Chapter 3

Statistical analysis of sex ratios:

an introduction

Kenneth Wilson & lan C.WV. Hardy

3.0 1 Summary

In this chapter we discuss how to make best use
of sex ratio data. We identify three basic ques-
tions that such data can be used to answer: does
the sex ratio differ from some theoretically ex-
pected mean value, does it differ from an expected
distribution and is variation in sex ratio associated
with some measured explanatory terms? Our main
focus is on the latter question. We discuss ana-
Iytical methods in order of ‘sophistication’, start-
ing with nonparametric methods (which make few
assumptions about underlying statistical distri-
butions), then classical parametric methods (which
assume that data conform to a normal distribu-
tion of deviations from a statistical model} and
finally generalized linear models (GLMs). GLMs are
semi-parametric methods that encompass mod-
els assuming a normal distribution but may also
assume other distributions. This is an important
advantage as sex ratio data are best expressed as
proportions (sex ratio = males/(males + females))
and deviations are expected to conform to a
binomial distribution. GLMs assuming binomial
distributions are often termed logistic regression
models. Distributions may not conform to the nor-
mal or binomial assumptions of classical para-
metric analyses or logistic GLMs, and we discuss
how these problems can be overcome. The statis-
tical approaches we discuss are illustrated with
worked examples and case histories from recent
sex ratio literature. Wa also perform simulations
to evaluate the relative performances of non-

parametric, classical parametric and logistic GLM
analyses: GLMs win. A statistical analysis of the
sex ratio literature published in 1994-2000 indi-
cates that GLMs are currently being employed in
only a small proportion (<30%) of sex ratio anal-
yses and that the proportion does not appear to
be increasing. Thus, this chapter serves in part as
a manifesto for change, aimed at those who need
to be persuaded that the GLM approach is worth
learning and who need a short introduction to
the subject.

3.27 Introduction

In this chapter, we present a guide to the sta-
tistical analysis of sex ratio data. Our aim is
to present a brief introduction to statistical
methods that will increase the accuracy and
power of sex ratio analyses. As evolutionary ecol-
ogists (rather than statisticians), our emphasis
here is on the practicalities of analysing sex
ratio data and we aim to give an intuitive feel
for the different methods, rather than to ex-
plore in depth their statistical basis. Readers in-
terested in the formal proofs of the different
methods we discuss should consult the follow-
ing texts and original papers cited therein: Cox
and Snell (1989), Hosmer and Lemeshow {1989),
McCullagh and Nelder (1989), Collett {1991) and
Crawley (1993, 2002). In the remainder of this
introductory section we discuss the different

ways in which sex ratio data can be expressed
{section 3.2.1) and discuss the sorts of questions
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that empiricists may want to ask about sex ra-
tios (section 3.2.2). We then briefly outline pos-
sible analytical approaches used in answering
these questions (section 3.3), assuming minimal
statistical knowledge (Box 3.1 gives a refresher
on statistical terminology). We introduce ‘gener-
alized linear models’ (GLMs), a family of statisti-
cal tools, and we focus on logistic analyses, the
sub-class of GLMs appropriate for analysing pro-
portion data (section 3.4). We illustrate the rel-
ative merits of the different methods by means

of a fictitious example (sections 3.3 & 3.4) and
re-analyse some real datasets using this method-
ology (section 3.5). Although we employ a num-
ber of different nonGLM methods to analyse
sex ratio data, we do this mainly to illustrate
their lack of power and rigour and do not
advocate their use except in exceptional cir-
cumstances. Finally, we illustrate the relative
power of GLMs over alternative methods of anal-
ysis using a series of simple simulation studies
(section 3.6).

Box 3.1|A brief introduction to statistical 'approathes

Statistics is all about differences and associations. Usually, we are asking questions *
such as ‘Is A different from BY or ‘Are changes in C associated with changes in D',
Statistical tests allow us to assess whether differences or associations are statis-
tically significant (i.e. whether observed patterns differ from those expected
by chance alone). To do this, we generally formulate a null hypothesis (Hy).
i.e. we hypothesize that-any observed difference or association is due to random
effects. Hypothesis testing centres around either accepting or rejecting Ho. This
decision is usually made by comparing the value of a test statistic with some
predetermined critical value (which can be found in published tables, e.g. Rohlf
& Sokal 1995) for a given significance level. Traditionally, this significance level is
taken to be 0.05 or 5%. This means that one will reject the null hypothesis in favour

_of the alternative hypothesis (H) if the probability, P, that observed data

could have arisen by chance alone is less than 5%. if it is {i.e. P < 0.05), then one
may conclude that the difference is ‘statistically significant’. Note that the choice of
a particular significance level is an ultimately arbitrary convention that dichotomizes
a continuum of probabilities. The lower the probabifity (0.05 > 0.01 > 0.001), the
more sure one can be that the difference is not just random sampling error with
no real underlying difference. :
When we are hypothesis testing, we generally test rather general hypotheses
(e.g. Does A differ from B or is there an association between C and DY), but at other
times We_may have a priori reasons for tesﬁng more specific hypotheses (e.g. Is A

larger than B or is C positively correlated with D?). The former type of test is known |

as a two-tailed test and the latier a one-tailed test. This is because, in the first
instance, we are testing for both positive and negative differences and correlations,
whereas in the second we are just testing for-positive’ (or negative) differences
and associations.-As a result, the critical value for rejecting the null hypothesis is.
increased and the associated P value is reduced (see chapter 7 in Sokal & Rohlf
1985). £k

If Ho is rejected, H, is supported but,hot proven. Rejecting a correct Hy is
termed a type I error while failing to reject an incorrect Hy is a type Il error.

