfilter modules and nf register hook() 21
3.4.5 Netfilter module return codes . 21
3.4.6 Netfilter hooks . 22
3.4.7 Netfilter Protocol Families . 22

3.5 Daemons and Unix . 23

4 Design 24
4.1 Overview . 24
4.2 The DNS Results Hash . 26

4.2.1 Storing the data . 26
4.2.2 Communicating with other modules 27

4.3 The mangling DNS proxy daemon . 27
4.4 The Input/Output Packet Manglers . 28

4.4.1 Identifying packets of the correct protocol 29

1

4.4.2 Checking for mappings . 29
4.4.3 Rewriting . 29
4.4.4 Re-injecting . 30

4.5 BIS Example . 30

5 Implementation 32
5.1 The DNS Results Hash . 33

5.1.1 Storing the data . 33
5.1.2 Communicating with userland . 34
5.1.3 Support Functions and Internals 35
5.1.4 An example of how the DNSRH internals work 36

5.2 The mangling DNS proxy daemon . 37
5.3 The Input/Output Packet Manglers . 38

5.3.1 Identifying packets of the correct protocol 39
5.3.2 Checking for mappings . 39
5.3.3 Rewriting . 39
5.3.4 Re-injecting . 40

6 Testing and Evaluation 42
6.1 The testing network . 42
6.2 The System in Operation . 43
6.3 Design of the tests . 43
6.4 System Performance . 44

6.4.1 Standard Networking Tools . 45
6.4.2 Resolving v4 hosts . 45
6.4.3 Resolving v6 hosts . 47
6.4.4 Reverse resolving of v6 hosts . 48
6.4.5 Use of the MDNSPD as a DNS 48

6.5 Security . 50
6.6 Evaluation Summary . 51

7 Conclusion 53
7.1 Fulfilment of aims . 53
7.2 Revisions to Design and Implementation 53
7.3 Future Work . 54
7.4 Lessons Learnt . 55
7.5 Final Overview . 55

8 Acknowledgements 57

Working Documents may be found at: http://www.lancs.ac.uk/∼tipper/fyp

2

List of figures:
Figure 3.1: Structures of netfilter hooks[47]
Figure 4.1: A simple overview of the BIS architecture
Figure 4.2: Non-Implementation specific detailed architecture diagram
Figure 4.3: IP Stack diagram
Figure 5.1: Implementation specific architecture overview
Figure 6.1: Test network layout
Figure 6.2: Comparing v4 resolving over 993 hosts
Figure 6.3: Comparing v6 resolving over 963 hosts
Figure 6.4: Proxying v4 requests via the test machine over 2000 hosts

List of tables:
Table 6.1: Comparing v4 resolving over 993 hosts
Table 6.2: Comparing v6 resolving over 963 hosts
Table 6.3: Proxying v4 requests via the test machine, over 2000 hosts

3

1 Introduction

A “bump in the stack”[56] at its highest level overview is a totally transparent
transitioning method between two protocols, in this case IPv4[36] to IPv6[8]
(henceforth referred to as v4 and v6).

It can also be seen as a method of allowing v4 applications to be used on a
v6 network. Whereby all their network traffic would be seamlessly modified
so that they think they are dealing with an v4 network when in fact they’re
existing on an v6 one, while the network and all servers on it think they’re
just dealing with another v6 host.

So a BIS (Bump In the Stack) is useful for the point of transitioning whereby
the network is running v6 but all the users applications only work with v4,
and newer versions supporting v6 haven’t been released yet.

1.1 A basic overview of the architecture.

This project uses a fairly modular architecture to perform its operations. It
can be broken down into two main sections, the DNS[35, 48] (Domain Name
System) section and the packet manglers.

The DNS section features two programs, a transparent DNS proxy and a
DNS results hash. The DNS proxy is designed to filter DNS traffic, catching
incoming DNS replies. The idea being that it will catch incoming replies about
v6 hosts, store a mapping between that v6 address and a v4 address in the
results hash and rewrite the DNS response to include that v4 address before
returning it. This way v4 programs may consistently address v6 machines
using a v4 address which will be mapped over.

The packet manglers change all incoming v6 packets to v4 and all outgoing
v4 packets to v6. This means that to the users of the machine it appears to
be an old v4 machine, but it exists to every other machine on the network as
an v6 host. These filters use the data stored in the results hash to translate
the addresses over so that to the inside the rest of the network appears to be
v4.

1.2 This Report

This report beings by covering the background to the whole project: The
characteristics of v4 and v6, transitioning methods between them and the a
chapter of technical background on the Unix OS. These chapters are largely
not specific to this project but cover areas that support it. Then the report

4

moves on to the design of the system, its individual components and the
implementation of those components. These chapters are an in depth coverage
specific to this project. Finally there are two concluding chapters, one on the
evaluation of the system and one as a general conclusion to discuss the project
overall.

5

2 Background

This chapter of the report details the background of the various technologies
involved. It will start by covering v4 and its limitations, followed by cov-
ering v6 and v6 transition methods. This will be followed by a section on
GNU/Linux[29, 15].

2.1 IP version 4 and its limitations

IP is the Internet Protocol[36, 4], it is the protocol that underlies most com-
munication on networks today, such as TCP/IP and UDP/IP. IP was designed
to create a packet switched network i.e. one where discrete blocks of data
are moved between devices. It does not dictate end-to-end reliability, flow
control, sequencing or timing. It simply makes a best effort to deliver each
packet.

IP version 4 was originally created for the ARPANET[17] before there was
even an Internet. It predates DNS and most modern networking technologies.

2.1.1 Address space

The largest weakness of v4 is its address space[53]. Each v4 address is only
32 bits (4 bytes) long, arranged into so called “Dotted Quads”, four integers
between 0 and 255 usually written separated by dots (e.g. 212.159.102.2).
This means that there is a maximum of 4,294,967,296 uniquely identifiable
and fully routable hosts on the Internet at once.

The allocation of this space is controlled by an organisation called IANA, the
Internet Assigned Numbers Authority. They coordinate the distribution of
blocks of v4 addresses to the Regional Authorities (RIPE, ARIN, APNIC,
JPNIC, LACNIC etc), who in turn distribute the address space to providers
who actually use them. It is however up to IANA to try to ensure that the
space is allocated sensibly and fairly (as their tag line states: “Dedicated to
preserving the central coordinating functions of the global Internet for the
public good.”) and they have total control over it.

While it may sound like IANA have a lot of addresses to allocate most of
it is currently allocated[22]. At a recent count (17/02/04) IANA had 89
Class A address blocks free, of the 221 that they own total[10]. This gives
them 16,777,216x89 addresses left to distribute, which is less than a billion.
The current world population stands at 6,353,213,900[60] on 09/03/04. Cur-
rently most of the world’s population is without computers, but since half
the worlds population is lacking adequate access to such basic amenities as

6

clean water[14], and thus cannot utilise IP addresses. But looking to the
future we can foresee a time when each person on the Earth has several al-
ways connected devices, such as computers, mobile phones and other pieces
of technology, many of which are mobile and moving between networks. On
top of this there will be substantial infrastructure needed to support a truly
global communications network. Since IANA cannot provision such an effort
at the minute it seems that v4 as it stands must be considered a passing phase
of technology that is unsustainable into the future, as to use it for such an
endeavour would be ill advised, therefore we must move to v6 at some point.

2.1.2 Classes

When v4 was created a decision was made to break the available address
space up into classes of addresses[42] to create easily manageable chunks of
address space. However while this action simplified the management of the
IP address space it also introduced an inefficiency into the implementation.

5 classes of address were created, named A to E. A is a block of 16,777,216
hosts, B is a block of 65,536 hosts and C is a block of 256 hosts. Class D
is reserved for use with multicasting and class E is a block of IP addresses
reserved for future use. Also several other blocks were reserved for vari-
ous uses[20] common instances of these include: 192.168.x.x, 10.x.x.x and
172.16.0.0-172.31.255.255 which are all reserved for internal network use[41].
Whereas 127.x.x.x is reserved for loop back traffic (i.e. any traffic addressed
here should never leave the host but loop back to its network input instead).

The class D and E addresses are not used to address public machines, so this
leaves the rest of the entire range of IP addresses carved up into classes A -
C. As soon as a site is connected to the Internet (under this system) it needs
to be given an entire class C. Assuming that many sites only need one or
two addresses then this wastes over 200 addresses. Once a site reaches over
256 full addressable machines it would need an entire class B, which would
waste over 65,000 addresses and so on. This allocation system is obviously
inefficient and wastes much of a limited resource.

This class based distribution was stopped in the early 90’s when it was realised
to be a terribly inefficient way of allocating addresses. Not only did it cause
waste but because the address space was chiefly carved up chronologically
with no thought to network topology it caused what became known as “The
Routing Table Explosion”. A temporary fix involving issuing multiples of a
single class and not just stepping up from one to another was used during the
90’s but was surpassed by the current work around.

7

In order to fix these problems a new method of breaking up the address space
was created. CIDR (Classless Inter Domain Routing)[13] which allowed an un-
precedented granularity, splitting blocks between different AS (Autonomous
Systems, i.e. different organisations or groups on the Internet) at the bit level.
Generally this was used to break up individual class C blocks. CIDR reduces
the waste of addresses as only the amount of IPs that are needed at each site
are given to it. More importantly it also reduces the routing table effects as
the Internet can route to a single router at the AS that is responsible for the
class C which then takes care of distributing the packets to each owner of an
address.

2.1.3 NAT

NAT (Network Address Translation)[11] is one of the more common methods
of building networks. It dramatically reduces the amount of v4 addresses that
an organisation needs to request for its network, and as a side effect helps
secure the hosts behind it. The idea behind NAT is that you have a large
group of machines on reserved internal-use only IP addresses (like 10.x.x.x)
and a machine that is set to their default gateway, this gateway machine
performs NAT for them.

NAT works by rewriting the headers of network packets, chiefly those dealing
with the addresses. The idea being that the NAT machine appears to be all
of the external Internet to the hosts inside, and appears to be all the internal
machines to the rest of the Internet. This means that you only need one
fully routable IP address to have a large number of machines accessing the
Internet, currently most companies and many universities make widespread
use of NAT to reduce their use of the IP address space.

The chief problem with NAT is that while a large number of machines without
real IPs can access resources on the Internet they are not full Internet hosts.
The Internet was designed with full end-to-end connectivity in mind. With
NAT internal machines may initiate connections to the Internet but hosts
on the Internet may not initiate connections to internal machines, so they
effectively become half-hosts, able to passively receive information the the
rest of the network but unable to serve any themselves.

NAT machines also present a single point of failure for network outages or
security risks. So if the NAT machine crashes or comes under a [D]DoS
([Distributed] Denial of Service) attack then all the internal machines will be
unable to access the Internet. Similarly if the NAT machine is compromised
then not only can all network traffic going into and out of the network be

8

sniffed but also the NAT machine may be used as a platform for further
attacks on the internal machines.

2.2 IP version 6 and its advantages

v6 is the new version of IP and has been written with many of the lessons
learnt from v4 in mind. It uses a 128 bit (16 byte) long address field which
allows for 3x1038 addresses. This size of address space removes one of the worst
issues with v4. Also v6 doesn’t have classes of addresses, and unlike v4 it has
been broken up around the idea of geographical splits.

An v6 address is 128 bits long, this makes it 4 times longer than an v4 address,
and as demonstrated above the amount of address space is exponentially
larger than v4. However this space is not unstructured and a v6 address
can be broken down into sections[18] to define the hierarchy that look after
the leasing of the addresses[2]. Primarily v6 addresses are broken into two
main chunks, that defining the location of the v6 router for the host, and
that defining the hosts unique interface ID. Both of these are 64 bits. The
Interface ID is generally taken from the network card of the machine. When
a v6 host boots for the first time if its lacking a statically allocated v6 address
it broadcasts (or more technically multicasts as those have replaced broadcast
in v6[19]) to the network, performing router solicitation, that is looking for a
router that will manage its traffic. The router that accepts this request will
take the 64 bits of identifier the host provides and combine them with its own
address to return a fully routable 128 bit long address.

The first 64 bits of the address is broken down into multiple aggregation
sections to enable easy routing, management and location of responsibility
for each address. These include a TLA (Top Level Aggregation Identifier),
NLA (Next Level Aggregation Identifier) and SLA (Site Level Aggregation
Identifier), as well as 8 reserved bits between the TLA and the NLA for future
use.

The full implications of these boundaries are not fully examined yet but one
idea of a structure is that IANA sits at the root of the hierarchy. They
hand address blocks to the Regional Internet Registries (e.g. RIPE, ARIN,
APNIC), who in turn hand address blocks out to National and Local Internet
Registries, for example ISPs and Telcos. These people finally assign them to
the end users of the addresses.

v6 also includes increased support for multicast networking[24], the idea of
an efficient one-to-many communication method using IP. v6 also creates
anycast networking[25], which is similar to multicasting, in that its designed

9

for a central server to send to many clients, but only sends the packets to the
nearest host. That host then being responsible to forward it on.

v6 has been designed to be faster for routers and hosts to process. Its header
fields have been simplified and reduced in number from those of v4 (from
13 down to 8) this should result in an increase in the amount of packets a
machine can process in a set amount of time.

