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Summary

1. Natural populations of pathogens are frequently composed of numerous interacting

strains. Understanding what maintains this diversity remains a key focus of research in dis-

ease ecology. In addition, within-host pathogen dynamics can have a strong impact on both

infection outcome and the evolution of pathogen virulence, and thus, understanding the

impact of pathogen diversity is important for disease management.

2. We compared eight genetically distinguishable variants from Spodoptera exempta nucle-

opolyhedrovirus (SpexNPV) isolated from the African armyworm, Spodoptera exempta. NPVs

are obligate killers, and the vast majority of transmission stages are not released until after

the host has died.

3. The NPV variants differed significantly in their virulence and could be clustered into two

groups based on their dose–response curves. They also differed in their speed of kill and pro-

ductivity (transmission potential) for S. exempta. The mixed-genotype wild-type (WT)

SpexNPV, from which each variant was isolated, was significantly more virulent than any

individual variant and its mean mortality rate was within the fastest group of individual vari-

ants. However, the WT virus produced fewer new infectious stages than any single variant,

which might reflect competition among the variants.

4. A survival analysis, combining the mortality and speed of kill data, confirmed the superi-

ority of the genetically mixed WT virus over any single variant. Spodoptera exempta larvae

infected with WT SpexNPV were predicted to die 2�7 and 1�9 times faster than insects

infected with isolates from either of the two clusters of genotypes.

5. Theory suggests that there are likely to be trade-offs between pathogen fitness traits.

Across all larvae, there was a negative linear relationship between virus yield and speed of

kill, such that more rapid host death carried the cost of producing fewer transmission stages.

We also found a near-significant relationship for the same trend at the intervariant level.

However, there was no evidence for a significant relationship between the induced level of

mortality and transmission potential (virus yield) or speed of kill.

Key-words: dose–response, entomopathogen, infection diversity, mortality rate, polymor-

phism, transmission potential, virulence

Introduction

Pathogens (micro-parasites) are ubiquitous in animal and

plant populations and often cause acute infections that

can result in high levels of mortality and devastating

epizootics (e.g. Jones et al. 2008). Pathogen populations

are often composed of multiple strains (Read & Taylor

2001) and molecular and genomic analyses are showing

that mixed-genotype, as well as mixed-species, infections

are common (Balmer & Tanner 2011; Liu, Chen &

Bonning 2015). Genetic diversity in pathogens may be

generated by mutation or, more frequently, recombina-

tion, over relatively short periods of time, even during the

course of infection within a single host. However, we still

know little about temporal and spatial patterns of
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pathogen diversity in natural populations and the mecha-

nisms that act to maintain it (Hodgson et al. 2001; Lively

et al. 2014). In addition, multiple infections are predicted

to have a major impact on the evolution of virulence and

pathogen transmission (Alizon, de Roode & Michalakis

2013). Therefore, understanding the nature and conse-

quences of mixed infections is important for disease miti-

gation and potential virulence management (Read &

Taylor 2001; Andre & Hochberg 2005).

Pathogen (and host) diversity could be maintained by a

variety of processes, including genotype 9 genotype inter-

actions and negative frequency-dependent selection, trade-

offs between virulence traits or differential selection

(Hodgson et al. 2003; Lively et al. 2014). For pathogens,

there are additional mechanisms for promoting diversity

that could come about through beneficial interactions

between genotypes during co-infection, and the presence

of deletion mutants or defective interfering particles,

which may act as cheating genotypes (Hodgson et al.

2003). Some of these evolutionary mechanisms have been

supported through studies on a limited number of host–
parasite systems (e.g. Koskella & Lively 2009; Wolinska

& King 2009; Clavijo et al. 2010). However, how they

apply to a broader range of species, their relative impor-

tance and the conditions under which they are most

prevalent are still not clear (Lively et al. 2014).

Insects are infected by a wide range of pathogens, some

of which can produce impressive epizootics (Cory &

Myers 2003; Hajek 2004). With asexual microparasites, it

might be expected that the fittest genotype would domi-

nate an infection within a single host or an epizootic

(Hodgson et al. 2001); however, entomopathogen hetero-

geneity is often very high. What mechanisms drive this

high level of genotypic and phenotypic diversity? Many of

the better-studied insect pathogens are obligate killers.