The probability of committing a type | error is usually termed & and the probability

of committing a type Il error is termed B. The statistical power of a test (Cohen
1988; Lipsey- 1990) is the probability of rejécting a Hg, given that there really is a
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genuine effect (i.e. given that Hg is false). In other words, statistical power = | — @3,
Statistical power generally increases as sample size and effect size increase, and is
also dependent on the des:gn of the experiment and the type of test employed
(Table 3,1).

Hypothesis testing methods fall into one of two major categories: parametric
and nonparametric. Nonparametric tests make few assumptions about the un-
derlying statistical distributions and are often used when the errors (residuals) do

. not conform to the assumptions of a parametric test (‘errors’ are the deviations

from the expected values of a statistical model, see below). As a consequence, they
are. extremely robust to statistical outliers (i.é. those data points that are much
more extreme than the rest of the measurements in a sample and as a result may
cause the sample to seriously violate the underlying assumptions of the statistical
model). The main disadvantage of nonparametric tests is that they generally fack the
power of equivalent parametric tests (Table 3.1). For example, most nonparametric

. tests (e.g. Spearman rank correlation, Mann-VWhitney U-tests, etc.) arrange data

into order according to their value and then use their rank positions to test for pat-
terns, trends or associations. As a result, information in the data is lost: for example

10, 11, 1000 and 10, 999, 1000 are ranked identically while | | and 999 have very
_ different values. Similarly, data may be placed in categories and then the frequen-

cies of these categories analysed. Again, information may go unused, The following
books examine nonparametric methodology in detail: Meddis (1984), Neave and
Worthington (1988), Siegel and Castellan (1988) and Sokal and Rohif (1995).

Parametric tests assume that data conform to some underlying error

distribution. Many methods assume that the errors are normélly (Gaussian)
-distributed (these are often referred 1o as general linear models, as opposed

" 1o generalized linear models, see below). When the data do not conform to the

normal distribution, transformations may be applied to raw data to normalize

' the distribution prior to analysis (e.g. the arcs:ne—squareroot transformation is often

used to normalize proportional data).

Many of the classical statistical tests, such as linear regression and analysis of -

variance, are simply special cases of the general linear model. For example, when the
explanatory terms (ie. those terms that explain variation in the data of interest)
include a single factor with two levels or categories with equal variances (e.g

- treatments Aand B), then the test is referred to as a t-test; when the factor hasmore
: than two levels with equal-variance (e.g. three or more treatments), it is referred

to as an analysis of variance (ANOVA); if there is a single explanatory variable

; or covariate (e.g. distance from point A), it is referred to as linear regression;
~if there is more than one covariate, it is known as multiple regression; if there
Lis a single covariate and one or more factors, it is an analysis of covariance or
- ANCOVA, etc. Thus, it is easier to refer to all of these tests as special cases
: of a general finear model. These models also allow us to determine whether the

responses to explanatory terms are additive or interact in some way. If there is a

. significant interaction term (e.g. A*B), then this indicates that the response to
, covariate A depends on the level of factor B; in this context, A and B are referred

to as main effects.
Generalized linear models (GLMs) are generahzatlons of the linear models

. referred to as general. They encompass models with normal errors, but may also
 assurne other eror distributions (e.g. Poisson, binomial, negative binomial,

e - LU 7R o B o S
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3.2.1 Expressing sex ratio data individual either wins or loses). If we examine
‘Five to one, baby, one in five. the sex of one individual and score, for instance,
No one here gets out alive’ 1 for a male and 0 for a female, the datum is

The Doors

As Jim Morrison’s lyric illustrates, odds and pro-
portions can be used to express the same informa-
tion (although Morrison stretched poetic licence
somewhat since the odds ‘five to one’ are actu-
ally equivalent to the proportion ‘one in sixl). The
term ‘sex ratio’ is commonly used to indicate the
numerical relationship between the sexes. How-
ever, the quantity of interest is usually expressed
as a proportion (conventionally, the number of
males divided by the total number of individuals,
i.e. males/(males + females)). Here, we conform
to this precedent and, unless otherwise stated,
we use ‘sex ratio’ to indicate the proportion of
males in a sample, and not a ratio sensu stricto
(males/females). In Box 3.2 we give an example
that shows that analysis of ratios (sensu stricto)
can lead to errors in interpretation.

3.2.1.1 Proportion data and
the binomial distribution

For many organisms, an individuals sex is con-
strained to be one of two mutually exclusive pos-
sibilities: male or female. The data that record
this information are said to be binary. Other ex-
amples include tossing a coin (heads or tails),
mortality data (an individual either survives or
dies), fertility data {an individual either repro-
duces or does not) and competition data (an

a proportion that has a sample size of one; the
sex of the individual is the numerator and the
sample size is the denominator, i.e. 1/1 or 0/1
(giving the proportions 1.0 and 0.0).

Often we are interested in determining the
average sex ratio or the proportion of males
in a group of individuals (e.g. population sex
ratio, the sex ratio of the progeny of a given
mother, or the sex ratio in a particular brood
of offspring). Such data are referred to as grouped
binary data; the number of males is the numer-
ator, and the total number of individuals sam-
pled is the denominator. For instance, in a brood
of six males and seven females the brood sex
ratio = 6/(6 + 7) = 0.46.