To ease the change over from v4 to v6 there is a reserved block of addresses
as large as the current block of v4 addresses. These map onto each other
one for one[19], these addresses are known as v4-mapped v6 addresses. This
enables current routing and address allocation to continue working during
and after the change over to v6. This is the block of address space where the
first 80 bits are entirely 0s, followed by 16 bits set to 1, finally followed by
the v4 address as the last 32 bits. There is also a similar system (known as
v4 compatible v6 addresses) which is 80 0s followed by 16 bits of 0s then the
32 bit v4 address. This format is used for routers which carry v6 traffic using
transitioning methods over v4 networks.

QOS (Quality Of Service) is properly supported under v6. The headers sup-
port both IntServ[5, 6] and Diffserv[3] types of QOS. IntServ uses the “flow
label” field, and DiffServ uses the “traffic class” field. While there is still
no implemented standard for v6 flow label fields there is an agreed standard
for the traffic class field, since with v4 neither of these methods of QOS is
standardised at all this this represents a major step forward. Since there is
a single standard for v6 networks to use for marking at least some of their
QOS packets this will help domains maintain their QOS SLAs (Service Level
Agreement) with each other.

v6 also includes optional sets of headers that can be used to signal that the
contents are encrypted and include an MD5[43, 1] checksum against which
the encrypted contents can be checked to verify they have not been tampered
with. This adds an additional built in layer of security to the whole protocol,
whereas for v4 each application would have to do its own encryption at the
application layer.

Mobile devices are now seen as an important part of networking, and as such
v6 supports them to a greater degree, the router solicitation method of gaining
an address means mobile devices can move between networks gaining and
losing addresses. To keep them from being lost by the hosts they communicate
with, mobile devices normally have a “home address” to which packets should
be sent in the event a client losing contact with them. A device at this home
address will forward any packets sent to it to the current known working

10

address of the mobile device. The final step is for the mobile device to send
updates to those communicating with it to inform them of its new address. So
while moving between networks will create some delay in communications the
flow between hosts will not be broken. The increased address space available
to v6 means that this use of several addresses for one device is considered far
less wasteful.

2.3 Transitioning to V6

It seems at this point inevitable that the world of networking will one day
move from v4 to v6. This shift may be caused by political pressure from those
interested, or from those with a vested interest in the technology. Alterna-
tively it may be that the limitations of v4 just become too large to deal with
comfortably. In any event the transition is likely to be a slow and piecemeal
affair.

During the process there are likely to be so called islands formed. These will
be separated networks that are largely cut off from the rest of the world,
running the non-dominant version of IP. During the initial phases of the
transition v6 islands will exist, eventually there will exist a plateau where the
v6 islands and now v4 islands exist in balance, the network carved up between
them and many transitioning methods linking them. Finally the balance will
turn against v4 and the older protocol will then exist in separate islands,
communicating with a larger, newer, v6 speaking Internet.

2.3.1 Tunnelling

Tunnelling is a method not of connecting islands of one protocol to a network
of another protocol (for example a v6 island to a v4 Internet), but instead
of just connecting islands together to form their own larger network. This is
a commonly used technique to link research networks running v6 together.
The methods described here are both encapsulation methods i.e. they wrap
one protocol in another to hide it. For example v6 may be encapsulated in
v4 simply by placing the entire v6 packet (including its headers) in the data
section of one of more v4 packets.

6to4 The 6to4 tunnelling method relies on having two routers with v4 addresses. These
routers have their external v4 address with the prefix of 2002 for their v6 address
and appear to act as normal v6 routers however they encapsulate the v6 packets
inside v4 before sending them over the Internet as normal packets. The router at
the other end (which also runs 6to4) reassembles them, unwrapping them from their
v4 encapsulation. After this they continue on their way. The advantage of this is
that it allows you to link various separated hosts via a cheap connection to the

11

Internet and it requires little configuration outside the routers. However it cannot
provide access to the wider Internet for your v6 hosts.

6over4 6over4 acts in a similar way to 6to4 but is designed more for use on a single site
where you have scattered v6 hosts that need to find a v6 router for their traffic.
It uses v4 multicast traffic in order to locate the v6 router on the network. Once
found it encapsulates the v4 traffic inside the data segment of a v4 packet and sends
it out over multicast. This method doesn’t help the v6 hosts communicate with
the v4 hosts, thus limiting its usefulness as a means to transition to an v6 Internet.
6over4 scales quite badly when a lot of hosts on a network use it, creating more
traffic as multicast is largely a broadcast based system.

The tunnels themselves need ways of being setup. The methods described
above are mostly hand configured, in that static tunnels are created and all
the machines involved are carefully configured to work well together. There
are a number of ways to automatically setup and tear down tunnels as they are
needed, which reduces the time required to maintain an island, and allowing
traffic to be encapsulated and sent down them to other islands as its needed.

Tunnel Brokers Tunnel Brokers are automated systems that can be contacted by the
user to arrange for a tunnel to be set up for their traffic. These systems may
be contacted via the web or presumably any other interactive system. They put
the state for the tunnel into place on the network (whatever kind of tunnel it is)
and then returns a script to the user which will configure their host to use the
tunnel. Tunnel brokers are mostly a good method of reducing administration time,
since they automatically set the state in the network and at the hosts machine.
Theoretically they will set both correctly (if setup right) which will reduce the risk
of user error.

Terado Is an automated method to allow hosts behind a v4 NAT to communicate with
v6 hosts via the Internet at large. It works by encapsulating the v6 traffic inside
single UDP packets (which carries some risk as this doesn’t guarantee delivery
but the TCP stacks at each end should resend the encapsulated packet enough to
ensure delivery). These UDP packets should be allowed through the NAT relatively
unharmed, as UDP is less often regulated than TCP traffic. The host directs these
to a Terado server, which unpacks the v6 packet and essentially proxies it onto the
v6 network.

ISATAP Intra-site Automatic Tunnelling Protocol (ISATAP) is a method for a lone v6
host with only a v4 network between it and its v6 router to work as normal. The v6
host sends a DNS query to its name servers asking for a well known ISATAP named
host. It gets the v4 address of that host back. It then encapsulates v6 inside v4 to
communicate with it over the v4 network, soliciting it for an IP address. Once it
has that it tunnels v6 packets inside v4 to the router, which then deals with sending
the traffic down a tunnel to the rest of the v6 network.

12

2.3.2 Translation

A direct way of integrating islands of one protocol to islands of another proto-
col are the translation methods. These are techniques whereby v6 hosts in an
island may communicate with the v4 Internet at large as if they were a part
of it, and in the future such methods will allow v4 islands to communicate
with v6 islands during the transition to a v6 Internet.

SIIT Stateless IP/ICMP Translation[27, 59] is a method that is usually implemented
on routers. This method translates the headers of the packets passing between it
to ensure that the network on the other side sees v4 packets and the island inside
only sees v6. This means that as far as each is concerned all networks are like
theirs. The only problem with this technique is that it doesn’t support multicast,
nor does it support optional header sections (such as the v6 options). Also like more
traditional NATs this translation method is stateless so the SIIT machine appears
to be all hosts on the internal network.

NAT-PT NAT/Protocol Translation[55, 59] is simply put a router that translates be-
tween two protocols. This means that on one side of the network the traffic is v4
for example, and on the other side is v6. This is one of the more useful techniques
in order to transition between the two systems as it means you can slowly move
over in islands and each island will think the entire Internet speaks the same IP
version. The NAT-PT router also has a pool of v4 addresses so that it appears that
full end to end connectivity exists and unlike SIIT a session can exist between a
host on the inside and a host on the outside. However since this method requires
several v4 addresses per NAT-PT router space.

SOCKS SOCKS servers are essentially application layer gateways. Applications use the
SOCKS libraries, which wrap around standards sockets and communication with
the server. The server manages connections to the outside world, since it normally
performs NAT (SOCKS is used for regular v4 networks which don’t want full NAT)
then it can translate the protocol on the fly as well.

BIS Bump In the Stack is similar to SIIT, and can simply be thought of as a translation
method for a single machine. In this case the internal view of the network is of one
protocol (e.g. v4) and the rest of the network sees traffic emerge from the machine
fitting another protocol only (e.g. v6), neither being aware of the other. BIS is
described further in many other parts of this document.

2.3.3 Dual Stack

One final transitioning technique is simply to ensure that all hosts have both
a v4 stack and a v6 stack, and can talk both protocols. However this solution
has problems in that it does nothing for many of the v4 issues, it just enables
us to live with them on more congested networks.

13

DSTM (Dual Stack Transitioning Method) is a modified version of this, in
that you have all machines with two stacks (v4 and v6) but only the v6 one
by default has an address. If a host on the network requires a v4 address
to communicate with another host (or a request comes in for that FQDN
(Fully Qualified Domain Name) in v4 protocol) the host communicates with
a DHCPv6 server (Dynamic Host Configuration Protocol) and requests a
temporary assignment of a v4 address. Once its finished the communication
it releases the address. This way a relatively small number of v4 addresses can
be used by a number of v6 hosts, assuming that not too many are requested
for at once and that the DHCP server doesn’t get flooded with requests.

2.4 DNS

Understanding a lot of this project requires understanding parts of how DNS
operates. DNS is mainly used to control the mappings of an FQDN to an
IP address (or addresses). This means that the user and their applications
can refer to a resource by its name (for example cent1.lancs.ac.uk) while the
network itself can deal with numbers, this helps both parties as people find
it easier to deal with symbolic names and the network routing relies on being
able to divide the world into numerically named hosts, some of whom route
traffic to other hosts. Traditionally nameservers are run on port 53 and accept
UDP packets containing a query. They search their own information, or if
they don’t contain the information required check other name servers further
up the hierarchy.

DNS traffic is composed of a header section, which includes a flag for if this
packet is a query or a response, as well as the number of questions and
“resource records” attached. Generally queries are sent to the server with
a number of questions attached to them. The server then returns the same
header section, with the flag set as a response, it has the questions attached in
the same order and all the responses are attached in formatted blocks of data
known as “resource records”. These contain the information asked for (e.g.
the IP address that is assigned to that name) or other pertinent information.
If DNS cannot answer a question, even trying from the top of the hierarchy,
then it will just return the headers and questions with no resource records
attached.

For example www.lancs.ac.uk is an FQDN. If we perform a type A query on
it we will be requesting the v4 address associated with that FQDN. Currently
i is mapped to 148.88.1.1 (an v4 address) so the name server will return a
response with a resource record attached of type A with that address in.

14

However DNS can also be used for a variety of other looks up on FQDNs.
It can look up v6 addresses (type AAAA), the Mail exchanger (MX, the
machine that accepts mail for that domain), the name server responsible
for that domain (NS), the canonical name of a host (CNAME), to look up
FQDNs from IP addresses (PTR, also known as reverse query) and even to get
miscellaneous text information about the host (TXT). This project is mainly
concerned with the type A query (v4 lookup) and type AAAA query (v6
address lookup), although it also deals with PTR queries (reverse mappings).

2.5 The GNU/Linux Operating System

2.5.1 Brief description and history of the OS

The Linux operating system is a reimplementation of the Unix operating
system. The kernel (which is the only part truly called Linux) was designed
initially for for the x86 architecture CPUs, as produced by Intel, AMD and
originally IBM. It was created by Linus Torvalds[28, 37] while he was a student
at Helsinki university and released under the GNU GPL license[16]. This
has enabled it to be distributed, modified and examined by thousands of
programmers around the globe. The official version is still maintained by
Linus Torvalds and a core group of kernel hackers[34]. Official releases are
being distributed from www.kernel.org.

Traditionally the bulk of the userland programs to compliment the Linux
kernel are from the GNU project[15] (as well as many individual ones). These
form the bulk of the system that users interact with (the C library, compiler,
editors, init, the servers etc.) and so many people insist that the Operating
System should be referred to as GNU/Linux to properly reflect the input of
the GNU project[51].

2.5.2 Impact on this project

This project is based around modifying the Linux kernel by writing several
modules for it, one to store data and a pair of modules to modify the opera-
tions of the the netfilter[32] packet-filter (which is part of the Linux kernel).
This task has been made easier because the source for both these projects
are open, and numerous websites, mailing lists and usenet groups cover the
attempts of people to modify them.

15

3 Implementation Background (Technical Unix In-

formation)

This chapter deals with technical background information that is more specific
to the environment that this project will be implemented on than the previous
background chapter. Chapter 3 deals entirely with the parts of the Unix
operating system that are pertinent to the system, covering the root user,
the differences between the kernel and the rest of the system, device files,
networking with Unix systems and finally Unix daemons.