Obligate killers must be highly virulent and kill the host

to be horizontally transmitted; otherwise, the cost is

severe. Why particular pathogens evolve to a particular

level of virulence (defined here as the degree of harm to

their hosts, Alizon et al. 2009; but see discussion in Tho-

mas & Elkinton 2004; Shapiro-Ilan et al. 2005) is one of

the most pervasive questions in evolutionary biology and

has generated a rich theoretical literature (e.g. Ebert &

Weisser 1997; Alizon et al. 2009). The dominant (but not

the only) model for the evolution of virulence assumes a

trade-off between pathogen traits, in particular, virulence

and transmission, such that more rapid host exploitation,

which results in higher transmission, comes at the cost of

increasing host mortality, which would curtail the trans-

mission process (Frank 1996; Alizon et al. 2009). Viru-

lence should thus evolve to a maximum or an

intermediate level depending on the shape of the viru-

lence–transmission relationship. Obligate killers represent

an interesting test of the trade-off hypothesis as the death

of the host promotes, rather than curtails, transmission,

and it is not clear whether there is a cost of virulence

(Ebert & Weisser 1997), and whether the link between

rate of host exploitation and virulence might be uncou-

pled. However, evidence supporting the trade-off hypothe-

sis has been found in two obligate-killing, invertebrate

pathogens (a bacterium in the crustacean, Daphnia magna,

Jensen et al. 2006; and a microsporidian fungus in the

beetle, Tribolium castaneum, B�er�enos, Schmid-Hempel &

Wegner 2009). Further studies are needed to test the gen-

erality of these results and to establish whether trade-offs

in fitness parameters might contribute to the maintenance

of variation in invertebrate pathogen populations.

A particularly diverse group of obligate killers are the

baculoviruses, a family of DNA viruses which have only

been isolated from insects, particularly Lepidoptera (Cory

& Myers 2003). Baculoviruses show high levels of genetic

variation (e.g. Laitinen, Otvos & Levin 1996; Cooper,

Cory & Myers 2003), and this variation translates into

differences in phenotype (Hodgson et al. 2001; Cory et al.

2005; Murillo et al. 2006). Available evidence indicates

that diversity and population structure are important in

baculoviruses: a mixed infection of two baculovirus geno-

types produced higher levels of mortality in a lepi-

dopteran host than either genotype alone (Hodgson et al.

2004). Baculovirus populations can also include genotypes

that contain deletions in their genome that can only be

transmitted with a complete virus (Mu~noz, Castillejo &

Caballero 1998; Sim�on et al. 2006). This is possible

because the most common type of baculovirus, a nucle-

opolyhedrovirus (NPV), has a unique morphology

whereby many virus particles (which can themselves con-

tain multiple genomes) are embedded in a proteinaceous

matrix (the occlusion body, OB). The OB is the transmis-

sion stage of the baculovirus and needs to be ingested by

a susceptible larva for infection to occur. Thus, each OB

could contain multiple genotypes; this is thought to be an

adaptive mechanism for maintaining diversity during hori-

zontal transmission (Clavijo et al. 2010). However, few

studies have been directed at exploring this variation in

natural populations, the mechanisms that maintain this

variation, or its relevance for infection dynamics and the

evolution of virulence.

In the majority of Lepidoptera, baculovirus infections

are highly productive and infect most body tissues, usu-

ally resulting in larval disintegration and the release of

millions of transmission stages, which are then available

to be ingested by other susceptible larvae. Horizontal

transmission is the main route of transmission during epi-

zootics. Vertical transmission does occur; however, this is

usually at very low levels and appears to vary consider-

ably between host–virus combinations (Kukan 1999; Bur-

den et al. 2002). A faster speed of kill (shorter duration

of infection) could potentially result in more rounds of

infection in new, susceptible hosts. However, there are

costs to this. Speed of kill clearly affects the production

of transmission stages by altering the amount of tissue

available for conversion into OBs; the longer the insect

grows and remains a larva, the more the OBs will be pro-

duced. A baculovirus is therefore likely to maximize OB
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production up until a level where host growth rate and

conversion of tissue to virus no longer increases unless

there are costs to doing this (see also Ebert & Weisser

1997). As baculoviruses only infect the larval stages of

Lepidoptera, the cut-off point would therefore be meta-

morphosis into a pupa. However, optimum speed of kill

is harder to predict. Ebert & Weisser (1997) examined the

impact of parasite-independent mortality on optimal kill-

ing time. In addition, speed of kill (and the release of

transmission stages) is likely to depend on host ecology

and the opportunities for transmission to new hosts, as

the viability of many microparasite transmission stages is

severely reduced by ultraviolet irradiation. For individual

variants, evidence to date indicates that OB production

increases linearly with increasing time to death (e.g.

Hern�andez-Crespo et al. 2001; Georgievska et al. 2010)

although there is some evidence that this plateaus at

longer speeds of kill (Hodgson et al. 2001). Evidence for

trade-offs in any of these traits among baculovirus vari-

ants has not previously been demonstrated (Hodgson

et al. 2004).