Grouped binary data are often assumed to
conform to the binomial distribution (Chapter 5)
which describes how frequently different sex
ratio values are expected. Ungrouped binary
data may conform to the Bernoulli distribution,
a special case of the binomial distribution for
sample sizes of one. Our main focus in this
chapter is on grouped binary data, as these
are most commonly encountered by empiri-
cists, but where differences in the analysis of
grouped and ungrouped binary data are appar-
ent, these are highlighted. We explicitly con-
sider ungrouped binary data in sections 3.4.4.3
and 3.5.2.
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Box 3.2/ Analysis of sex ratios sensu stricto: a case history

Leona}-cl\ and Weatherhead (1996) tested the prediction that parents with high .
dominance ranks will produce more male-biased offspring sex ratios than low- -

ranking parents using data from domestic chickens, Gafius gallis domesticus (a
polygynous bird with stable dominance hierarchies in both males and females).
Sex ratios were reported as ratios sensu stricto (females/males). Classical ANOVA
performed on untransformed data (sectioh 3.3) indicated that sex ratios were not

affected by maternal or paternal dominance status. However, a significant effect of .

mating order on sex ratio.was found, using paired t-tests (which assume normally
distributed error variances, section 3.3), for females that mated with a subordinate
male first and later with a dominant male, but not for females that mated with a
dominant male first. Leonard and Weatherhead (1996) were unable to propose a
simple explanation for this result but concluded that chicken sex ratios are not just
a function of random assortment of sex chromosomes and that, given the potential
economic value of being able to manipulate chicken sex ratios (a few males are
needed for breeding stock but the vast majority are superfluous in agncultura) egg
production), further exploration would be worthwhile.

We questioned the validity of the analysis since classical ANOVA and t-tests
were performed on untransformed female/male ratios, and there was no mention
of whether error variances were normally distributed, Subsequently, Leonard and
Weatherhead (1998) re-analysed these data using sex ratio expressed as propor-
tions (males/{males + females)). Errors were normally distributed and ANOVA and
t-tests were thus employed without transformation. The previously reported effect
of mating order on the progeny sex ratio of females first mated to subordinate
males was found to be épuriou& Other conclusions were unchanged, The biological
conclusion is that there is no consistent bias in chicken sex ratios and that poultry
farmers are unlikely to be able to increase productivity by maniputating the status
of ferales' mates, The statistical conclusion is that analyses of ratios sensu stricto
should be avoided: such ratios are asymmetrical and undefined or infinite if only
one sex is present in a clutch, hence mean and variance are not finite (see also

- Chapter 5) and important information on the size of both the numerator (males] |

and the denominator (males + females) is lost:

3.2.2 Questions in sex ratio data analysis

Before discussing how to analyse sex ratio data,
we briefly consider the questions such analyses
are likely to be aimed at addressing. First, it may
be of interest to compare observed and expected
ratios in order to establish whether an organ-
ism has control of its progeny sex ratio. Thus, we
may want to ask whether the observed sex ratio
differs significantly from the even sex ratio (pro-
portion males = 0.5} that is often taken as the
‘null’ expectation (e.g. under heterogametic sex
determination, Chapter 7). Similarly, it may be
of interest to compare an observed distribution

of group sex ratios (variances) with the binomial
(random) expectation, as this can also indicate
sex ratio control and the degree of fit to dis-
tributions predicted by evolutionary theory. We
briefly summarize methods for testing for sex
ratio bias in Box 3.3. Box 3.3 also illustrates a
method for analysing sex ratio variance, but this
issue is dealt with in detail in Chapter 5.
Second, sex ratio data may be used to ex-
plore relationships between sex ratio and spe-
cific explanatory terms (factors and covariates;
see Box 3.1). Sex ratio theory is a rich and impor-
tant area of evolutionary biology (e.g. Chapters 1,
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Box 3.3 | Comparison of observed and expected sex ratios

Before embarking on a large-scale analysis of sex ratio data, it is often informative |

to begin by asking two simpler questions: first, does the sex ratio differ from the
assumed binomial distribution; and second, does the sex ratio differ from some
expected value, such as 0.5. Positive results for one or both of these tests could
be indicative of nonrandom variation in the sex ratio distribution. Note that an
absence of significant deviation does not necessarily mean that there is no nonran-

' dom variation and that significant deviations do not necessarily indicate p'a,rental ,

control of sex allocation, as, for example, sex ratios could be biased due 16 sex-
ually differential developmental-mortality. To llustrate these methods, we use the
Example | data set (Box 3.5).

Deviation from the binomial distribution

If sex ratio data conform to the binomial distribution, then a GLM with binomial

errors (énd no explanatory terms other than the intercept, i.e. the nult model, Table

+ 3.3) should provide a good fit to the data. We can therefore use the goodness-of-fit

test for the nufl model to determine whether the raw sex ratia data deviate from
the binomial distribution (section 3.4.3). To do this, we simply compare the null
deviance against the x ? distribution with df equal to the null degrees of freedom.

Thus, for Example 1, we can ask whether sex ratio distributions for each of the
two species (and for both species combined) conform to the binomial distribution

Shirazfish: null deviance = 83.701, null df = 9, Bod o 00
Merlotfish: nuil deviance = 32475, null df = 9, Pz, _,, . = 0.00016
Both species: null deviance = [17.961, nutl df = 19, P2y | 5500 < 0.0001

Thus, it appears that both distributions (and the combined distribution) differ sig-

nificantly from the binomial,

However, when sample sizes are small, this method can severely overestimate
the degree of departure from the binomial (Westerdahl et al. 1997, Hartley et al.
1999). Thus, in these circumstances it is wise to test the robustness of the result by
performing randomization tests. These involve comparing the deviance of the null
model with deviances obtained by a series of randomly generated datasets in which
“fish" are allocated to ‘samples’ at random, while maintéining constant sample sizes.
In practice, this requires randomizing fish between samples, while maintaining the
same distribution of sample sizes and total number of male and female fish. At
each iteration, the deviance of the model is noted and the process is repeated