3.1 Root and other users

All processes which run on a Unix host[34], including interactive shells which
users interact with, the GUI and network servers, have several properties.
Chief among these is which user account they run under, known as their UID
(User IDentification) which identifies which account the process is running
under. This determines what they can do in terms of connections to the
outside world (as Netfilter can filter based on users), what files they can
access, how quotas affect them and who can send them control signals (to kill
them, restart them, pause them etc).

The Unix operating system is designed around several simple core ideas, one
of which is the division of the user accounts on the system into two categories,
root and all other users. The root user is defined as any account with a UID of
0, it is the account used for system administration and the running of certain
key processes and its powers are unrestricted on a normal Unix machine
(variants do exist in which root’s power is limited for security[31]).

The root account can access any file, doing anything to it including deleting
it. Processes running as root can bind to the restricted ports (all networking
ports below 1024 are considered to be of use only for servers, and thus normal
users cannot bind to them[21]), change the CPU priority and quota (both
disk and memory) for other processes or even modifying the kernel of the
operating system itself. The root account on a Unix system is powerful,
therefore any mistakes made by a process running as root (or a user logged
into an interactive shell which is running with root permissions) can be very
bad for the system, including destroying it to the point where it needs to be
reinstalled. Needless to say that the security of the root account is paramount
on a Unix machine.

This is important to note for this project because it features one program
that runs as root and also three kernel modules which must be loaded into

16

the kernel of the operating system by the root account. The implications
of this are that no normal user can install this system on their computer,
they require access to the administrator account. It also means that the
implementation of this project will be in a potential position to seriously
damage the machines it is installed on.

3.2 Userland, Kernel Space and the design of the Linux kernel

Linux is a classic monolithic kernel[52] and forms the centre of the entire
operating system. From the point of view of traditional operating system
design all code execution falls into two broad categories. user land and kernel
space. Kernel space is those instructions that are executed inside the kernel
itself, for example receiving packets from the network or committing data to
the disks. All other instructions are part of (what is known in traditional
Unix parlance) as userland[40].

The Linux kernel, while still following the traditional monolithic model in
most places, is more modular[49] than older implementations of the Unix
kernel. It has been designed so that modules of code that perform certain
functions (device drivers[26], filesystem drivers, networking filters, etc) may
be loaded and unloaded to a running kernel, modifying what it can do without
needing to take down the entire system and reboot it. The root account can
insmod or rmmod (INSert, ReMove MODule) modules by hand, or they may
be loaded as they’re needed (which is common for file system modules, to
only stay in memory while filesystems of that type are being used). This
allows the kernel to stay more organised and compact in size as a lot of its
code is modular. However since these modules are loaded completely into the
kernel if they have errors in them they can crash the kernel which is known as
causing a kernel panic. This generally causes the machine to need to be hard
rebooted, although many times systems may be able to reboot themselves.

If things are not part of kernel space then they exist as part of userland[9].
Processes here essentially run inside sandboxes. They are subject to restric-
tions on their CPU priority, memory usage (they can only access what is
allocated to them, the kernel may access all memory) and access to hard-
ware and the filesystem. Userland processes form themselves into a tree-like
structure, the root of which (the first process) is known as “init”. init is the
first process spawned on a system, and is created directly by the kernel, it
forks to create all other processes and takes care of orphaned processes (child
processes whose parents die before they finish).

It is important to understand this distinction to understand the implemen-
tation of this project, as it features a split between components that exist in

17

kernel space and those that exist in user land, errors in the former being far
more urgent than those in the latter.

3.3 Devices and the File System

Unix systems traditionally have only a few simple rules backing the way that
programs and the system interacts. Chief among these is that everything is
a file[61]. On Unix systems access to the hardware devices is represent by
access to files. These files generally live in a directory in the root of the system
called ’/dev’. These files are linked via deep magic[39] to the device drivers
in the kernel of the OS. Doing things to these files results in the kernel doing
things to the device itself.

A classic example of this behaviour on a Linux system is ”cat foo.au >
/dev/audio”. This example works in a fairly simple way, cat opens the file
foo.au, which is a file containing encoded audio data, and pipes its contents
into the device /dev/audio (which on many systems is a symbolic link to au-
dio0, allowing the sysadmin to easily change what the standard audio device
is by linking it to another file in /dev), the kernel opens the module that
controls that audio device and runs a standard function inserting the data
that is offered by the shell. The end result is that the sound file is played by
the kernel module that controls the soundcard, and sound being outputted
to the speakers.

The implementation for this project features a kernel module (the DNSRH)
which is linked to a device file in this manner and so knowledge of how this
is done will be helpful to fully understanding how this module works.

3.3.1 Communication between Kernel Space and Userland

There are two major ways for there to be communication between Userland
and Kernel space. The first is system calls[58]. System calls are function calls
that trigger a function to be run inside the kernel and the response to be
returned, appearing to be a standard function in a library. The other method
is for a module to be represented as a device in /dev and for it to have a
set of functions that are associated with IOCTL numbers[44] (Input Output
ConTroL).

IOCTL is the name of the syscall that is used to perform special operations on
these device files, things outside of the standard opening/reading/writing etc.
Traditionally this has included such things as low level hardware diagnostics
and tests. IOCTL calls require only 2 things, a device file to operate on and
the number of the function to request from that kernel module, optionally

18

they can take a pointer to some data in memory as well, which can be a
struct of multiple values if needed, which allows you to pass information to
the device to control how it performs the operation, or gives it space to fill in
the structure with information about the success or failure of its attempted
operation.

The most interesting advantage of this model of access is that you can use the
filesystems normal permissions model to limit access to the kernel modules
to certain users or processes. For example /dev/dnsrh (which is part of
the implementation of this project) on my system has the permission bits
“crw——-” and is owned by the root user, and is in the root group. The
standard permissions model for Unix systems is to break them into three
groups of three permissions. These are permission for the owner of that file,
the group of that file and all other groups, and they’re always rwx (Read,
Write, eXecute). Device files also have a bit at the start to declare if they
are for block devices (which deal only in chunks of data of a certain size, for
example hard disks) or character devices (which deal with streams of bytes
for data, such as parallel ports). These permissions mean that only processes
running as root may access this character device. And those processes may
only read data from it or write data to it. Other processes, even those in the
root group, cannot even read data from it.

This security model means that checking for certain permissions, user IDs or
secrets/passwords is not done by the library or the module itself, all the com-
plicated authorisation is done by the filesystem giving the sysadmin greater
control over the module, and means the module author has less complicated
code to write which should make their module more reliable and secure. For
example the sysadmin may change the ownership of the device to a less priv-
ileged user and quota the amount of CPU time that user may use, or the
priority with which that users processes run. Then by running the programs
that use that device as that user all processes that use that module can be
restricted in terms of CPU, disk and network usage and don’t need to be run
as the potentially dangerous root user.

Knowledge of the inner workings of the Unix device file system of accessing
hardware and kernel modules is not needed to understand the implementation
of this project. However understanding the overall concept behind the linking
of IOCTL calls and the /dev file system will help.

19

3.4 Networking and Unix

3.4.1 Sockets

The Linux operating systems uses the BSD sockets style of networking[12, 46],
in which an abstraction of a tunnel of traffic with a socket at each end, where
data is piped into one socket will appear at the other socket. This has been
the standard model of networking programming for many years and is used
in many operating systems including the Unixes, Microsoft’s Windows and
Apple’s MacOS.

3.4.2 DNS and Unix

DNS on Unix systems is traditionally controlled through the use of three
configuration files (I will be ignoring more modern distributed methods such
as NIS for the purposes of this report), all of which are stored in /etc, which
is the main place for config files for the whole system.

host.conf This stores the overall config and decides in which order the next two files
are consulted. Its gives an order for the use of two possible variables, “hosts” or
“bind”. “hosts” refers to /etc/hosts and “bind” refers to the use of /etc/resolv.conf

hosts Hosts is simply a flat text file that lists a number of IP addresses and the FQDNs
that these are linked to. It can be used to list hosts in a small network without
DNS, as a backup in case DNS fails (although for modern networks this is not
advised) or to store local aliases (such as linking 148.88.8.1 to “cent1”) to reduce
lookup times. The use of hosts predates the existence of DNS and was originally
the only way to match a symbolic name to an IP address.

resolv.conf This file lists the nameservers that this machine should query, starting with
its primary NS and moving onto any backup name servers that exist. It also has
an option called “search” in it, this is used to append a domain to hosts without
one. For example if it was set to “localnet” and a user attempted to look up the
hostname “otto” it would search for “otto.localnet”.

Of the several name servers that are available for Unix systems this project
will be making use of BIND[23] (Berkeley Internet Name Daemon) for its
testing. This is one of the original name servers that were created and has
versions for all Unixes (including MacOSX) as well as Microsoft Windows
systems. BIND is a large and complex program that runs as “named” on
Unix machines (the Name Daemon).

3.4.3 Netfilter overview

Linux has a stack that is built into the kernel. It supports v4, v6, Decnet and
a host of other protocols. Packets themselves are represented as a large and

20

complex struct called an sk buff[63] (see /usr/src/linux/include/linux/skbuff.h).
The packets themselves are filtered, routed and modified by a section of the
kernel known as Netfilter[32]. Netfilter centres around the concept of hooks,
which are critical points in the path of a packet (such as its entry to the
system, or just before its passed to a user process that is waiting for it), and
as such are the best places to place filters to modify traffic on the machine.
Understanding the basic concepts of Netfilter is crucial to understanding the
implementation of two of the three modules of code developed for this project.

3.4.4 Netfilter modules and nf register hook()

The Netfilter architecture[64] allows a simple way for modules to affect the
flow of packets. The module constructs a static struct of type nf hook ops,
this lists the function that the packets will pass through, the family of packets
and the point of the path (known as the hook) you’re module is interested
in. When a module is loaded it can call nf register hook[47] and pass that
function its nf hook ops struct, from then on its function is inserted into the
stack at that hook point and has a chance to modify all packets which pass
through that point of the stack. Essentially nf hook ops details what kind of
traffic and at what point in its path you want to see, whereas nf register hook
“switches on” the filter by registering it with the stack.

3.4.5 Netfilter module return codes

The function that modifies the packet must return one of 5 returns which
are stored in enumerated types. NF ACCEPT, NF DROP, NF STOLEN,
NF QUEUE and NF REPEAT[62].

NF ACCEPT Allows the packet to continue on its path through the stack with what-
ever modifications the function did to it.

NF DROP Means the stack will carefully prune the packet from the lists its currently
on and free its memory.

NF STOLEN Returning NF STOLEN means that the packet is removed from its lists
and totally forgotten about by the packet filter. Netfilter will not clear up behind
the function, nor will it do any checking, it will simply carry on to the next packet.
From here you can do anything with the packet.

NF QUEUE Sends the packet out to a userspace process that can then modify the
packet and return it back into the stack or drop it. This allows for more function-
ality to be implemented by userland processes, which in event of a failure are less
dangerous as they cannot crash the entire system, just lose packets.

NF REPEAT Sends the packet around through the function again.

21

3.4.6 Netfilter hooks

There are 5 main hooks in Netfilter NF IP PRE ROUTING, NF IP LOCAL IN,
NF IP FORWARD, NF IP POST ROUTING and NF IP LOCAL OUT[45].
The first three affect incoming packets, the last two affect outgoing packets.
How these feed into each other is displayed in figure 3.1

Figure 3.1: Structure of netfilter hooks[47].

Packets arrive on NF IP PRE ROUTING and from there are sent to ei-
ther NF IP LOCAL IN or NF IP FORWARD. Packets on NF IP LOCAL IN
progress through all the rules on that table and once they reach the end
they are delivered to the user process they should be sent to. Packets on
NF IP FORWARD are mangled and forwarded off other network interfaces
by being sent to NF IP POST ROUTING, this hook is used to create NAT
routers for example.

NF IP LOCAL OUT is where locally created packets are first placed. At this
point any filters that affect their overall makeup should occur. After they’ve
passed through this hook they’re passed onto NF IP POST ROUTING, which
does any last minute changes not based on routing them and finally places
them on the wire.

3.4.7 Netfilter Protocol Families

Netfilter also knows about several families of protocols, these include PF INET
and PF INET6 for the v4 stack and v6 stack respectively. For the v6 stack

22

the hooks discussed above are named in a similar way with ’6’ inserted after
the IP. So there is NF IP6 POST ROUTING and NF IP6 PRE ROUTING
for example.

3.5 Daemons and Unix

Traditionally under Unix systems there is a class of persistently running pro-
cesses, the most common of which seem to be networking servers, that are
referred to as daemons[38]. These processes wait in the background for a
specific event (normally a connection attempt from a client) and follow the
traditional client-server model for communicating. Generally they provide
some service or abstraction for the user.

There is a fairly standard model for programming network server daemons.
First the program binds to its port and listens for input. Then every time it
gets a request on that port it forks a child process. The child process does
all the data processing and even returns the response, meanwhile the parent
server returns to listening for another request.