Our study system is the African armyworm, Spodoptera

exempta (Walk.) and its NPV (SpexNPV). Spodoptera ex-

empta is found predominantly on the eastern side of the

African continent, where it is a major pest of various

graminaceous crops such as maize, sorghum, millet and

also pasture grasses (Rose, Dewhurst & Page 2000).

Spodoptera exempta larvae exhibit two distinct phases, a

solitary form which occurs at low densities especially dur-

ing the dry season, and a darker, gregarious morph which

can occur at very high population densities (hence the

armyworm epithet) causing irregular pest outbreaks dur-

ing the rainy season. This species is highly migratory and

can travel thousands of kilometres during a field season,

while undergoing numerous generations, and crop damage

can be extensive. NPV is frequently associated with high-

density populations, particularly later in the season

(Brown & Swaine 1965; Rose, Dewhurst & Page 2000;

Graham et al. 2012). Recent studies on S. exempta popu-

lations in Tanzania have demonstrated that vertical trans-

mission (transfer from parent to offspring) of covert NPV

is very high, approaching 100% (Vilaplana et al. 2010)

and that the two phases differ in their susceptibility to

NPV and their capacity to transmit the virus vertically as

an overt infection (Reeson et al. 2000; Vilaplana et al.

2008). Genetic variation of NPV in this system is very

high (Redman et al. 2010); however, the presence of

genetic variation alone does not necessarily translate into

differences in the phenotype of the virus variants. Based

on earlier studies, we would predict that this genetic varia-

tion would translate into differences in virulence determi-

nants: one of the assumptions underlying the trade-off

theory. Investigation of multiple traits in numerous vari-

ants allows us to examine potential trade-offs and whether

they are influenced by inoculum size. As baculoviruses

infect only the larval stage, pathogen growth will not be

competing directly with host reproduction, and thus, the

pathogen could maximize its productivity. We therefore

hypothesized that there were unlikely to be trade-offs

between the level of fatal infection and either the speed of

kill or production of transmission stages. Finally, as

genetic variation is frequently very high in baculoviruses,

we predicted that there would be benefits to mixed-geno-

type infections. To test these ideas, we estimated three

parameters which contribute to virus fitness: host mortal-

ity and speed of kill were measured as estimates of virus

virulence, and the number of OBs yielded at host death

was estimated as a correlate for virus transmission poten-

tial, as host mortality is dose dependent (Reeson et al.

1998). Our aims were to (i) quantify the extent of genetic

variation in key NPV fitness traits; (ii) to determine

whether there are trade-offs between the different fitness

measures; and (iii) to establish whether the performance

of the (parental) mixed-genotype, wild-type (WT) virus is

an additive function of the fitness traits of the individual

variants it comprises or whether there is any evidence for

cooperation or interference between the variants.

Materials and methods

host–pathogen system

The original sample of S. exempta NPV (SpexNPV) WT virus

was collected from S. exempta populations in Tanzania in 1972.

A preliminary study of this isolate, using restriction fragment

profiling of the DNA, revealed numerous submolar bands, indi-

cating the presence of multiple ‘variants’ (genotypes). The vari-

ants were separated by in vivo cloning in S. exempta. In vivo

cloning involves challenging individual larvae with a pathogen

dose that will result in low levels of mortality (ideally 10% or

less), under the assumption that infections at this level will result

from a single virus OB (see Zwart et al. 2009). Each variant used

in the study went through two rounds of low-dose in vivo cloning

plus two rounds of amplification. Variant stability at each stage

was confirmed by restriction fragment profiling of viral DNA

(see Redman et al. 2010 for details). Eight genotypic variants

were selected for comparison, labelled as A, B, C, D, E, F, G

and H [these are the same as SpexNPV variants 1, 3, 6, 7, 11, 12,

14 and 16, respectively, in Redman et al. (2010)]. We chose

in vivo cloning, rather than in vitro cloning, because we did not

want to select variants that were adapted to cell culture. In addi-

tion, there is good evidence that the passage of baculoviruses in

cell culture can generate variants with sizeable deletions (Piljman

et al. 2001). However, as NPVs contain multiple virions within

an OB, and each virion can potentially contain several nucleocap-

sids, in vivo cloning cannot guarantee that each variant is a true

clone (as compared to plaque-picked variants grown in vitro),

and it is possible that more than a single clone could be present

within each variant. However, if present, these would be at very

low levels and are unlikely to produce biological effects over one

round of infection.