1000 times. The resutting distribution of deviance values then becomes the null

distribution of deviance values against which our model is compared. To determine

the significance level of departure from the binomial distribution, we simply divide '

the number of deviance values greater than or equal to our model's null deviance by
1000 (for S-Plus users, a user-defined function for performing these randomizations
is availqble upon request from kenwilson@stirac.uk). However, randomization tests

may not perform well when the size of individual samples or the total number of -

samples is small (BEwen |G, Cassey P & King RAR, unpublished manuscript).
Not surprisingly, given the magnitude of the deviation from the binomial dis-
tribution, in this instance, the randomization method confirms the results of our
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‘original analysis and all three distributions were found to be significantly different
from the binomial (P "< 0.001). Figure B3.3a illustrates the distribution of the 1000
“randomized null deviances for the Merlotfish dataset. As you can clearly see, the
_observed nufl deviance (shawn by the solid circle) is significantly higher than any of
- the values obtained via randomization (histogram). Analyss of sex ratio variances
s discussed in detail in Chapter 5.

- Deviation from sex ratio equality

“In Example [, there were a total of 638 (253 male and 385 female) Shirazfish

i'-sampied, and the overall sex ratio is 253/(253 + 385) = 0.397. While it is clear
that this is not an exact match to 0.5, we need to ask whether the difference s
statistically significant. Of the possible tests that can be used, we iliustrate five and,
as these are widely known and described elsewhere, we do this only briefly.

Binomial test

We could calculate the probabiiityr of obserﬁng a sex ratio as extreme as 0.397 .

(i.e. 253 or fewer of one sex in a sample of 638 individuals), -assuming that the
" sex ratio is determined by a random (binomial) process with a mean of 0.5. If this
probability is less than 0.05, we conclude that the difference between 0.397 and 0.5

is significant; this is a binomidl test (see e.g. Siegel & Castellan 1988). As sample size |

~increases, the binomial distribution tends towards the normal distribution, and for

i samples larger than 35 the normal approximation should be used, but ‘corrected’.
. for the fact that the normal distribution is continuous while the binomial distribution-

“Involves discrete variables (for details see Siegel & Castellan 1988 p38). Using the

- normal approximation corrected for discontinuity, an observation as extreme as -

253 in.a sample of 638 individuals gives z= —19.99, P < 0. OOOI Shirazfish sex
ratios are s%nlf‘ cantly female-biased.

_. Confidence limits :
‘We could look up the conf‘ dence limits for binomia) propornons as pubhshed

in statistical tables (Rohlf & Sokal 1995), which tell us whether our observed sex-
_ratio falls within the 95% (or 99%). confidence bounds of 0.5 for a given sample

Size (most statisticat packages now offer this facility). if it does, then we can be
1 95% (or 99%) confident that the observed value does not differ from 0.5 purely
i due to random sampling error. With a sample size of 638, the lower and upper
l‘~99% confidence limits for 0.5 are 045 and 0.55 respectlvefy As:our observation

of03% s outside these bounds, we can be confident that the bias in the Shirazfish

e _popu{atlon sex ratio is significantly greater than expected by chance alone.

z S«mulaaon :
Another way to address this same problem is to determme the relatnve confi dence

;-'lntervals by stmulatton In other words, we generate a !arge number (ie. > 1000) :

:'?of simulated datasets comprised’ of random samples. drawn from. the binomial
\ dlstnbutron with the mean equal to 0.5 and sample size equat to the number of

{individuals i in our dataset (638 in our particular example). If our observed sex'

ra‘oo fies. outside the appropriate confl dence intervals for our simulated dataset.

‘,then the sex ratio is significantly different from 05, This approach is: Mustrated -

m Flgure B83.3a, in which the hnstograms represent the simulated dataset and

Frequency
50 100 150 200 250

0

0 10 20 30

Null deviance (randomization)

IRV X W Histogram of null
deviances obtained from the
randomization test. The solid circle
represents the observed null
deviance.

Froquency

7 S ]

[T o
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& the solid cirdle represents the observed 'sex ratio. As:you can see;: none of the:
g = 1000 simulated datasets had a sex ratio that was as low as that which we obsewe.
g : A indicating that the probability of observlng thls sex rano by chance alone is less
s _thanl|nI000|eP<0001 » S ]

°

0 oz 04 08 o 19

.Chl-square goodness-of fittest . ; :
We could compare the observed numbers of males (253) and fernales (385) with |
the number of each sex expected undersex ratio equality (638/2 = 319 individuals
of each sex) using a chi- -square test, which is based on the- dewaaons of observed:
with mean equal to 0.5 and sample | | from expected values (for details see e.g. Siegel & Castellan 1988 p45, Sokal & Rohlf -
size equal to 638. The solid circle 1995 p695) The chi- square X2, value. computed is also known as Pearson’s: sta&sﬂc
indicates the observed sex ratio. to distinguish it from the chi-square sampling distribution, X , which it approximates i
The Shirazfish’ data generate a Pearson's statistic of 27.31 with df = I, which is
£ greater than the cnt:cal value in x 2 tables for P = 0 001, 50 we conclude that the
sex ratiois sagnlﬁcantiy female-biased. With small samples and with biased sex ratio”
expectations, the expected value of one or both sexes may be five or fess. In'such |
cases Fisher's exdct test should be used instead of the chu-square test (e 2 Slegel &
Castellan 1988 P I 03 CraMey £993 p237). -

Sex ratr (random samples trom binomial distnbution, mean = 0.5)

TR XIx] B Histogram of simulated
sex ratios generated by randomly
sampling from a binomial distribution

Likelihood ratio goodness—of fit test -

‘We could compare the observed and expected numbers of males and f'emales
with the numbers expected under sex ratio equality Using a G-test which is based .
on the ratios of observed and expected values (e.g: Crawley 1993 p234, Sokal &
Rohlf 1995 pé88, Zar 1999 p505). The Shirazfish data generate G = 2687 with
df =1, which is greater than the ¢ritical value in x 2 tables for P = 0.001, so again
we conclude that the sex ratio is significantly mate- buased Note also that G and
X2 values are generally simifar. -

Choice of test \ :
“Which of these five tests should be preferred is determined by the power function -
for the class of alternative hypotheses under consideration (E. Meelis pers. comm.),
However, the binomial test will usually be the definitive test, the G-test is generally:
preferred over the chi-square goodness-of-fit test (Crawley 1993, Sokal & Rohif
1995, but see Zar. 1999) and the confidence interval and simulation will generally”
give similar results for large sample sizes.