Fork used to be the best method for doing this, however whenever a process
forks (using the fork() system call) it creates two nearly identical copies of the
process at the same execution point. The only difference between them is the
return value of the fork() call. The idea being that the program examines this
return value at this point and the parent and child choose different execution
paths.

In modern Unixes there is a library for threading called the pthread library
(for POSIX Threads)[50] which enables you to create lightweight threads, not
quite a processes in their own right, more a function that is run in the same
memory area as the main processes but with its own flow of control. These
reduce the weight of having to spawn an entirely new process each time a
new connection comes in, as they are generally implemented as true kernel
level threads instead of user level threads. This means the kernel doesn’t
just spawn another processes to represent the thread (which would still have
expensive context switching) but instead has knowledge of creating truly light
threads.

23

4 Design

The design chapter contains details of an non-implementation specific archi-
tecture for a BIS. This means that the design that is discussed in this chapter
could be implemented pretty much for any operating system using several
methods for each section. The next chapter (Implementation) covers the sys-
tem that was actually built as part of this project to the design laid out in
this chapter.

4.1 Overview

The Network

Bump In The Stack

IPv4 Traffic

IPv6 TrafficIPv6 Traffic

IPv4 Traffic

User Processes

Figure 4.1: A simple overview of the BIS architecture

The above figure (4.1) gives a very simple overview of the idea behind a bump
in the stack. That there is a transparent filter between all user processes and
the network at large. This outgoing filter (bump in the stack) translates all
their outgoing packets from protocol A to protocol B, and incoming traffic is
then translated from B to A.

This project is designed around the normal design of a BIS but has several
constraints over it. These have been decided based on the environment that
its being designed for which is a Linux specific environment. These constraints
will be reflected by the design choices made later. Its also being written as
a method of helping the transition towards v6, and for this reason translates
from v4 to v6, with the inside of the machine appearing to be v4 and the
outside v6. A more specific, and less black-boxed, design for this implemen-
tation of BIS is shown in figure 4.2.

24

IOPM

MDNSPD

Upstream NS

DNSRHv4tv6pmv6tv4pm

IPv6 Traffic

User Processes

IPv4 Traffic

The Network

Figure 4.2: Non-Implementation specific detailed architecture diagram.

Thus this project can be loosely broken into three large chunks. Firstly the
DNSRH (DNS Results Hash) which is responsible for storing the mappings
between v4 and v6, secondly the MDNSPD (Mangling DNS proxy daemon)
which deals with resolving DNS requests and returning fake addresses for
v6 hosts. Finally there is the IOPM (Input and Output Packet Manglers)
which actually translate the incoming packets from v6 to v4, and the outgoing
packets from v4 to v6, translating the addresses based on the information in
the DNSRH.

25

The diagram above (figure 4.2) shows the interactions between the elements,
and between other parts of the system. As you can see the MDNSPD is the
most visible element of the system to the outside world. It forms the interface
by which all user processes communicate with the DNSRH and is the only
way new mappings can be added. It looks up DNS queries via an off-machine
name server, and stores its results in the DNSRH for future use, this enables
v6 machines to be consistently addressed by a version 4 address.

The DNSRH never initiates communication with the other elements, instead
it simply sits in the kernel waiting to be queried by the MDNSPD and the
IOPMs. The IOPMs intercept all incoming packets just as they arrive and
all outgoing packets just before they are sent, query the DNSRH for the
mappings for those addresses and rewrite the packets appropriately. This
means that the translation will seem to not occur as its the first and last
steps for all packets.

A full example of how the different parts of his system fit together is in section
4.5.

4.2 The DNS Results Hash

The DNSRH is the largest module in terms of system resources consumed.
The job of the DNSRH is to store the mappings between the external v6 ad-
dresses of real machines and the fake internal v4 addresses which applications
on the machine will address packets to. This means that for every v6 host that
the BIS machine has queried there will exist a mapping between its v6 address
and a v4 address (and one back the other way) in the DNSRH. Its tasks can
be broken down into two sections, storing the data and communicating with
userland.

4.2.1 Storing the data

The most important factor in the management of the data for the DNSRH
is speed. Retrieval speed of the data, and the speed with which a v4 address
can be mapped to a v6 (or vis-versa) is the most important part. The speed
of storing a v6 to v4 mapping is less important.

The reason that mapping speed is the most important factor of this module
is that poor implementation at this stage will result in a loss of performance.
Every single packet that enters or leaves the machine needs to have a lookup
performed in the DNSRH and then needs to be rewritten. Obviously if the
lookups are slow then network access will be slow, the faster the lookups the
less impact a lookup in the hash will have and the less impact on the machine’s

26

performance will be noticed. Since a major goal of this transitioning method
is transparency then it must be as fast as possible to avoid breaking this by
slowing down communication with the network.

In contrast the adding of an element to the Hash is done only when DNS
lookups are required, which is a relatively rare process compared with packets
needing filtering. Therefore this function can be relatively slower than the
mapping speeds, taking time to create an efficient hashing method to speed
up the mappings.

For reference a design decision about communication with userland was made
in that a standard struct will be used which contains both a v4 and a v6
address worth of data. This means that all functions calls (adding a v6,
looking up a v4 or a v6) require the use of only one type of struct as the
answer will be written over the appropriate space in it for the functions that
look up data.

4.2.2 Communicating with other modules

The DNSRH is a section of code that exists only to store data. The way
that networking works insists that client programs (such as the IOPM or the
MDNSPD) query it for data and it wait to service clients between queries.

The API to access the DNSRH has been designed to be fairly simple and only
three calls will be implemented and externally accessible to the other parts
of this project.

addV6Addr() accepts an v6 address and assuming one doesn’t already exist generates
an v4 address to map to it. It then stores this mapping and returns the v4 address.

checkForV4() accepts an v6 address and returns the v4 address that it maps to, or
returns all 0s to say there wasn’t one.

checkForV6() accepts an v4 address and returns the v6 address that maps to it.

The DNSRH will be implemented such that these three functions are avail-
able to the MDNSPD, and that at least the checkForV4() and checkForV6()
functions are available for use by the IOPMs.

4.3 The mangling DNS proxy daemon

The MDNSPD is designed to sit between the user processes and a normal
name server (known as the Upstream Name Server). The program is designed
to be running on the local machine, and configured to be the machines only

27

name server. Therefore all DNS queries will be sent to it, and answers will
appear to originate from it, as opposed to the upstream name server. This
proxy daemon must be as transparent as possible to the end user, to the point
of view of programs it is the upstream NS.

Since it is transparently intercepting all DNS responses it will check to see
if any of them include v6 addresses as one of their resource records. If they
do the MDNSPD will use the DNSRH to generate a new v4 addresses and
rewrite the DNS response correctly before returning it.

The MDNSPD is also designed to deal with the issue that all internal processes
think the machine is a v4 host, whereas the network its residing on will be
a v6 network, and thus largely populated by v6 hosts. This means that the
processes running on localhost will largely be sending out type A queries
(which are queries for the v4 IP address of a host).

The MDNSPD must therefore test to see if these queries return responses and
if they don’t try the same questions with an AAAA (v6) query, translating
any response records received from this from v6 addresses to v4 addresses
with the aid of the DNSRH. This way the querying processes will only have
to deal with type A queries and type A resource records, yet the nameserver
which only has mappings of type AAAA for those hosts will return their
addresses.

4.4 The Input/Output Packet Manglers

This project revolves around a pair of IOPMs (Input/Output Packet Man-
glers). One that mangles all outgoing packets after all other filters, and one
that mangles all incoming packets before all other hooks. The outgoing filter
is the v4tv6pm (Version 4 To Version 6 Packet Mangler) and the incoming
filter is the v6tv4pm (Version 6 to Version 4 Packet Mangler). Both of these
modules rely on the existence of the DNSRH (which in turn relies on the exis-
tence of the MDNSPD to populate it). Without the DNSRH being available
they won’t function correctly and may cause interesting networking issues
depending on their implementation.

Once the IOPM is loaded the stack will resemble the block diagram shown in
figure 4.3.

28

User Process

v6 TCP/UDPv4 TCP/UDP

DNSRH

IOPM

v6 Stack

Network

Figure 4.3: IP Stack diagram.

4.4.1 Identifying packets of the correct protocol

The first task of each filter is to correctly identify the packets its interested
in. The v4tv6pm should catch all outgoing packets, looking for v4 packets
and only v4 packets. The v6tv4pm should catch all incoming packets before
other filters and look only for incoming v6 packets.

4.4.2 Checking for mappings

The packet manglers at this point need to check for mappings. The v4tv6pm
uses the checkForV6() function of DNSRH, passing it the v4 address of the
outgoing packet. The v6tv4pm module uses checkForV4(), looking for a cor-
responding mapping to its v6 address in the hash.

4.4.3 Rewriting

The IOPMs at this point must rewrite the packets. They must change all
the protocol information so that the packet changes protocol. This includes
changing all elements of the structures that relate to their protocol and also
rewriting their headers. Both packet manglers must create a new header
struct of the correct type (either v4 or v6), translate the old header into it,
remove the older header and replace it with the new one. They also have to

29

ensure that the packets checksums are correct and all internal lengths relating
to the headers are correctly adjusted. The addresses must be written in based
on the lookup from the hash earlier.

4.4.4 Re-injecting

Now the packets are fully changed over to their new protocols, and the ad-
dresses are rewritten they must be replaced on the stack to proceed onto the
wire as normal. The original packets must be removed to prevent double the
transmissions occurring.

4.5 BIS Example

An example of how all these sections fit together can be shown by demon-
strating how a user using a web browser would be able to transparently com-
municate with a v6 only web page to view a page of content.

1. A web browser looks up the FQDN www6.v6.localnet Because the web-browser is
a v4 application it sends a type A query (v4 lookup).

2. The MDNSPD is the only nameserver for the machine, it sends the type A query
to its upstream nameserver.

3. The upstream server returns a response. Unfortunately www6.v6.localnet doesn’t
have a v4 address so the upstream server returns a DNS query with no resource
records attached.

4. The MDNSPD rewrites the DNS query from a type A (v4 address) to a type AAAA
(v6 address) and resends it to the upstream server.

5. The upstream server sends back a response with a type AAAA resource record
attached with the v6 address of www6.v6.localnet which is fec0:1:2:3::f:5

6. The MDNSPD sends the v6 address to the DNSRH.

7. Since the DNSRH hasn’t seen the address fec0:1:2:3::f:5 before it creates a new v4
address to map it to (240.0.0.6). The DNSRH then adds this pair to the hash tables
and returns 240.0.0.6 to the MDNSPD.

8. The MDNSPD rewrites the response from the DNS server so that its of type A,
and now includes the address 240.0.0.6

9. The users web browser gets the answer 240.0.0.6 to its query of the IP address. It
now starts a TCP connection to that address.

30

10. The outgoing packets are identified as v4 (this in fact happened for the DNS traffic
earlier but it wasn’t mentioned for clarity). The outgoing filter checks the DNSRH
for 240.0.0.6 and finds fec0:1:2:3::f:5 which it then writes into the packet, changing
the packet to make it a v6 packet.

11. The packet is transmitted, and has the v6 address of the machine running the BIS
as its source address. It arrives at the machine www6.v6.localnet

12. The incoming reply from www6.v6.localnet arrives at the machine. The IOPM
sees that it has a source address of fec0:1:2:3::f:5 and looks this address up in the
DNSRH. The filter rewrites the packet to be v4 and changes the source address to
240.0.0.6 based on the response from the hash.

13. The web browser receives a response and a TCP connection is established.

14. All further packets are translated in this way, enabling a v4 only web browser to
view web pages from the server at www6.v6.localnet even though that machine only
communicates via v6.

The above example fits the non-implementation specific design that has been
discussed in this chapter. The next chapter deals with the specifics of the
implementation that was created for this project.

31

5 Implementation

This chapter details the details of the implementation of this project, as such
it contains many technical details which are very specific to the C language,
the Unix environment and IP networking. All of the technical information
needed to understand this should have been contained in all previous chapters.

localhost

user space

User Processes

kernel space

NF_IP_LOCAL_OUT

NF_IP6_POST_ROUTINGNF_IP6_PRE_ROUTING

NF_IP_LOCAL_IN

Upstream NS

MDNSPD

/dev/dnsrh

DNSRH

eth0

v6tv4pm v4tv6pm

Figure 5.1: Implementation specific architecture overview.

The diagrams used in the design chapter were implementation agnostic, in
that they were created to show how the system was designed and no feature
any part that is only about how this version was implemented. This diagram
(figure 5.1) shows how this implementation of the design was actually created.
It shows the division between the three kernel modules (v4tv6pm, v6tv4pm,
which together form the IOPM and the DNSRH) as well as the flow of packets
through the Netfilter hooks. It also shows how the MDNSPD communicates
with the DNSRH (via a IOCTL calls to a character device) and the upstream

32

name server. Figure 5.1 serves as the blueprint that will be discussed in the
rest of this chapter.