The S. exempta culture was initiated from pupae collected in

Arusha, Tanzania, in 2002. It was reared for six generations on

wheat seedlings at the University of Stirling with no signs of

overt NPV infection and then transferred to NERC Centre for

Ecology and Hydrology in Oxford. The culture was reared on a

semi-synthetic wheat-based diet at 28 °C with an 10 : 14-h
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light : dark cycle. At each generation, eggs were surface-sterilized

in 1% hypochlorite for 10 min and then 5% formalin for 30 min,

in order to remove any potentially contaminating pathogens. Lar-

vae were separated at the second instar and reared individually

from this point. Pupae were sexed and mated in groups of

around 50 pairs in cylindrical rearing cages and were fed with a

10% honey solution.

experimental design

An experiment was set up to measure three fitness parameters of

the virus: mortality and speed of kill, both of which can be used

to describe the virulence of the variants, and the number of off-

spring produced (virus yield) as an estimate of the virus transmis-

sion potential. As is standard practice in insect pathology, these

metrics were estimated over a range of pathogen doses, because

bioassays performed at a single dose can be misleading as they

give no indication of the shape or slope of the dose–response

curve. The eight variants were compared with the mixed-geno-

type, parental WT SpexNPV from which they were derived.

Newly moulted third-instar S. exempta larvae were challenged

with five SpexNPV doses: 50, 100, 500, 1000, 5000 OBs per indi-

vidual. Each dose was given in 1 lL distilled water pipetted onto

a small (c. 1 mm3) plug of artificial diet to individual larvae in

square 25-well plates and left for 24 h. Twenty-five larvae were

infected per dose, except for the lowest two doses where 50 larvae

were used in order to produce sufficient numbers of cadavers for

the analysis of pathogen yield. An additional 25 larvae dosed

with distilled water were used as controls. The virus treatments

were replicated twice. All the larvae that had eaten the diet plug

in 24 h were transferred into individual 12-mL pots containing

sufficient diet to maintain them through to pupation. Larvae

were maintained at 28 °C and were monitored every 8–16 h to

produce an estimate of the time taken to kill the larva (infection

duration), in addition to virus-induced mortality. Speed of kill

was estimated from the time that the larvae were exposed to the

viral dose to when they were observed to be dead. NPV infec-

tions are usually obvious as virtually the whole body is converted

to virus and the larva becomes pale and flaccid and releases a

thick milky fluid when the cuticle eventually ruptures. Any

ambivalent deaths were confirmed using Giemsa staining and oil

immersion microscopy (91000). Virus-killed cadavers were frozen

individually at �20 °C in 1�5-mL Eppendorf tubes until further

analysis. Ten cadavers per dose for each virus isolate were

selected to estimate the number of progeny OBs produced (virus

yield). Only cadavers that could be transferred whole were used

for yield analysis. Each dead larva was macerated in 1 mL of

sterilized water with a plastic pestle and vortexed thoroughly.

OBs from two subsamples were then counted using a 0�1-mm

improved Neubauer haemocytometer and a light microscope at

9400. Four virus-killed cadavers from each genotype treatment

were randomly selected to confirm that the genetic identity of the

virus remained constant after the bioassay using RFLP profiling

with EcoRV (see Redman et al. 2010 for methods).

data analysis

Mortality data were analysed using generalized linear models

using a binomial error distribution and logit link function. As no

control larvae died of virus infection, no correction factors

needed to be applied. Non-viral deaths, predominantly bacterial,

did occur at a very low level (<5%) late in the assay, that is after

any viral deaths would be expected to occur. Cadavers were

stained with Giemsa and checked using a light microscope in case

a mixed bacteria–NPV infection was involved; this was not found

to be the case, and therefore, these deaths were not included in

the virus-killed total. Speed of kill data (1/number of hours until

death) were normally distributed, as was log10-transformed virus

yield (number of OBs per larva) and so both were analysed using

linear regression. Survival was modelled using a parametric sur-

vival model, with an exponential distribution with data censored

at 160 h (longer times are likely to be secondary infections). Sur-

vival curves were visualized using Kaplan–Meier plots.

Results

comparison of fitness traits among virus
genotypes

Host mortality

Host survival was severely reduced by baculovirus infec-

tion. NPV-induced mortality increased with (log10) viral

dose (logistic regression: v21 = 835, P < 0�0001) and dif-

fered significantly between the virus genotypes

(v28 = 65�99, P < 0�0001), even after excluding the WT

virus from the analysis (v27 = 40�58, P < 0�0001). The

interaction between virus dose and virus genotype was

non-significant in both cases (v28 = 7�78, P > 0�45, and

v27 = 3�38, P > 0�84, respectively), indicating that all

SpexNPV variants responded similarly to viral dose. All

SpexNPV genotypes analysed at the end of the bioassay

matched those of the virus used for dosing, verifying the

stability of the single genotype. As expected, larvae killed

by the WT virus treatment produced a profile with multi-

ple submolar bands, indicative of a mixed isolate (data

not shown).