13, 19 & 20) and there are many predictions that In this section we review some of the more tradi-
can be tested in this way. Analysis of such rela- tional methods, highlighting their strengths and
tionships forms the main focus of this chapter. =~ weaknesses. We illustrate these points using a fic-
titious dataset (Box 3.5) on the effects of a pol-
lutant on the sex ratios of two fish species in
3.3 | Classical analyses of an Australian creek. The first thing we need to

do is to plot the data (Figure 3.1a). The figure
appears to indicate that, in both species, popula-
tions close to the source of pollution tend to have
A variety of different methods has been used to female-biased sex ratios and that as we get fur-
analyse sex ratio data in recent years (Box 3.4). ther away from the pollution source the sex ratio

proportion data
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Box 3.4 | Survey of statistical approaches used in recent
: sex ratio literature

Studies on sex ratio are puplished in a range of journals within the general field of
evolutionary ecology, as well as in taxon-specific journals. To assess which statistical
methods are the most cdmrhonly used for analyses of sex ratiosand other propor-
tional data, we surveyed empirical studies on sex ratio and closely: related issues
{e.g. sex determination, sex allocation, sex-biased mortality) published in 1994
2000 in four leading evolutionary, ecological and behavioural journals. We fourd
83 studies, some of which employed more thari one approach: see Table B4.3.
Part (a) of the table scores the methods used to test for departure from some
expected sex ratio value (e.g. 0.5) (see Box 3.3) and part (b) scores methods used
to examine trends in sex ratio with explanatory variables, which is the main focus
of this chapten ' i

Table B3.4 | Recéntly used methods -

lournal
(Number of studies)

Animat  Behavioral
Behaviour ~ Ecology = Evolution . Oikos Totals

=S ratioianalysis methqd (34) (16) (18) (5 (83)

(a) Deviation from expected sex ratio

No statistical test : L) =3
" Binomial test 2 = Al

Fisher's exact test 3 z 5 3 I
- xtest £ 10 2 Fid . STRTC TR

G-test An s 5] | 3 2 11

Other : | 2 3 6
{b) Relationships with explanatory variable(s)

I. No statistical test 3 | ! 5

2. Nonparametric tests I 5 3 20

" Standard parametric tests:
3. No transformation = ) iy % I
4. Arcsine squareroot I 3 7 4 25
transformation
5. Other transformation = = 2 § | ] 35

6. Generalized lin€ar
modelling (logistic)

1.8
v
w
.

16

Note that some authors who used standard parametric tests without transforma-
tion first tested the appropriateness of the assumption of normal error variances,
“while others attempted to: use GLMs but found a degree of overdispersion to
:be too large (e.g. heterogeneity factor >4) and opted to use standard paramet-
* rics following arcsine squareroot transformation instead (e.g. Flanagan et al. 19983).
However, some authors employed standard techniques despite using statistical
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packages (e.g. SAS) which are capable of running GLMs; possibly because they were |

unaware of the advantages of GLM analysis?
We explored our survey data by ranking methods in part (b) in rough order

of ‘advancement’ from | (no statistical analysis) to 6 (logistic GLMs) and gave each

study a ‘sophistication score’ equal to the rank of the most advanced method

used. We found no evidence that the level of ‘'sophistication’ changed significantly .

during the surveyed years, or that it is related to the journal in which the study was

published (Year, x2, =0.34, P > O.1: Journal, x%; = 0.46, P > 0.1; results from .
log-linear analysis, which is appropriate for count data, Crawley 1993). We also |
found no relationship with year or journal when we carvied out (binary) logistic
analyses on: (1) the proportion of parametric tests out of all methods in part.
(b) (mean = 0.799, Year, x?, =0.23, P > 0.1; Journal, x%3 =2.77, P > 0.1},

(2) the proportion of logistic GLMs out of all methods (mean = 0277, Year
x? =237, P > 0.1; Journal, x?; = 4.72, P > 0.1), and (3) the proportion of
logistic GLMs out of all parametric methods (mean = 0.346, Year, %, = 2.53,
P > 0.l; Journal, x%; = 3.25, P > 0.1). We conclude that GLMs are underused
and that the situation has not recently been improving.

Box 3.5 |Example 1; Pollution and sex ratios -
in Australian fish

Our first data set is a hypothetical example, in which we examine the effects of

a poliutant (alcohol) on sex ratios in two imaginary fish ;species in Stubbie Creek, .
Australia: the- wide-mouthed Shirazfish and the big-nosed Merlotfish. We imagine °
that the data were collected by netting fish at 100-m intervals along the creek for -

a distance of up to 1000 m from the source of the pollutant. The hypothesis we
are testing is that the pollutant leads to biased sex ratios in both species.