5.1 The DNS Results Hash

The DNSRH has been implemented as it was designed in section 4.2. However
the design above doesn’t include the actual technical details of the final version
of the project.

Because the DNSRH is being implemented as module for the Linux kernel
then the language that must be used is straight ANSI C without any standard
libraries, as the kernel is not linked against any library at all (in order to
reduce dependencies and size). All the functions that were stated as forming
the API in section 4.2.2 will be prefixed with dnsrh so that any symbols
exported by the modules will not pollute the Linux kernel’s name space with
ambiguously named functions.

5.1.1 Storing the data

In the implementation of the DNSRH the mapping information is in fact
stored in a pair of Hashes. This model was chosen because the actual Hashes
themselves are simply a pair of arrays of pointers and thus are cheap in terms
of resources (the exact figure is compiler dependent by assuming a pair of 500
element arrays with 4 byte pointers means 4008 bytes total). The part that
is expensive in terms of computational resources is the storage of the data
itself. Each mapping is represented as a an ip pair struct (each of which is
20 bytes and a pointer in length, this enables it to store a single v4 and a
single v6 address). Since the hashes are limited at 16,000,000 elements (the
entire 240.0.0.0/4) then this means the kernel hash can theoretically grow to
be 312,500 bytes (305Mb) at its maximum size. Assuming that the hash is
ever filled (all v4 addresses are used) then it will start to overwrite entries on
an oldest first basis on the theory that the older the mapping the less likely
it is to be currently in use.

The functions that generate hash keys (hashV4Addr and hashV6Addr) them-
selves are designed around the principle of converting the addresses given to
arbitrarily large numbers and using the modulus operator on them to ensure
they are within the boundaries of the hash. Creating an algorithm which
could turn a v6 or a v4 into the same key would render the use of two hashes
pointless, however such an algorithm would be a large and complex thing to
create. Because of this both functions work simply by multiplying all the
sections of the addresses together, which is quite likely to wrap around the
machines representation of an integer number, going from its maximum to
minimum value.

33

The current method of hashing is a rather primitive method created for this
project. It is however both fast and robust. Fast because although multiplica-
tion is slower in computational terms than addition it should produce a large
enough spread of data to help ensure the hash is more efficient and that data
is spread correctly through it. Its robust in that its easy to understand, thus
you could work out by hand what each hash could would be for an address to
debug the module if you so needed.

Because the algorithms used cannot guarantee that the hash keys generated
will be unique to the data stored in the hash (and the hash itself certainly
doesn’t have enough elements to ensure this will happen) the data structures
used (ip pair structs) are designed with a pointer in them. This enables
“chains” of data to be constructed after each hash key. While this reduces
the efficiency of the structure (as the algorithm may have to look up the key,
then follow to the end of a chain with no length limit), this again has been
written in order to have a faster and more robust set of algorithms for dealing
with the hash rather than a more elegant system.

The DNSRH exists as a kernel module, this means that the data stored in
the hash can never be moved out of memory and into swap. If the system
running the DNSRH is under heavy load, and has had a lot of DNS queries
performed then it has less memory to deal with other processes. However this
means that the system running the DNSRH and MDNSPD as a combination
facing the Internet have a new and very dangerous DoS (Denial Of Service)
attack open to them.

5.1.2 Communicating with userland

The DNSRH uses three IOCTL calls for its communication with userland
processes. These are bound to the following functions: dnsrh addV6Addr(),
dnsrh checkForV4() and dnsrh checkForV6(). All three IOCTL calls expect
pointers to ip pair structs which contain the data needed for them to operate.

addV6Addr takes an ip pair struct and uses the v6 address in that struct, checking for
its presence in the v6 hash. If it finds it it writes the mapped v4 address into the
users struct and returns from the function. If it doesn’t it generates an v4 address,
inserts this new pair in the v6 and v4 hashes, fills in the users struct and returns
to indicate it added fresh data to the hash. If it finds a matching v4 address it
overwrites that entry in the hash for spacing saving reasons.

checkForV4 takes an ip pair struct and extracts the v6 address from it. It checks the
v6 hash for a matching v4 address and writes it (if found) into the users struct.
It returns an integer based on if a match was found, assuming it wasn’t it will
overwrite 0s into the v4 section of the struct it was given.

34

checkForV6 essentially performs the opposite of the checkForV4() function, except it
extracts the v4 address and searches for a v6 match. Both these functions operate
by linear scans of the hash tables and thus the amount of time they take to run
depends upon if

All the functions that deal with the data structures (addV6Addr, checkForV4,
checkForV6) have their performance directly affected by how full the hash is.
The data in the hash is indexed by key, but the key generation is designed
to be random yet consistent. This should lead to a good distribution of data
across the hash for the most efficient performance. However the algorithm
used (section 5.1.1) is probably not that good at its job, which will lead to
bunching of data in clumps. To get around this problem the data is designed
to be chained so that in event of more than one address generating the same
key they do not overwrite each other.

5.1.3 Support Functions and Internals

The internals of the DNSRH are implemented in the simplest fashion possible
on the basis that simple code is correct code. There are four support functions
(compareV4(), compareV6, hashV4Addr(), hashV6Addr()) all of which are
used to deal with the pair of hashs. There is also one function for for dealing
with the creation of new v4 addresses (generateV4()).

compareV4() and compareV6() both take two ip pair structs. They do simple
linear comparisons of the relevant address type in that struct returning as
soon as either a match or discrepancy is found.

hashV4Addr() and hashV6Addr() take an ip pair struct each. They multiply
each byte of the addresses together and return a modulus of the result as the
hash key. This is not the most efficient algorithm that could have been used,
see above for discussion on this.

generateV4() returns a struct of a single v4 address, it generates new v4 ad-
dresses to map to V6 addresses in a linear fashion. Each time the module
is loaded it starts at the start of the Class E block (240.0.0.0) and counts
from there incrementing one each time until the address space is exhausted
(240.255.255.254) at which point it resets to 240.0.0.0 and restarts. The
addV6Addr() function has been built to deal with this behaviour. It was
written in to ensure that the hash can grow to large, but not extreme, lev-
els (maximum 16 million elements) which will hopefully help to protect the
running system from external malicious agents, software bugs and network
faults.

35

The DNSRH is implemented to link to the device file /dev/dnsrh. Any pro-
cesses with the correct permissions (read and write) against this file can use
the IOCTL calls to communicate with the DNSRH, passing it ip pair structs in
the calls to collect the data they want. Its three IOCTL calls are listed as sym-
bolic constants for easy changing in dnsrh.h (which all files wanting to use this
device should include). These are IOCTL ADD V6 IOCTL CHECK FOR V4
IOCTL CHECK FOR V6 which correspond to the functions they are named
after.

These constants are #define’d as macros from ioctl.h (/usr/include/linux/ioctl.h).
IOCTL ADD V6 is defined using IOR and the other two are defined using
IORW. These macros change how data can flow, in an IOCTL call using
IOR data cannot be written to the device, only read from it, where as in the
IORW calls data may be read from the device and written to the device.

5.1.4 An example of how the DNSRH internals work

The following example will deal with both hash tables and illustrate how the
hashing functions work. It will deal with hashing the v6 address fec0:1:2:3::f:5.
The v6 hash is essentially just a 500 element long array of pointers. As such
the element number will be shown by a number in square brackets. After
this the two character arrow “->” will be used to show the contents of that
pointer. Empty elements, or the end of chains will be indicated by the value
NULL. Any element marked “ip pair” can be assumed to be a v4 and v6
address pair that is unimportant to the example.

The v6 hashs elements we’re interested in look like this:
[199] -> NULL
[200] -> ip pair ->ip pair -> NULL
[201] -> NULL
[202] -> ip pair -> NULL
[203] -> ip pair -> NULL
[204] -> NULL

The v4 hashs elements we’re interested in look like this:
[87] -> ip pair -> NULL
[88] -> NULL
[89] -> NULL
[90] -> ip pair -> ip pair -> NULL

1. The MDNSPD calls addV6Addr() and gives the memory address of an ip pair struct
as an argument. Its .v6 element contains the address fec0:1:2:3::f:5 (in decimal
network byte order form). The .v4 element is set entirely to 0.

36

2. addV6Addr() takes the v6 address and passes the ip pair to the function hashV6Addr().
This returns the int 202.

3. The address 202 is looked up in the v6 hash and the chain of pointers is followed
until NULL is found.

4. A v4 address is created by generateV4(). In this case 240.0.0.6

5. The new ip pair struct (of fec0:1:2:3::f:5 and 240.0.06) is inserted at the end of the
202 chain.

6. The v4 address is then hashed by the function hashV4Addr() this function returns
88.

7. Since this cell in the v4 hash is empty the ip pair struct is inserted as the first
element here.

8. The v4 address is written into the ip pair that the MDNSPD passed to the function
and the function returns 0 (which indicates a new element was added to the hash).

After this example the v6 hash table would look like this:
[199] -> NULL
[200] -> ip pair ->ip pair -> NULL
[201] -> NULL
[202] -> ip pair -> ip pair (fec0:1:2:3::f:5/240.0.0.6) -> NULL
[203] -> ip pair -> NULL
[204] -> NULL

And the v4 hash elements we were watching look like this:
[87] -> ip pair -> NULL
[88] -> ip pair (fec0:1:2:3::f:5/240.0.0.6) -> NULL
[89] -> NULL
[90] -> ip pair -> ip pair -> NULL

5.2 The mangling DNS proxy daemon

The MDNSPD has been implemented in C, using the standard GNU C li-
braries. It is designed to be run as root because it binds to a reserved port
(TCP and UDP port 53 is the standard port for DNS). This combination
of privileged user and use of the C language means that care must be taken
when dealing with any data which comes in from the outside of the program
in order to help eliminate the possibility of common buffer overflow vulner-
abilities, which since the program is running as root could allow a so-called
“remote root” exploit, whereby commands could be executed on the machine
running this BIS as the root user.

37

The MDNSPD is implemented in a similar way to the traditional daemon
model. It binds to its port (53 by default) and continuously listens for incom-
ing requests, in the form of UDP packets. Once it receives one it creates a
connectData struct, which contains the DNS request, its length, and details of
the client. Then it spawns a thread (but does not fork) using its connection()
function. The thread deals with all the data processes and is even given a
copy of the server socket to reply with.

The connection function forwards the request (which is normally a standard
v4 request, a type A) to the upstream name server, if it gets a response which
includes no resource records (answers), and is a type A query, it upgrades the
request to a type AAAA (an v6 query) and forwards it again.

If this AAAA query is answered it converts the query type back to a standard
type A, and all the AAAA resource records into type A resource records. This
way the process that requested the type A query gets the correct response.

During the conversation it needs to deal with any v6 addresses it finds. These
are mapped to consistent v4 addresses by passing the v6 address into the
addV6Addr() function of the DNSRH, using the IOCTL call number stored
in the symbolic constant IOCTL ADD V6. Once this is done the response is
returned and the thread terminates.

In this implementation of the MDNSPD it is highly dependent on the DNSRH.
It requires several functions from it to operate correctly (which are outlined
above), it also requires the header file (dnsrh.h) for the enumerated types
of all the IOCTL calls, as well as the name of the device to be used. This
should be taken into considering when using the system, the MDNSPD will
not function correctly or even compile without the DNSRH being available
and running.

5.3 The Input/Output Packet Manglers

With reference to the earlier Netfilter section (3.4.3), figure 3.1 and fig-
ure 5.1 I will now explain where in the stack the IOPM modules are in-
serted. The v4tv6pm attaches itself to the PF INET family of filters and the
NF IP LOCAL OUT hook chain. This is where packets join when they are
created, from there they move to NF IP6 POST ROUTING. This is the ideal
place for the filter to pluck the packets off the wire as they won’t have been
processed by other filters, they can be replaced on NF IP6 POST ROUTING
and from there hit the wire.

38

The v6tv4pm attaches itself to the NF IP6 PRE ROUTING hook on the
PF INET6 chain. This should mean that its attached to the hooks of the
v6 stack and get the chance of modifying all packets that have already been
routed on NF IP6 LOCAL OUT.

5.3.1 Identifying packets of the correct protocol

Netfilter modules get the chance to run their function against any packets that
pass their hook while they are loaded. The v4tv6pm and v6tv4pm identify
the correct packets to examine based on the protocol field of each sk buff
struct. There are constants defined for v4 and v6 packets (ETH P IP and
ETH P IPV6 respectively). These are passed through the constant htons()
macro in order to ensure their byte order[57] is set correctly.

5.3.2 Checking for mappings

It is assumed that the DNSRH module is loaded before this one is, as the
IOPM modules rely on functions exported by it at this point. Specifically
v4tv6pm relies on dnsrh checkForV4() and v6tv6pm relies on dnsrh checkForV6().
Both of them need to look up the relevant address mappings in order to cre-
ate the illusion of consistent addressing in the packets they mangle. v4tv6pm
needs to look up the v6 addresses and v6tv4pm needs to look up the v4
addresses.