This variation in virulence of the virus treatments is

best illustrated by comparing their LD50 (i.e. the esti-

mated number of viral OBs required to kill 50% of inocu-

lated larvae). Across all variants (including the WT virus),

there was a sixfold variation, and within the eight

SpexNPV single-genotype variants, there was a threefold

difference (Fig. 1a). Model simplification indicated that

the single-genotype variants could be combined into two

groups of four without losing any explanatory power:

Group I (variants A, C, E and F), with LD50s in the

range of 1132–1494 OBs per larva, and Group II (variants

B, D, G and H), which had consistently lower LD50s in

the range of 484–825 OBs per larva. The LD50 of the par-

ent WT SpexNPV was significantly lower (i.e. more viru-

lent) than any of the individual variants, 240 OBs per

larva. After grouping the genotypes in this way, the inter-

action between virus genotype and dose remained margin-

ally non-significant (log10 dose: v21 = 835�64, P < 0�0001;
variant: v22 = 59�64, P < 0�0001; log10 dose 9 variant:

v22 = 4�66, P = 0�097; Fig. S1, Supporting information).

When the eight single-genotype variants were combined

and compared against the WT parental virus treatment,
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there was a highly significant difference between the two

types of virus treatments, that is multiple-genotype WT

vs. single-genotype variants (treatment: v21 = 24�81,
P < 0�0001), with the slope of the relationship between

virus dose and virus-induced mortality being steeper

for the WT virus (log10 dose 9 variant: v21 = 4�66,
P = 0�025).

Speed of kill

Mean time to death across the variants ranged between

89�9 h (variant B) and 105�2 h (variant H); the WT virus

was intermediate and took an average of 90�9 h to kill its

host. Speed of kill (1/time to death) varied significantly

between variants (F8,787 = 7�24 P < 0�0001; Fig. 1b), even
after excluding the WT virus (F7,720 = 7. 39, P < 0�0001).
However, the speed at which larvae died of NPV infection

also increased with increasing viral dose (F1,778 = 23�58,
P < 0�0001), and there was a significant interaction

between viral dose and virus variant (F8,778 = 4�03,
P = 0�0001; Fig. S2), such that the slope of the relation-

ship between viral dose and speed of kill was steepest for

the WT virus and shallower for each of the single-geno-

type variants (significantly so for variants A, B, C, D and

F; as determined by their slope coefficients).

Survival

A survival analysis was conducted to determine the com-

pound effects of virus-induced mortality and time to death.

Overall, there was significant variation between variants in

their mortality rates (likelihood ratio test: v28 = 50�63,
P < 0�0001; Fig. 2), with all eight single-genotype variants

dying at a slower rate than the WT virus. Even after

excluding the WT virus, there was significant variation

between variants in their mortality rates (v27 = 30�14,
P = 0�0002). Mortality rate also increased with increasing

viral dose (v21 = 675�85, P < 0�0001), but all variants

responded in a similar manner to viral dose (vari-

ant 9 log10 dose: v28 = 4�31, P = 0�83). Model simplifica-

tion revealed that the variants could be grouped into the

same two clusters, as described for the mortality analysis

(see above), with no loss in explanatory power (v22 = 46�13,
P < 0�0001). Thus, larvae infected with the WT virus are

predicted to die 2�7 times faster than those infected with

variants from Group I (A, C, E, F) and 1�9 times faster

than those challenged with Group II variants (B, D, G, H).

Production of transmission stages

The number of transmission stages produced varied signif-

icantly between variants (F8,170 = 5�43, P < 0�0001;
Fig. 1c), even after excluding the WT virus (F7,150 = 3�56,
P = 0�0014), which yielded fewer OBs than any of the sin-

gle genotypes (1�5 9 108 OBs, compared to

2�1 � 4�2 9 108 OBs per larva). Variants E and H dif-

fered significantly in the yield produced from the other

variants, with E producing significantly fewer and H sig-

nificantly more (Fig. 1c). Each variant responded similarly

to virus dose (variant 9 log10 dose: F8,161 = 1�29,
P = 0�25), and there was no change in yield with increas-

ing virus dose (log10 dose: F1,161 = 0�63, P = 0�43).