Table B3.5
: Shirazfish Merlotfish
Distance
from : sex ratio sex ratio
pollution sample size = * (proportion = éaym\ple size {proportion
source () (no. fish} males) (no. fish) males)
100 67 0.30 7 0.14
200 120 050 12 033
300 21 0.33 30 040
400 103 SO 5 020
SO0 88 gL g IRy
600 34 029 67 025
P00 99 B Lvk 03!
800" 34 038 <74 043
900 67 057 " 5 071

1000 AL 080 134 048
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Relationship between sex ratio and distance from W
pollution source for two fish species in Stubbie Creek
(Example !, Box 3.5). The solid line is the least-squares fit to
the Merlotfish dataset and the dashed line is the fit to the
Shirazfish. (b) Symbol size is proportional to the sample size
upon which the sex ratio is based. On both panels the dotted
line shows sex ratio equality (0.5).

gets closer to 0.5, We will start with nonparamet-
ric analyses (section 3.3.1.2) and then go on to lin-
ear models with normal errors (sections 3.3.2 &
3.3.3). In sections 3.4 and 3.5, we analyse these
data using generalized linear models.

3.3.1 Nonparametric tests

Nonparametric tests (e.g. Mann-Whitney U-test,
Kruskal-Wallis test, Spearman’s correlation) are
frequently employed in the behavioural sciences
because they are simple to implement by hand
or by computer and because they make no as-
sumptions about the shape of the underlying er-
ror distribution and thus they are extremely ro-
bust to outliers (Box 3.1). This does not mean
that these tests are ‘assumption-free’, however,
since most nonparametric tests usually assume
that the observations are independent and some-
times that the variable under study has under-
lying continuity or that the distributions have
similar shape across groups. Nevertheless, the

assumptions associated with nonparametric tests
are fewer and weaker than those associated with
equivalent parametric tests (Box 3.1). As a con-
sequence, if all of the assumptions of a para-
metric test are met, nonparametric tests lack
power (Box 3.1) and are wasteful (Siegel & Castellan
1988).

3.3.1.1 Power-efficiency

The degree of wastefulness of a test can be ex-
pressed by its power-efficiency, which is concerned
with the increase in sample size required to make
test B (e.g. a nonparametric test) as powerful as
test A (e.g. an equivalent parametric test), when
the significance level is held constant and the
sample size of test A is held constant. Thus

Power-efficiency of test B (%)

=100 x Ny/Np. (eq. 3.1)

Na and Ny are the relative sample sizes required
to give test B the same power as test A. For ex-
ample, if test B requires a sample size of Ng = 25
to have the same power that test A has when it
has a sample size of Ny = 20, then test B has a
power-efficiency of 100 x (20/25) = 80% (Siegel &
Castellan 1988). In other words, test A would
be just as effective with a sample that was 20%
smaller than that used in test B. Table 3.1 com-
pares the power-efficiencies of some of the com-
monly employed nonparametric tests with their
most comparable parametric test.

3.3.1.2 Example 1: Fish sex ratios

Now let’s return to Example 1 (Box 3.5). We want
to investigate whether sex ratio varies consis-
tently with distance from the pollution source
in the two fish species. There are a number of
ways that we can employ nonparametric tests.
If we use Spearman rank-order correlations to
assess whether there is an association between
sex ratio and distance from the pollution source
for each fish species the answer appears to be
‘no’ (Shirazfish: ry = 0.467, n=10, P =0.167;
Merlotfish: r¢ = 0.624, n =10, P = 0.063). Note
that if we were testing an a priori hypothesis, for
example based on data showing that males were
more susceptible to the pollutant than females,
we could argue that one-tailed probabilities were
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_ Table 3.1 | Powerefticiency of some of the commo:

Power-efficiency

Nonparametric Parametric
(NP) test (PP) test (%) of NP test Comments
Spearman’s rank-order  Pearson’s product- 91% Power-efficiency same as
correlation moment correlation for Kendall's rank-order
correlation
Wilcoxon signed ranks  paired t-test <95.5% Power-efficiency ~95%
test even for small sample
sizes
Wilcoxon Mann— t-test <95.5% Power-efficiency ~95%
Whitney U-test for small sample sizes
Kolmogorov-Smirnov t-test <95% Power-efficiency declines
two-sample test slightly with increasing
sample size

Kruskal-WVallis One-way ANOVA
one-way ANOVA (F-test) ,
Friedman two-way Two-way ANOVA

ANOVA (F-test)

<95.5%

64% (k = 2) to
91% (k > 20)

Power-efficiency dependent
on number of matched
samples (k)

more appropriate (Box 3.1) and the significance
levels would be reduced to P =0.083 and P =
0.031, respectively (see also section 3.5.4). No-
tice that, in both cases, the correlation co-
efficients are fairly large (r; > 0.46), and it
seems likely that the lack of significance for
these two relationships is due to low statisti-
cal power (see Box 3.1 and below). The power-
efficiency of the Spearman’s rank correlation test
is 91% when compared to the most powerful
parametric correlation test (Pearson’s product-
moment correlation; Table 3.1). Re-analysing Ex-
ample 1 data using Pearson’s correlation follow-
ing arcsine-squareroot transformation to help
normalize the error distribution {Section 3.3.3.2,
Box 3.6) yields the following correlation co-
efficients: Shirazfish: r = 0.498, df = 8, two-tailed

= 0.143, Merlotfish: r =0.618, df=28, two-
tailed P = 0.057. Thus, there does not appear to
be a significant relationship between sex ratio
and distance from a known pollution source, re-
gardless of whether we use a parametric or non-
parametric correlation test. But, was the power of
our analysis (Box 3.1) great enough to be able to
detect a significant relationship if there was one?
Ideally, the power of our test should be greater
than 80%. The statistical power of a test is deter-

mined by sample size, the amount of variation in
the data and the magnitude of the effect one is
trying to detect. We can determine the power of
our two correlations using the following formula
(Cohen 1988, Zar 1999)

Zg = (z - 2)y/(n - 3),

where z and z, are the Fisher transformations for
r (the correlation coefficient) and r, (the critical
value of r), the Fisher transformation = 0.5 In(1 +
r/1 —r), n = sample size, and Zg is the probabil-
ity of the normal deviate, which can be translated
into power (1—f) by comparing against the ap-
propriate tabulated value {e.g. Appendix Table B.2
in Zar 1999).