5.3.3 Rewriting

If a mapping is found the packet must be modified. Before this happens the
kernel modules unshare the sk buff in case it is being dealt with by multiple
modules. It will then create a new header of the appropriate type (v4tv6pm
will create an ipv6hdr struct, v6tv4pm will create an iphdr struct). Then the
modules copy the old sk buff to a new one.

At this point the two filters differ in how they mangle their packets. The
v4tv6pm changes the skb buff’s protocol field to read ETH P IPV6, then
proceeds to translate the v4 header into the new v6 header, mostly it fills in
the header with 0s, to signify no options, for example the flow lbl (Flow Label)
field is always set to 0 as there is no standard for getting this information from
a v4 packet, however converted data includes:

payload length the payload len field can be calculated by taking the total length of
the v4 packet and subtracting the header length (tot len - ihl). This is because v6
headers list only the length of data (and optional headers) not the full length of the
packet as v6 headers are a standard length and so don’t need to be included.

39

hop limit the hop limit field is copied straight from the ttl field of the v4 header. These
two headers serve the same purpose, but the v6 protocol changes the name to
represent its more common use.

After this the module runs v4tv6pm fixaddr(), handing it the local source v6
address, the new destination address that was looked up from the DNSRH,
and the v6 header. This function writes the two addresses into the source
(saddr) and destination (daddr) structs that are in the header.

Finally this the new sk buff has its nh union moved so its no longer pointing
at the v4 header and is instead pointing at the new v6 header and the check
sum (csum) field is recalculated.

The v6tv4pm similarly mostly creates a header without any of the complex
options set.

total length It calculates the total length (tot len) by adding the v6 payload length
(payload len) to the size of a v6 header, which is fixed at 40 bytes.

time to live The ttl is calculated by simply copying the value from the v6 hop limit
(hop limit) field.

id and fragment offset These are both set to 0 because of the situation with v6 fragments[54].
All hosts must support a minimum MTU (Maximum Transmission Unit) size, 576
bytes. If a host sends more than this and a router cannot deal with it then it
will return an ICMP error message. So based on this a host should not receive
fragmented packets.

After this it copies the new source address (obtained from DNSRH) into the
v4 headers saddr field. For the destination it checks to see if the incoming
v6 address matches the local machines v6 address. If it does it copies it in,
otherwise it attempts to lookup the v6 address in the DNSRH, if it finds a
match it writes that in, otherwise it assumes that the packet is the localhost
and writes the local address into the daddr field.

5.3.4 Re-injecting

At this point the IOPMs should re-inject the packet and return NF DROP.
This return call will cause the stack to clean up after the packet and remove
it from any lists for the hooks its on, thus making sure its never sent. At
which point the re-injected packet will continue on its way and leave the
stack, whereas the original will never be sent. This way the original packet
will be gone, the other protocol will be sent and the reliable netfilter code
will clean up the original packet from kernel memory.

40

However this implementation of the BIS is incomplete as neither of the man-
gling packet filters had their re-injection methods completed. Theoretically
use of functions such as ip6 output or ip6 xmit (which are used to send v6
packets) or use of ip6 rcv (for receiving v6 packets) and ip output, ip xmit
and ip rcv on the v4 side should have enabled me to re-inject the packets but
all attempts met with failure. I even attempted to use NF HOOK which is
a macro for raw placing of sk buff structs onto a queue but failed to get that
working either. However despite this as the Evaluation chapter shows the
project is still testable. Section 7.5 also discusses the successes of this project
and the uses for the code that was written.

41

6 Testing and Evaluation

This chapter will deal with evaluating the system as it stands. It will compare
a normal Linux system with the test system in several tests, and also test the
performance of the test system in a normal networking environment.

6.1 The testing network

lain.localnet

lain.v6.localnet

gomi.localnet

gomi.v6.localnet

shasta.localnet
Internet

drinian.localnet

drinian.v6.localnet
123

Figure 6.1: Test network layout.

Figure 6.1 shows the testing environment that was used for this project, in-
cluding all the names of the hosts involved, the local domain is .localnet and
all the host names on that domain resolve to v4 addresses. Some hosts also
have .v6.localnet addresses. These machines are part of the local v6 network
and have full v6 addresses. Due to the configuration of all the machines to use
the LANs nameserver .localnet and .v6.localnet addresses can be considered
to be FQDNs. The layout of this network may seem a little odd, being as the
test hosts are nearer the router than the DNS but it is a representation of
the homegrown testing environment that was actually used.

The network itself is composed of three 10/100 ethernet switches. These
allow the two sets of machines we’re concerned about to communicate, it
can be assumed that the network has other machines on it which are using
the network for their day-to-day business but we’re unconcerned with those.
On the first switch are the two test machines (lain and gomi) as well as
shasta.localnet which is the gateway for the entire network and communicates
via a hardware router to the Internet.

42

The second switch serves merely to connect the two we’re interested in, both
these switches have several other machines on it but most importantly the
third has drinian.localnet. Drinian is the DNS server for the network, its a
dual stacked Linux box that runs BIND v9 and knows about all the hosts
on the network. It communicates via Shasta to speak to its upstream name-
servers in the case of dealing with hosts that are outside the network. Drinian
is also responsible for delegation of v6 addresses to hosts on the network.

The two main machines that were used for testing were Lain and Gomi. Lain
is to be the control to demonstrate the normal system operations, Gomi is
running the BIS to translate its data. Both machines are dual stack Linux
machines with both v4 and v6 stacks. Lain is a Slackware Linux 9.1 box,
Gomi is a Debian Linux 3.0 box. Both have hand created Kernels, Lain with
2.4.22 and Gomi with 2.4.24. Gomi is a 700Mhz Athlon machine with 384Mb
of RAM, Lain is a 1.4Ghz Athlon with 256Mb of DDR RAM.

The two machines are similarly specified (i.e. neither is an SMP machine, and
they are both fast machines of multiple hundred Mhz). Their connections to
the network are equivalent and the network can be assumed to be lightly
loaded with a verity of traffic at all points. This network layout can be seen
as a reasonably common real world network, with several jumps between the
machines and the outside world, and the machines and their internal servers.

6.2 The System in Operation

The goal of a BIS is to be as transparent to the user as possible, to the point
where they might not even realise they’re using it on their system. Therefore
once the system has been put into place by the sysadmin, users must take no
further action to even interact with it, it will all just work normally.

The system that is being tested however is not a full implementation of the
system design shown in section 4. The DNSRH is the only component that
was truly finished. The MDNSPD is a proxy for UDP only (although TCP
DNS queries are rare they are possible), and thus larger DNS queries might
become corrupted. Most importantly however the IOPM were not success-
fully implemented and are not in a testable state. The parts of the system
that do exist (The DNSRH and mostly finished MDNSPD) do present a pow-
erful option for proxying and rewriting DNS, if (in their current state) only
in the highly specific manner described in section 5.

6.3 Design of the tests

43

The tests themselves will be run using both hosts in line with the standard
scientific method of using controls and test subjects. Lain will be the con-
trol host, as its a standard Linux box. Gomi will be the test system and
will throughout the tests be running the DNSRH and MDNSPD as its only
method of resolving DNS. Since the goal the system is transparency then the
tests will all be largely based around testing this quality. Thus they’ll be
designed to test the following qualities of the system:

1. Transparency

2. Speed

3. Reliability

Transparency will be a measure of differences detectable either by the user
or by programs between the control system and the test system, be these
in need for different options than normal of in badly formatted data being
returned. Speed will be a measure of the difference in performance on the test
system compared with the control, this being a part of transparency. Finally
reliability will be the measure of normal system reliability compared with the
test system, as malfunctions are not transparent.

6.4 System Performance

Being as the system in its current state is incomplete, that is the IOPMs
cannot re-inject packets, testing will centre on examining the name resolving
features of the system. Primarily transparency is the goal, and this includes
the MDNSPD being a fully functional proxy whereby all normal features are
available without any special modifications to data or programs by the user.
However the system will also be examined under load to see how well it copes.
Gomi will be the test system, and Lain the control system.

In order to test the performance of the system in an realistic as possible
environment the nameserver has a number of entries in it relating to non-
existent hosts. The v4 hosts are labelled “fakeN.localnet” where N is between
1 and 9999. The v6 hosts are labelled “fakeN.v6.localnet” again with a range
between 1 and 9999. This should provide enough unique addresses to resolve
to fully test the system. The v4 fake hosts were from 10.19.1.1 - 10.19.40.93
and the v6 fake hosts were from fec0:1:2:3::f:1 - fec0:1:2:3::f:9999. Not all
these hosts will be resolved for each test but the amount of them resolved
will be stated with each test.

Between each of the tests the test machine will be rebooted in order to ensure
the DNSRH was clear and the system ready.

44

6.4.1 Standard Networking Tools

During the development and testing of the BIS much testing took place with
an array of standard network testing tools. The implemented version of the
project appears to work as standard with such tools as host, nslookup and
most importantly dig. These tools represent the standard toolbox of sysad-
mins attempting to diagnose networking issues, and use the same standard as
all other programs that use the DNS, meaning they are a good benchmark of
transparency.

6.4.2 Resolving v4 hosts

The MDNSPD is primarily a proxy server, and as such it has to be a fast trans-
parent service. Using a simple C testing program (found in testing/testv6
from the root of the BIS package) that tests the system time before and after
performing a lookup the following data was collected.

System Max Min Mean (seconds)
Test 0.4835 0.221 0.245965086
Control 0.3657 0.1424 0.174282947

Table 6.1: Comparing v4 resolving over 993 hosts

Figure 6.2: Comparing v4 resolving over 993 hosts.

The test shown in table 6.1 (figure 6.2) was conducted over 993 hosts because
the test machine’s MDNSPD locked up at that point. The control machine

45

was happy to resolve all 9999 hosts fine however (however only its data for
the first 993 hosts was used in order for better comparison).

I will now examine the data produced against the three criteria stated above
(section 6.3). This system can be held to be transparent for v4 address
lookups, no strange behaviour was detected by the test program, and many
tests appeared to work successfully. For the speed criteria we can see that
on average the test system took an extra .071 seconds to complete a request.
While this meant it took a little under 50% longer to perform its lookups on
average being as they’re still well within acceptable limits (i.e. they aren’t
causing the connections to time out and applications are perfectly happy with
this kind of delay).

The fact that the MDNSPD locked up after 993 requests had been passed
through it in quick succession means that it fails the reliability section of
the evaluation. This behaviour exposes the user to the fact that they are
running a BIS system and not a true v4 host. It also reveals a bug in the
BIS implementation, that under heavy sequential access the MDNSPD will
exhaust some form of system resource (which doesn’t appear to be a memory
leak, as the OS doesn’t kill it), requiring a restart.

Inclusion of a sleep for 1 second between each call to the MDNSPD does not
alleviate this problem, and its unclear exactly what causes this behaviour but
it is a known bug in the system. Although the clients can still resolve their
requests through the proxy at request number 1002 (consistently around this
number if you start from 1) suddenly the time to complete each request jumps
to 5.1x seconds on average and the MDNSPD stops emitting the correct
debugging messages to its stdout. Clearly there is some form of resource
exhaustion but what it is cannot be identified.

One possibility is that its something internal to the kernel that is causing this.
The system tends to allocate roughly ascending ports for requests and it is
about this point that the resolver tends to be given ports in the 62,000 range
and above. The machine generally only has 65535 ports, and after slowly
giving out the last of these (in my test runs the last one I saw given out was
65426) it then loops around and requests are seen coming in from port 147
(and climbing from there). Being as my name resolving is being run as a
normal user process it should be unable to bind a port below 1024 and based
off this I’m unsure what causes this behaviour.

46

6.4.3 Resolving v6 hosts

The resolving of v6 hosts tests the performance of the DNSRH element of the
System, as this is where it will be called into play most, for adding, checking
and controlling a massive influx of v4 to v6 mappings. While this suffers from
the same bug as discussed at length the amount of data gained is still enough
to give estimates of the performance impact from running this system.

System Max Min Mean (seconds)
Test 0.7049 0.3745 0.423416303
Control 0.5658 0.1947 0.223601163

Table 6.2: Comparing v6 resolving over 963 hosts

Figure 6.3: Comparing v6 resolving over 963 hosts.

The results for the tests shown in table 6.2 and figure 6.3 are very similar to
the results of the previous test. The system appears to be totally transparent
to user queries, the test program ran without a problem in its function calls.
Also if we examine the speed of these tests we’ll again see that the BIS was
slower than the control system by 0.2 seconds. This was more significant than
the previous test as the test system took on average almost double the time the
regular system took to perform the lookup. This stems from the translation
from A to AAAA and doing two individual lookups I would imagine from my
knowledge of the system internals. However 0.423 of a second seems to be
a reasonable amount of time to complete a DNS lookup in as again the test
program completed fine, as did all the standard tools used in debugging.