Fig. 1. Infection traits for each Spodoptera exempta NPV variant

(A–H) and the parent wild type (WT). (a) Lethal dose (LD)

50s � standard errors (SEs). (b) Speed of kill (1/infection dura-

tion (�SEs), averaged over all virus doses to make it comparable

with (a) and (c). Sample size ranged from 209 to 319 individuals

per genotype. (c) Mean yield (�SE). Sample size ranged from 19

to 22 individuals per genotype. The black dots represent the wild-

type virus; the white (Group I) and grey (Group II) dots repre-

sent the two groups of viruses that can be distinguished in terms

of their mortality rate (see text for details).
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virulence–transmission trade-offs between
genotypes

Within-variant comparisons

As predicted, we observed that across all larvae, produc-

tion of virus OBs (transmission potential) was signifi-

cantly negatively related to speed of kill (mean

slope = �33�34 � 8�10, F1,169 = 16�96, P < 0�00001;
Fig. 3a), consistent with a phenotypic trade-off between

the two traits. Moreover, there was significant variation

between virus variants in the elevation of the trade-off

curve (variant: F8,169 = 4�46, P = 0�00006), with the WT

virus yielding fewer OBs for a given speed of kill than

any of the single genotypes, significantly so for all vari-

ants except E (as determined by comparison of the coeffi-

cients and their standard errors). The interaction between

speed of kill and NPV genotype was non-significant

(F8,161 = 1�03, P = 0�41), as was virus dose (F1,168 = 2�91,
P = 0�090). The results remained largely unchanged after

excluding the WT parental virus from the analysis (speed

of kill: F1,149 = 11�07, P = 0�0011; variant: F7,149 = 2�36,
P = 0�025).

Among-variant comparisons

Across genotypes, there was also evidence for a genetic

trade-off between virus yield and speed of kill, but the

correlation was marginally non-significant (Pearson’s cor-

relation: r7 = �0�56, one-tailed P = 0�058; Fig. 3b),

although this is largely driven by the fast speed of kill

and low yield of the WT virus (after excluding WT:

r6 = �0�23, one-tailed P = 0�29). There was no evidence

for a relationship between speed of kill and mortality

(LD50) (Pearson’s correlation including WT: r7 = �0�40,
one-tailed P = 0�14), although the non-significant trend

was in the direction of a faster speed of kill being

associated with a lower LD50 (i.e. greater mortality).

However, an analysis of virus yield vs. LD50 indicated a

non-significant positive relationship when the WT was

included (r7 = 24, one-tailed P = 0�74) and a near-signifi-

cant negative relationship when it was removed (higher

yield associated with greater mortality) (r6 = �0�56, one-
tailed P = 0�076).

Discussion

The results clearly demonstrate that there is significant

genetically based variation between virus variants in nat-

ural baculovirus populations in their ability to cause fatal

infection, speed of kill and production of transmission

stages. At the genotype level, virus dose affects both

mortality and speed of kill, with more rapid death at

higher doses. This makes biological sense: challenge with

low doses of virus is likely to result in the initiation of

infection by few virions (Zwart et al. 2009), whereas

exposure to greater number of OBs will result in multiple

foci of infection in the midgut, resulting in a more rapid

spread to other tissues. This relationship has been found

in other studies looking at more limited numbers of
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Fig. 2. Kaplan–Meier survival curves for individual SpexNPV

genotypes (A–H) in comparison with the wild-type (WT) virus.

Each curve shows the fitted values from the survival model

standardized for a viral inoculation dose of 1000 OBs. Dotted

lines = group I variants (A, C, E and F), and dotted

lines = group II variants (B, D, G and H) and the solid

line = WT virus.

Fig. 3. Yield speed of kill trade-offs for individual SpexNPV

genotypes and the wild-type virus at the (a) intragenotype level

(genotype A , B , C , D , E , F , G , H and WT )

and (b) intergenotype level. In (b), mean speed of kill was esti-

mated only using larvae for which virus yield data were also

available.
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baculovirus variants (e.g. Georgievska et al. 2010). How-

ever, it was not consistent across all our variants, with

some showing no, or even a negative, relationship with

speed of kill. This is more curious and might indicate dif-

ferences in replication speed and tissue tropism, variation

in antiviral response at the gut level or interference

between virus particles. The lack of a significant relation-

ship between virus dose (mortality) and OB yield suggests

that the larvae die when a certain level of OB production

is reached (the carrying capacity, see Ebert & Weisser

1997), regardless of how long the infection period is.

However, the productivity level reached (virus yield) var-

ies across the different genotypes, perhaps indicating a

different rate of tissue conversion or a broader tissue

tropism.