These days, a simper way to determine power
is to use a power calculator {(such as that
which can be found at http://ebook.stat.ucla.eduf
calculators/powercalc/). Using this calculator, the
power of our two Pearson’s correlation tests were
determined to be 30.4% and 48.0%, respectively,
which are nowhere near the desired 80%. These
calculators can also be used to determine the
sample sizes required to achieve a given power.
In this example, sample sizes of 30 and 19, re-
spectively, are required to achieve 80% power.
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z

Box 3.6|Effect of arcsine-squareroot transformation

g 8

=

Here we illustrate the effect of arcsine transformation on proportional data.
Figure B3.6a shows the relationship between proportions and their transformed
values. Arcsine transformation has the effect of stretching out the ends of the dis-
tribution, such that the truncation that occurs when the mean of the (binomiiaf)
distribution is close 1o zero or one is reduced. As a consequence, the distribution
should become more normalized under transformation.

Figure B3.6b shows the distribution of binomially distributed data, for a range o o1 o 05 or o8 os a7 os o8
of dutch sizes (CS = 2, 5, 10 and 20) and mean sex ratios (mean SR = 0.5, 0.75 Proportion

" and0.9). The data show the frequency distribution of 5000 random samples taken Effect of arcsine 1
from the binomial distribution, using the rhinom function in S-Plus (open bars) and ta.
the effect of arcsine-squaferoot transformation on the distribution (closed bars).
Note that the effects of arcsine transformation on mean SR = 0.25-and 0.1 are

" equivalent to those illustrated for mean SR = 0.75 and 0.9, respectively.

Although the nontransformed sex ratios are approximately normal for sex
ratios close to 0.5 {especially when dutch sizes are large), the data are severely
skewed when sex ratios are heavily biased towards one or other sex {especially -
when clutch sizes are small). Arcsine transformation tends to make the data more
normal (cf. the open and closed bars in the bottom-right figure), though in some
cases the effect is to make the data less normal {cf. middle-right distributions).
For small clutch sizes and heavily biased sex ratios, arcsine transformation fails to

Transformed value(degrees)
8 8 &8 & 8

3

£

transformation on proportional da

| narmalize the data.

Lack of power is not the only problem with
the analysis described above. Another is that it
fails to take into account the fact that we appear
to have the same relationship in both datasets.
Ideally, we would want to perform a test in which
we utilize information from both species simul-
taneously and ask whether we get the same re-
lationship in both. Unfortunately, there is no
easily accessible nonparametric test that is equiv-
alent to analysis of covariance (but see the Page
Test for Ordered Alternatives, Siegel & Castellan
1988). We could perform a Wilcoxon signed ranks
test (equivalent to a paired t-test) to determine
whether the sex ratio variation within our two fish
species is greater than that between them, but this
would tell us nothing about their respective sex
ratio trends along the creek. An alternative proce-
dure is to perform a Fisher combined probability
test (Fisher 1954, section 21.1; Box 18.1 Sokal &
Rohlf 1995) that allows us to use the probabilities
derived from the correlations we carried out on
the two species.

The calculation of the Fisher’s combined prob-
ability estimate is based on the fact that —2InP

is distributed as x 2, (see Box 18.1 in Sokal & Rohlf
1995). Thus, by evaluating twice the negative nat-
ural logarithm of each of the (k) probabilities we
wish to combine, and summing them, we obtain
a total (—2X InP) that can be compared against
the x? distribution with 2k (= 4, in this exam-
ple) degrees of freedom (i.e. x2y). In our exam-
ple, based on the one-tailed P-values from the
Spearman rank correlations

—2% InP = -2 x (In0.083 + In 0.031)
—2 x (—2.4889 — 3.4737)
—2 %X —5.9626

= 11.925.

i

(eq. 3.2)

When compared with x2,, this yields a two-tailed
probability of Pcompinea = 0.0358. Thus, when we
use the information we have on the two fish
species, there appears to be a significant trend
for sex ratio to increase with distance from the
pollution source, but the statistical evidence for
such a relationship is far from convincing. As
indicated above, this is probably due to a lack
of statistical power, because: (1) we are relying

- ———— -
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on nonparametric tests that do not allow us
to adequately combine factors and covariates
in the same model, and (2} we are losing in-
formation about sample sizes. In the following
sections, we address each of these concerns. The
first deficiency is covered by considering (para-
metric) linear models (section 3.3.2), and the sec-
ond by considering weightings within these mod-
els (section 3.3.3.4). We will then move on to
consider more carefully the underlying assump-
tions of these models (section 3.4).

3.3.2 General linear models
General linear models are parametric models
which assume that the underlying error distri-

Thus, it appears that sex ratio does not vary be-
tween species (P = 0.59) and that the relation-
ship between distance from the pollution source
and sex ratio does not vary between the two
species (P = 0.92), but that sex ratio does vary
(increase) with distance (P = 0.018). The first line
of this output reminds us, however, that these
results are based on sequential sums of squares,
so the order in which the explanatory variables
appear in the model may influence the results.
We therefore need to undertake model simplifi-
cation (section 3.4.5). After simplification, it ap-
pears that our ‘best’ (most parsimonious) model
is one in which Distance is the only significant
explanatory term:

Terms added sequentially (first to last)

Df

Sum of Sg Mean Sg F Value Pr(F)

Distance 1
Residuals 18

bution is normal (Gaussian). They are a special
type of generalized linear model, which is dis-
cussed fully in section 3.4. They include most of
the ‘classical’ methods that most readers will be
familiar with, including linear regression, analy-
sis of variance (ANOVA) and analysis of covariance
{ANCOVA).