47

However the MDNSPD locked up to the point of requiring it be restarted
under this load, and again the control host didn’t. This time it locked up at
963 hosts, whereas before it was 993, this could be linked to it being a v6
test (perhaps its a resource leak that leaks quicker with v6). This obviously
points to a consistent bug in the design of the MDNSPD which cannot be
identified except to say its consuming a system resource thats required.

6.4.4 Reverse resolving of v6 hosts

An important issue that the MDNSPD needs to address in terms of trans-
parency is that it can cope with reverse v6 DNS lookups. Reverse lookups
are used by a variety of system servers and users applications in order to help
reduce the possibility of IP address spoofing and other problems. Its also
useful for debugging networking issues for admins and users who are trying
to configure programs. For these reasons it is essential that the MDNSPD
can reverse its lookups from its fake v4 addresses to the FQDN of the real v6
associated with that address without any user intervention.

The MDNSPD partially implements this functionality. While it transpar-
ently translates PTR requests (those that map an IP address to a host-
name) when they are outgoing it doesn’t currently rewrite them correctly
on the way back in. While the user will get their data (the answer will
contain the canonical hostname associated with IP address) the response
from DNS will include the so called v6 nibble address[7]. This might con-
fuse a user or a program as instead of being the FQDN form of the v4 ad-
dress (for example 240.0.0.1 is translated to the domain name 1.0.0.240.in-
addr.arpa before being sent) its the form of the v6 address (for example
3.5.2.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.c.e.f.ip6.arpa). However
accepting this slight flaw the system does return the data that is required
and except in specific circumstances this will do.

6.4.5 Use of the MDNSPD as a DNS

Finally to be truly useful the MDNSPD must be able to translate requests
for foreign hosts. If it couldn’t do this no machine running it could also run a
name server (without some complicated packet forwarding) which might limit
its effectiveness on the network. With the MDNSPD a host can appear to be
one of the local nameservers, for example for a number of regular v4 hosts
surrounded by v6 hosts.

To test this the same v4 test as earlier was performed on Lain, except that
Lain was using Gomi as for DNS, all its requests were really being relayed up
to Drinian. 2000 requests were made, without pause (which required quickly
restarting the MDNSPD on Gomi half way through, and once more before

48

the end). These were for “fake1.localnet” to “fake2000.localnet”

Max Min Mean (seconds)
0.47 0.2 0.22

Table 6.3: Proxying v4 requests via the test machine, over 2000 hosts.

Figure 6.4: Proxying v4 requests via the test machine, over 2000 hosts.

This technique also works for resolving v6 hosts to the 240.x.x.x fake ad-
dresses. The use of this for hosts that aren’t themselves running this particu-
lar BIS is limited, but assuming several hosts on a network were running this
then it could help a systems administrator to debug routing issues. Failing
that if there were a number of machines using this form of BIS they could
share one of them as a singular nameserver. Doing this would enable them
to refer to v6 machines by a common v4 address.

As can been seen from table 6.3 and figure 6.3 this test performed much as the
previous tests. It appeared to be totally transparent, which indicates that the
rewriting features of the MDNSPD are implemented correctly. Comparing
these results to the results found in table 6.1 we can see that it takes on
average 0.174 to resolve a host on the control system normally and 0.22 when
going via the test system as a proxy. This indicates a difference of 0.046, which
is on average an insignificant increase in the time taken for the operation. This
means that this is a valid tactic if you wish the DNS to be synchronised on a
network with multiple BIS hosts. However again the reliability let the system
down, and means that this system is very unreliable under a heavy load, so
having multiple BIS hosts sharing one of them as a consistent DNS could be
a very dangerous idea.

49

6.5 Security

This project carries with it many security implications. It modifies an other-
wise presumed secure system by inserting interdependent modules that do a
lot of memory management into the kernel. These are allowed to communi-
cate with any users via a proxy written in the C programming language, which
binds by default to an externally visible low port running as the superuser.

The hash itself while first appearing secure is storing and modifying many
data structures in kernel space at once and therefore carries a risk of being
dangerous to the running of the system. It accepts data from the outside
world, ultimately from users and their programs and not just from other ser-
vices on the machine and therefore must be seen as a possibly vulnerable
module. However in its favour the access to it is limited, the filesystem per-
mission model is used to restrict access to the device file (which is required
to input and output data to this module). Therefore if this module is cor-
rectly set up a program would need root privileges to communicate with the
DNSRH, and if they have root privileges then they can modify the kernel
anyway.

The greatest security risk for this project comes from its communication with
the outside world. With reference to the earlier Implementation chapter I
will now outline how machines running this system could be hit by a DOS
attack.

Assuming the attacker knew that your machine was running this BIS then
a malicious series of packets such as a forged source UDP port scan with
a random source for each port scanned, or even a program designed simply
to send a machine running the MDNSPD on an externally visible port a
lot of fake DNS responses could cause a denial of the DNS service to your
machine or even lock it up entirely. If the system encounters a large volume
of lookups two main effects will occur. The first is that the kernel itself will
bloat in memory, this will degrade overall system performance leaving less
memory for all other processes that exist, also because of the design of the
hash tables (chained pointers) then overall lookup speed could be degraded
quite badly.

The second is that the data structures inside the DNSRH will become locked
as the relatively long and expensive addV6Addr() function will be called.
This function is estimated to be the slowest of the functions that access the
data structures in the DNSRH, and since this module has been written with
SMP (Symmetric Multi-Processing) machines in mind then all access to the
hash tables must be controlled by Mutexes, meaning only one query can

50

access them at once. The repeated and long access and locking of these data
structures will slow down the amount of packets that the machine can process
going either in or out as all of these require a lookup.

All these points however are fairly rare, the system is constructed to be
mindful of user input and deal with it very carefully, and the rest of the issues
largely come down to if the sysadmin has vandelous users on the local system,
as with correct network firewalling and permissions most of these problems
can be prevented, but regardless of these points any sysadmin running this
system must be careful and try to protect themselves from [D]DoS attacks.

Since the bulk of the project exists as modules inside the kernel these cannot
be secured beyond the level they are now by the sysadmin. However they
are generally not visible to the outside world. Several mechanisms exist for
securing the MDNSPD, without changing this implementation of it.

Primarily it can be made to run inside a chroot (CHange ROOT) jail. The idea
of this is that you build an entire file system with only what is needed inside
it (for example in /opt/mdnspd). Then run the program inside the chroot
wrapper, from the point of view of the program the root of the filesystem is
now the top of the chroot jail. This will not stop the program from being
exploited remotely to push too much data into the DNSRH but it will provide
protection against the possibility of buffer overflow in the MDNSPD, as the
only things that an attacker will be able to damage is the chroot jail, which
contains nothing of value.

Apart from this using iptables[32] (the Linux firewall tool) in order to prevent
access to port 53 from anywhere other than localhost will restrict the vectors
of attack on the MDNSPD (and through it the entire machine) to those with
local user accounts, which reduces the risk significantly.

6.6 Evaluation Summary

While the full project is incomplete I have established that there is enough
of it finished to be worth testing. As can be seen from section 6.4.2 and
section 6.4.3 the system is fully capable of resolving both v4 and v6 addresses,
and consistently changing the v6 addresses to v4s. It also seems to work
at a comparable speed to a normal host, with only a slight increase in the
time taken to resolve FQDNs. Section 6.4.4 proves that the system is fairly
transparent to the user, while they will see a little erroneous data being passed
back the reverse lookups still work. Finally from section 6.4.5 we can see that
a single BIS host could be able to resolve all v6 addresses for all the BIS hosts
on a network, this would lead to a consistent v4 only network-view for all the

51

BIS hosts, leading to easier communication between applications on them (as
they could all refer to the same 240.x.x.x addresses. Finally in section 6.5
we saw that while there are many security risks associated with this project,
mainly [D]DoS issues, these can be largely avoided by placing the machine in
a private network and performing some simple sysadmin tasks.

It is also worth considering how real applications would react to the presence
of this BIS. Primarily v6 only applications would, in this current implemen-
tation, end up being badly broken by this BIS. All of their outgoing traffic
would be sent fine, but they would only receive v4 packets in response which
would all be marked (from their point of view) with an incorrect destination
address. v4 applications on the other hand would largely work fine with this
BIS in place. Applications which stream media, and thus rely on timeliness
of data may be affected to some degree by the delay in their packets being
mangled but I feel it will be quite insignificant compared to the time it takes
to traverse the network. All other v4 applications that are in common use
(Email, Web, Instant messengers, file transfer, ssh etc) should work properly
with this BIS, being unable to see that they aren’t truly on a v4 network.
This obviously makes the BIS a useful transition method.

52

7 Conclusion

7.1 Fulfilment of aims

The main aim of this project was to enable a dual-stack machine to live in
an v6 island while appearing to be an v4 machine to its users. Its goal was
to create another means of helping the transition from v4 to v6, and to make
that transition as easy as possible.

In these regards the project failed. It cannot be used to communicate with
a v6 island, or to appear to be v4 while really transmitting v6 traffic. The
IOPM was never completed to the point where it could re-inject packets,
leaving only half the project fully completed.

However the MDNSPD and the DNSRH are good integrated modules, either
of which could be rewritten as they communicate via IOCTL calls, which are
available in many programming languages. These two components provide a
good framework and partial reference implementation of a BIS.

7.2 Revisions to Design and Implementation

If this project was being reattempted it would stand a better chance of success.
Several parts of the system needed to be redesigned during the implementa-
tion of the project in order to work around problems or incorrect assumptions
that had been made during the design of the project.

The first example of this was the method of kernel communication. Tradi-
tionally there are system calls that enable a userspace application to com-
municate with kernel space. However under Linux these are written into the
kernel headers and should only be changed when agreed upon by the official
kernel maintainers. If module authors start to change them they may end
up stepping on each others changes. For this reason the project is currently
implemented using the unintuitive interface of masquerading as a hardware
device.

During the original design and implementation of the MDNSPD I didn’t
anticipate needing to rewrite the outgoing requests from A to AAAA queries
(v4 to v6) and this important stage thus took longer than expected.

During the attempted implementation of the IOPM, which was the final stage
of the project a further complication was discovered. In stock Linux kernels
an archaic header file (/usr/src/linux/include/linux/in.h:216,248) marks the
entire v4 class E address space (which includes the 240.0.0.0/8 range that this

53

project uses for v6 mappings) as off limits. This problem took time to debug
and reduced the portability of the code as it requires patching the kernel
source and hand building it before this project could ever possibly work.

In addition to this many of the netfilter functions are not exported into the
kernel at large, this made attempts at packet re-injection harder. Based on my
reading of the netfilter mailing list[33] and associated documentation I would
say that use of some of these functions will be critical in getting the IOPMs
working, and so in order to do this the source (/usr/src/linux/net/ipv6/ipv6 ksyms.h)
was changed to export the function symbols into the kernel namespace as a
whole.

Apart from these small problems the design of this project is a good modular
piece of work enabling chunks to be interchanged or written by third parties
and hopefully the data will be separated by a strong enough set of interfaces
(in the form of well defined functions) that they will be truly separate and
not badly entangled. Such open design is a huge advantage for a project
as it enables people to understand the design by reading the source and
documentation for each small section, and good overviews such as found in
sections 4 and 5.

7.3 Future Work

This projects unfinished status suggests good future work. Being as it actually
provides a useful service for helping users migrate their hosts from v4 to v6
then it would be worth the effort of working on it further. Certainly even
if the MDNSPD was just finalised to include TCP proxying and full reverse
DNS translation it could be a useful tool for network admins to redefine the
view their users see of the DNS world.

More importantly for the entire project the packet re-injection code for the
IOPM needs to be finished. Theoretically this should be well inside the scope
of the technology (netfilter) used to do it and thus should be possible with
more time.

This project also needs the final touches to complete it. The implementation
requires packaging, proper Makefiles written for it to enable it to be easily
installed without doing everything by hand. It also needs the standard files
distributed with it such as INSTALL, README, CHANGES etc. These will
help any sysadmin who decides to make some use of the code, and any coder
who decides to modify it. Finally the code could probably do with a review
for clarity, if not security as it was coded at speed and is written in ANSI C,
a language where its easy to write buggy code.

54

The MDNSPD could be improved by making it only keep the root permissions
for as long as it takes to bind itself to port 53. After this it could be made to
drop its permissions to a user with far less access (“nobody” is normally used
for this, however a special “dnsrh” user could be created). However if this is
done then access to the /dev/dnsrh would need to be changed to allow this
new user to access it. Doing this would however reduce the risks associated
with running network visible servers as root.

The performance of the DNSRH, possibly the most central section of this
project, is I’m sure improvable. It is implemented in a simple and robust
manner (see sections 5.1.1 and 5.1.4) but the algorithms and the design behind
it, especially the design behind the functions that actually generate hash keys
could be made more efficient, to give a greater spread, or possibly so that a v4
and v6 address could be passed through two functions to give one hash-key.
The last point would be the most efficient way of adding elements to the hash
as then only a single table of hash keys would be required to store all the
lookups, instead of two arrays of pointers to the same data.