We used these data to investigate the interactions

among the various components of virus fitness to identify

possible trade-offs and costs to virulence at both the

intra- and intergenotype level. We measured two aspects

of virulence: the level of host mortality induced by the

virus and the speed of kill (inverse of the time taken to

kill the host). The number of virus occlusion bodies pro-

duced was taken as a surrogate for transmission potential,

in common with other studies. There was a clear linear

relationship between the duration of infection and the

production of virus transmission stages for individual

genotypes, with OB production steadily increasing as the

duration of the infection increased (Fig. 3a). This linear

relationship was also close to significance at the intergeno-

type level (Fig. 3b), suggesting a possible genetic trade-

off. Baculoviruses express a gene that manipulates their

hosts (by interfering with larval–larval or larval–pupal
moults) to extend their development and body mass,

thereby increasing the amount of host tissue that can be

converted into virus OBs (O’Reilly & Miller 1989; Wilson

et al. 2000; Cory et al. 2004), suggesting that continued

host growth is highly beneficial for virus fitness. In this

way, baculoviruses can manipulate the carrying capacity

of their hosts. Theory predicts that if there was a cost to

prolonged infection, in terms of transmission rate, trans-

mission-stage production would peak or decelerate with

increasing infection duration. There was no evidence for

this in the current study. Other studies on single bac-

ulovirus isolates or variants also show no indication of

costs (Hern�andez-Crespo et al. 2001; Georgievska et al.

2010). However, a nonlinear relationship has been found

in another insect–baculovirus system (the pine beauty

moth, Panolis flammea and PfNPV), in which virus yield

plateaued at slower speeds of kill (Hodgson et al. 2001).

While clearly larval size, and thus OB production, cannot

increase indefinitely, there might be differences depending

on the stage of the insects, the ecology of the system and

the likelihood of transmission (in this case a uni-voltine

forest species P. flammea vs. a multi-voltine agricultural

pest S. exempta, among other factors) and differing back-

ground mortality within the system (Ebert & Weisser

1997).

A key issue here is that baculoviruses are obligate kill-

ers, such that horizontal transmission relies on the host

dying and releasing occlusion bodies. As a consequence,

virulence has to be maximal for baculoviruses; otherwise,

horizontal transmission cannot occur, and thus, the

assumed trade-off between exploitation rate and virulence

is decoupled. In terms of varying ecologies, one might

predict that species with a single generation per year are

more dependent on the environmental persistence of OBs

to ensure infection the following year, with a larger pro-

duction of OBs, particularly in later instars, making this

more likely. In contrast, multi-voltine species such as

S. exempta might benefit from more rapid rounds of

infection, although not if the host is continually moving

to different areas. This relationship could, however, be

modulated by vertical transmission of the virus (Lipsitch,

Siller & Nowak 1996). Vertical transmission (from parents

to offspring) can occur in baculoviruses, and this appears

to be able to take the form of both transmission of an

active infection from mother to offspring (most likely

through external contamination of the eggs) and via some

type of within-egg transmission which can be either active

or quiescent (Kukan 1999; Vilaplana et al. 2010; Cory

2015). All types of vertical transmission appear to occur

in S. exempta (Vilaplana et al. 2008, 2010), but their role

in virus dynamics in the field and their impact on hori-

zontally transmitted virus has yet to be elucidated in this

or any other system.

Trade-offs between virulence and transmission have

been investigated in several other invertebrate obligate

pathogen systems. Spore production in one isolate of a

bacterial parasite of the waterflea, D. magna, showed a

humped relationship with host survival time (Jensen

et al. 2006), implying that intermediate virulence (speed

of kill) resulted in higher fitness for the parasite. The

lack of a similar intermediate level of virulence in the

baculovirus–lepidopteran interaction might relate to

the fact that infection and pathogen reproduction only

take place in the larval stage, which means that the host

can grow considerably and virus replication does not

compete with other host processes. D. magna intermedi-

ate virulence is thought to result from a physiological

trade-off between host and parasite reproduction and a

limited growth trajectory for the host. Thus, one might

predict that any potential developmental trade-off in bac-

uloviruses is likely to be age dependent, with the patho-

gen possibly incurring costs to prolonged host growth

only when the larva is approaching pupation. Another

factor could be the environments in which these two

hosts live. A caterpillar killed with a baculovirus pro-

duces a discrete patch of infective OBs with limited

opportunities for dispersal. In this situation, bigger is

likely to be better as it means more transmission stages.

In an aquatic species, such as D. magna, patch size and

spatial distribution of inoculum might be less important

as water will facilitate dispersal. Thus, host ecology and

the potentially conflicting demands of within- and
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between-host dynamics are going to modulate this

process.

At the intergenotype level, there were (non-significant)

trends suggesting that higher mortality is positively associ-

ated with faster speed of kill and greater yield. However,

these relationships, if present, are clearly not strong, and

their exploration would require a greater number of virus

clones. Few studies have investigated trade-offs with mor-

tality in obligate killers. In an experimental evolution

study, B�er�enos, Schmid-Hempel & Wegner (2009) investi-

gated the co-evolution of an insect, T. castaneum and a

fungal (microsporidian) pathogen, Nosema whitei, which

is an obligate killer requiring host death for spore produc-

tion and transmission. In contrast to other studies (e.g.

Little, Watt & Ebert 2006), pathogen virulence to both

the co-evolved and original insect lines declined during

the experiment. One explanation that was proposed was

that this reflected a trade-off between transmission and

virulence, as it appeared that high and low levels of mor-

tality resulted in decreased spore loads (B�er�enos, Schmid-

Hempel & Wegner 2009). This would imply a trade-off

between the level of host exploitation and the point at

which the host is killed (see also de Roode, Yates & Alti-

zer 2008; for another example). Again, this result is likely

to depend on the pressures of the normal transmission

cycle within the system. The experiment was performed in

small vials where transmission is likely to be enhanced.

Moreover, in stored products’ insects cannibalism is also

often involved in the pathogen transmission cycle. Thus,

it is possible that the benefits of maximizing pathogen

production for obligate killers are decreased under these

circumstances.

One of the most interesting results to emerge from

this study is the difference in phenotype between the

mixed, WT parental virus and the individual clones that

were isolated from it. There was an approximately three-

fold difference in LD50 between the least and the most

virulent individual virus variants. However, what was

most striking was that the WT virus was significantly

more virulent than any of the individual virus variants,

with an LD50 that was half that of the most virulent

variant. This clearly indicates that infections with multi-

ple virus genotypes are much more virulent. All the

SpexNPV variants compared in the experiment here

were derived from the WT source; however, more than

these eight variants are present within the WT mixture

(at least 17 distinct genotypes, Redman et al. 2010), so

there are likely to be other genotypes within the WT

mixture that could influence virus phenotype. Recent

work on NPVs isolated from other Spodoptera species

has demonstrated that natural baculovirus populations

can also contain defective genotypes which lack certain

virulence genes, making them incapable of infection on

their own. Mixed infections with these defective viruses

have shown that they can both increase (L�opez-Ferber

et al. 2003) and decrease (Mu~noz & Caballero 2000) the

resulting level of host mortality and that these effects

are dependent on the combination of variants (Sim�on

et al. 2005).

Mixed-genotype infections and their impact on viru-

lence have recently received a lot of attention (e.g. Alizon,

de Roode & Michalakis 2013; Ben-Ami & Routtu 2013).

One hypothesis relating to mixed infections is that faster-

growing strains are favoured and increased competition

could lead to increased host mortality. While mortality is

clearly increased in the mixed WT treatment, this does

not appear to alter speed of kill. The speed of kill of the

WT isolate was rapid but on a par with several other sin-

gle variants; however, rather surprisingly, the virus yield

was significantly lower than that of any other variant. In

fact, one variant, ‘H’, produced a yield that was 2�8 times

greater than that of the wild type. While the relationship

between speed of kill and virus productivity (rapid death

– low yield) is relatively (but not totally) consistent at the

level of the individual genotype, WT virus mixtures do

not always conform to this. Field-collected isolates of

NPVs from both the western tent caterpillar (M. califor-

nicum pluviale) and the winter moth (O. brumata) show

that WT isolates can be both fast to kill and retain high

productivity (Raymond et al. 2002; Cory & Myers 2004).

Why the SpexNPV WT is different is unclear. One expla-

nation for the decreased production of transmission stages

could be that there is interference or exploitation competi-

tion between the variants, resulting in an overall reduction

in virus replication and OB production. In particular, it is

possible that any defective genotypes present in the wild

type could have a detrimental effect. If this is the case, it

might be expected that yield would decrease with increas-

ing dose, as a higher dose is likely to result in more initial

foci of infection. However, this does not occur, which

might indicate that the interactions take place later in the

infection process. Alternatively, the different yield speed

of kill relationships could result from the varying

demands of species with very different life cycles and phe-

nologies (uni-voltine temperate forest insects vs. multi-vol-

tine tropical species). Understanding the impact of mixed

infections on virulence in obligate-killing baculoviruses is

likely to require studies which mimic more realistic eco-

logical scenarios. In particular, successful transmission to

a new host is the result of more than just producing many

transmission stages, and lifetime fitness of a parasite needs

to take into account the between-host component. Only

further field-based experiments with realistic estimates of

transmission and environmental persistence will tease

apart these interactions and identify the factors which

determine the structure of pathogen populations and their

impact on the evolution of virulence.
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