The IOPMs could also make use of the connection tracking features of Net-
filter in order to track which streams of packets they are modifying. Doing
this would enable v6 only applications to work on the BIS host, as their
packets would be passed both in and out without being modified, whereas v4
applications would still have all their packet bumped in the stack.

7.4 Lessons Learnt

This project has been educational, informative and enjoyable if nothing else.
In future projects I will learn to allocate more time for the low level tasks as
I’ve learnt a lot about debugging these kinds of things during this project.
I have also learnt that protocols with binary headers (like DNS, instead of
for example HTTP) are harder to modify on the fly, even if they do save
on bandwidth. I’ve learnt more about the Linux kernel internals than I ever
thought I would as well as a lot about working around issues compiling it.
This project has also taught me a lot about v6, routing, v4, the setup of BIND
as a name server, the art of debugging protocols by sniffing the traffic and
miscellaneous packet filtering tricks.

7.5 Final Overview

This project still has several issues with it, mostly relating to the uncompleted
IOPMs. However I would consider this project to be useful overall, and not
just for the amount of knowledge and experience I’ve gained from it. Chiefly
since its licensed under the GPL it provides a good working framework for

55

anyone else attempting to build a BIS. Secondly it provides an almost com-
plete DNS proxy for anyone who wishes to create a project based on this.
Such a thing would enable a network administrator to change the way their
users viewed the network by simply hiding somethings from DNS and making
other things resolve to other places. While this breaks a number of Internet
standards some net admins may appreciate this functionality. Lastly this
project is close to being finished, so theoretically a fully working implemen-
tation of it is not that far off from being completed and distributed, which
will hopefully be of help in the upcoming transition away from v4 to the new
v6 Internet.

56

8 Acknowledgements

The following individuals and groups helped with the production of this
project.

The Opensource and Free Software Communities For documentation and the open
OS to write this project on.

The Netfilter Project For the documentation and mailing list about Netfilter, partic-
ularly Rusty Russell and Harald Welte.

The LuBBs Community Lancaster University Bulletin Board System is a community
with a strong technical slant operating at Lancaster University, they have answered
many programming questions.

Graham Clinch For answering many technical questions relating to Unix systems, net-
work routing and the compilation of the Kernel.

References

[1] Mordechai T. Abzug. MD5 Homepage (unofficial).
http://userpages.umbc.edu/ mabzug1/cs/md5/md5.html

[2] APNIC (2001). IPv6 Address Allocation and Assignment Global Policy. Draft of
December, 22 2001. Version 2001-12-22. APNIC, ARIN, RIPE - NCC. APNIC.
ftp://ftp.cs.duke.edu/pub/narten/global-ipv6-assign-2001-12-22.txt

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss (1998). RFC
2475 - An Architecture for Differentiated Service. IETF Network Working Group.
http://www.faqs.org/rfcs/rfc2475.html

[4] R. Braden et al (1989). RFC 1122 - Requirements for Internet Hosts - Communication
Layers. IETF Network Working Group. http://www.faqs.org/rfcs/rfc1122.html

[5] R. Braden, D. Clark, S. Shenker (1994). RFC 1633 - Integrated Services
in the Internet Architecture: an Overview. IETF Network Working Group.
http://www.faqs.org/rfcs/rfc1633.html

[6] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin (1997). RFC 2205 -
Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specification. IETF
Network Working Group. http://www.faqs.org/rfcs/rfc2205.html

[7] M. Crawford, C. Huitema (2000). RFC 2874 - DNS Extensions to Support
IPv6 Address Aggregation and Renumbering. IETF Network Working Group.
http://www.faqs.org/rfcs/rfc2874.html

57

[8] S. Deering, R. Hinden (1998). RFC 2460 - Internet Protocol, Version 6 (IPv6) Spec-
ification. IETF Network Working Group. http://www.faqs.org/rfcs/rfc2460.html

[9] Andrew Ebling (2002). Kernel Hacking HOWTO.
http://www.kernelhacking.org/docs/kernelhacking-HOWTO/indexs03.html#kernel-
kernelmodes

[10] Chris Edwards (2004). Internet Protocol Version 6 (IPv6).
http://info.comp.lancs.ac.uk/year3/notes/options/353/notes/L12.pdf

[11] K. Egevang, P. Francis (1994). RFC 1631 - The IP Network Address Translator
(NAT). IETF Network Working Group. http://www.faqs.org/rfcs/rfc1631.html

[12] Jim Frost (1996). BSD Sockets: A Quick And Dirty Primer. Software Tool & Die.
http://world.std.com/ jimf/papers/sockets/sockets.html

[13] V. Fuller, T. Li, J. Yu, K. Varadhan (1993). RFC 1519 - Classless Inter-Domain
Routing (CIDR): an Address Assignment and Aggregation Strategy. IETF Network
Working Group. http://www.faqs.org/rfcs/rfc1519.html

[14] Peter H. Gleick (2001). “Making Every Drop Count”. Scientific American.
http://www.sciam.com/issue.cfm?issueDate=Feb-01

[15] The GNU project. http://www.gnu.org/

[16] The GNU Project (1991). The GNU GPL. Free Software Foundation.
http://www.gnu.org/copyleft/gpl.html,

[17] Michael Hauben. History of ARPANET. http://www.dei.isep.ipp.pt/docs/arpa.html

[18] R. Hinden, M. O’Dell, S. Deering (1998). RFC 2374 - An IPv6 Ag-
gregatable Global Unicast Address Format. IETF Network Working Group.
http://www.faqs.org/rfcs/rfc2374.html

[19] R. Hinden, S. Deering (2003). RFC 3513 - Internet Protocol Ver-
sion 6 (IPv6) Addressing Architecture. IETF Network Working Group.
http://www.faqs.org/rfcs/rfc3513.html

[20] IANA (2002). RFC 3330 - Special-Use IPv4 Addresses. IETF Network Working
Group. http://www.faqs.org/rfcs/rfc3330.html

[21] IANA (2004). PORT NUMBERS. Internet Assigned Numbers Authority.
http://www.iana.org/assignments/port-numbers

[22] IANA (2004). IANA: INTERNET PROTOCOL V4 ADDRESS SPACE. Internet
Assigned Names Authority. http://www.iana.org/assignments/ipv4-address-space

[23] ISC. ISC BIND9. Internet Systems Consortium, Inc.
www.isc.org/sw/bind/bind9.php

58

[24] Raj Jain (2001). IP Multicasting: RFCs. Ohio State University. http://www.cis.ohio-
state.edu/ jain/refs/ipm refs.htm#IP Multicasting RFCs

[25] D. Johnson, S. Deering (1999). RFC 2526 - Reserved IPv6 Subnet Anycast Addresses.
IETF Network Working Group. http://www.faqs.org/rfcs/rfc2526.html

[26] Michael K. Johnson (1996). Device Drivers. http://en.tldp.org/LDP/khg/HyperNews/get/devices/devices.html

[27] E. Nordmark (2000). RFC 2765 - Stateless IP/ICMP Translation Algorithm (SIIT).
IETF Network Working Group. http://www.faqs.org/rfcs/rfc2765.html

[28] Linus Torvalds homepage. http://www.cs.helsinki.fi/u/torvalds/

[29] Linux.org http://www.linux.org/

[30] The Linux Kernel Repository. http://www.kernel.org/

[31] LIDS (Linux Intrusion Detection System). http://www.lids.org

[32] The Netfilter/iptables project http://www.netfilter.org

[33] Netfilter. Mailinglists of he netfilter/iptables project. Netfilter Project.
http://www.netfilter.org/mailinglists.html

[34] G. Malkin, T. LaQuey Parker (1993). RFC 1392 - Internet Users’ Glossary. IETF
Network Working Group. http://www.faqs.org/rfcs/rfc1392.html

[35] P. Mockapetris (1987) RFC 1035 - Domain names - implementation and specification.
IETF Network Working Group. http://www.faqs.org/rfcs/rfc1035.html

[36] Jon Postel et al. (1981). RFC 791 - Internet Protocol. DARPA Internet Program.
http://www.faqs.org/rfcs/rfc791.html

[37] Eric S. Raymond (2003). The Rampantly Unofficial Linus Torvalds.
http://www.catb.org/ esr/faqs/linus/index.html

[38] Eric S. Raymond (2004). Definition of daemon. The Jargon File.
http://www.catb.org/ esr/jargon/html/D/daemon.html

[39] Eric S. raymond (2004). Definition of deep magic. The Jargon File.
http://www.catb.org/ esr/jargon/html/D/deep-magic.html

[40] Eric S. Raymond (2004). Definition of userland. The Jargon File.
http://www.catb.org/ esr/jargon/html/U/userland.html

[41] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, E. Lear (1996). RFC
1918 - Address Allocation for Private Internets. IETF Network Working Group.
http://www.faqs.org/rfcs/rfc1918.html

59

[42] J. Reynolds, J. Postel (1984). RFC 900 - Assigned Numbers. IETF Network Working
Group. http://www.faqs.org/rfcs/rfc900.html

[43] R. Rivest (1992). RFC 1321 - The MD5 Message-Digest Algorithm. IETF Network
Working Group. http://www.faqs.org/rfcs/rfc1321.html

[44] Alessandro Rubini & Jonathan Corbet (2001). Chapter 3:
Char Drivers. Linux Device Drivers, 2nd Edition. O’Reilly.
http://www.xml.com/ldd/chapter/book/ch03.html

[45] Paul ‘Rusty’ Russell (2000). Netfilter Tutorial: LinuxWorld: San Jose August 2000.
http://www.netfilter.org/documentation/tutorials/lw-2000/tut-1.html

[46] Paul ‘Rusty’ Russell (2001). Linux Networking-concepts HOWTO. The Netfilter
Project. http://www.netfilter.org/documentation/HOWTO//networking-concepts-
HOWTO.html

[47] Paul ‘Rusty’ Russell, Harald Welte (2001). The Linux
netfilter Hacking HOWTO. The Netfilter Project.
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-
HOWTO.html

[48] Andrs Salamon (2004). DNS related RFCs. DNSRD. http://www.dns.net/dnsrd/rfc/

[49] Peter Jay Salzman, Ori Pomerantz (2001). The Linux Kernel Module Programming
Guide. http://www.dirac.org/linux/writing/lkmpg/lkmpg.html

[50] sdybiec@humanfactor.com. Programming POSIX Threads.
http://www.humanfactor.com/pthreads/

[51] Richard Stallman (2004). Linux and the GNU Project. The GNU Project.
http://www.gnu.org/gnu/linux-and-gnu.html

[52] Andrew S. Tanenbaum, Albert S. Woodhull (1997). Operating Systems: Design and
Implemenation. Prentice Hall, New Jersey. pg 37-38.

[53] Andrew S. Tanenbaum (1996). Computer Networks, Third Edition. Prentice Hall,
New Jersey. pg 437

[54] Andrew S. Tanenbaum (1996). Computer Networks, Third Edition. Prentice Hall,
New Jersey. pg 443

[55] G. Tsirtsis, P. Srisuresh (2000). RFC 2766 - Network Address Trans-
lation - Protocol Translation (NAT-PT). IETF Network Working Group.
http://www.faqs.org/rfcs/rfc2766.html

[56] K. Tsuchiya, H. Higuchi, Y. Atarashi (2000). RFC 2767 - Dual Stack Hosts us-
ing the “Bump-In-the-Stack” Technique (BIS). IETF Network Working Group.
http://www.faqs.org/rfcs/rfc2767.html

60

[57] Unknown. Big endian and Little endian computers. Rensselaer Polytechnic Institute.
http://www.cs.rpi.edu/courses/sysprog/sockets/byteorder.html

[58] Unknown. Lab Exercise 2: Adding a Syscall.
http://www.cc.gatech.edu/classes/AY2001/cs3210 fall/labs/syscalls.html

[59] Unknown. NAT-PT. Eurescom. http://www.eurescom.de/ public-webspace/P1000-
series/P1009/doc3 1.html

[60] U.S. Census Bureau (2004). World POPClock. U.S. Census Bureau.
http://www.census.gov/cgi-bin/ipc/popclockw

[61] Wayde (wallen@boulder.nist.gov). #3 - The UNIX philosophy.
http://lug.boulder.co.us/docs/newbie03.html

[62] Harald Welte (2000). The netfilter framework in Linux 2.4.
http://gnumonks.org/papers/netfilter-lk2000/presentation.html

[63] Harald Welte (2000). skb - Linux network buffers.
http://gnumonks.org/ftp/pub/doc/skb-doc.html

[64] Harald Welte (2000). The journey of a packet through the linux 2.4 network stack.
http://gnumonks.org/ftp/pub/doc/packet-journey-2.4.html

61