Recall that the question we are trying to ad-
dress is: does sex ratio vary consistently with
distance from the pollution source in our two
species of fish? We could perform separate linear
regressions for the Shirazfish and the Merlotfish,
but it makes better sense to use all of the data
and perform an ANCOVA in which, effectively,
we are asking: does the relationship between dis-
tance from the pollution source and sex ratio dif
fer between our two species. An ANCOVA on these
data (first, third and fifth columns of Table B3.5)
generates the following ANOVA table (the output
comes from S-Plus):

0.1931
0.4555

0.1931
0.0253

7.6337 0.0128 **

And the relationship is described by the follow-
ing regression line

Sex ratio = 0.2173 + 0.0003 x Distance.
feq. 3.3)

There are a number of problems with this anal-
ysis, however. First, since our data are propor-
tions, the assumption of normal errors made
by classical regression methods is likely to be
violated, particularly when proportions are less
than 0.3 and greater than 0.7 (Zar 1999). In-
deed, inspection of the normality plot (see sec-
tion 3.4.6) for this linear regression shows that
there is considerable curvature in the residu-
als, indicating significant deviation from normal-
ity (check it yourself!). A common ‘quick-fix’ for
this problem is often to perform some sort of
transformation.

Terms added sequentially (first to last)
Df Sum of Sg Mean Sg F Value Pr(F)

Distance 1 0.1931 0.1931 6.9151 0.0182

Species 1 0.0083 0.0083 0.2974 0.5930

Distance:Species 1 0.0002 0.0002 0.0081 0.9293
Residuals 16 0.4470 0.0279
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3.3.3 General linear models with
transformed data
3.3.3.1 Probit transformation
One of the earliest transformations applied to
binomial proportion data was the probit trans-
formation, which has most commonly been em-
ployed in the analysis of dose-response data from
bioassays. Probit transformation evolved when
such analyses were performed by hand using pro-
bit paper. With the advent of desktop comput-
ers, this method is now considered rather old-
fashioned. For further information see Finney
(1971) and Crawley (1993).

3.3.3.2 Arcsine transformation

A much more commonly employed transforma-
tion used by sex ratio biologists is known as
the arcsine-squareroot transformation (also known
as the arcsin transformation or angular transforma-
tion). This involves taking the square-root of the
proportion, p, and transforming it to its arcsine
(i.e. the angle whose sine is ./p)

p’ = arcsin \/p (eq. 3.4)

For proportions between 0 and 1, the trans-
formed values will range between 0 and 90 de-
grees (some statistical tables and packages
present the transformation in terms of radians;
a radian is 180°/m = 57.2958 degrees). Note that
prior to arcsine transformation, the data must be
represented as proportions and not as percent-
ages. Arcsine transforming the fish sex ratio data
(Example 1) has little impact on the results of our
analysis

ie. near 0 and 1 (Box 3.6); of course, this can
be checked by producing a normality plot (see
section 3.4.6). Moreover, arcsine transformation
does not get around another major attribute of
proportion data, namely that the responses are
strictly bounded between 0 and 1 (or 0% and
100%). Thus, the classical linear methods that we
used earlier (i.e. linear regression and ANCOVA)}
could easily predict biologically unrealistic or
even impossible results, especially if the vari-
ance is high and the data lie close to zero. In
Example 1, the linear regression line describing
the relationship between sex ratio and distance
from the pollutant source indicates that at a dis-
tance of 2609 m (untransformed data) or 2956 m
(arcsine-transformed data), the creek will com-
prise only males, and at greater distances the sex
ratio will exceed 1! Although extrapolating so far
beyond the observed data would be ludicrous, the
point remains that classical linear models can
predict values that lie outside biologically sensi-
ble bounds.

3.3.3.3 Logistic transformation

One way round this problem is to apply the
logistic transformation, in which our success prob-
ability p (i.e. proportion of males in our sample)
undergoes the following transformation, written
as logit (p)

logit (p) = 1n(1 2 p). (eq. 3.6)

Thus, for p in the range 0 to 1, logit (p) will range
between —occ and +oo, respectively. If we apply

Terms added sequentially (first to last)
Df oSum of Sq Mean Sg F Value Pr(F)

Distance 1 0.2239 0.2239 7.7734 0.0121 **

Residuals 18 0.5185 0.0288

And the relationship (in degrees) is described by
the following regression line

Sex ratio = 27.6331 + 0.0211 x Distance.
{eq. 3.5)

Whilst the arcsine transformation often helps
to normalize proportion data, it does not work
well at the extreme ends of the distribution,

the logit transformation to a simple linear
model, we produce the following linear logistic
model

p

logit (p) = 1n< ) =a+ bx. (eq- 3.7)

Note that p/(1—p) is the statistical odds of success
(Jim Morrison’s ‘five to one’), and so the logistic
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transformation of p is the log odds of success. We
can make use of this fact to re-write eq. 3.7 to
make p a function of x

da+bm
Thus, when x = —oc, p =0 and when x = +oco,

p = 1, so fulfilling our need for p to be strictly
bounded between 0 and 1.

If we apply the logit transformation (eq. 3.7)
to the Example 1 sex ratio data and perform an
ANCOVA, we arrive at the following result

and the other on 500, we should have much more
confidence in the value derived from the larger
sample. Thus, in those cases where it is known a
priori that not all observations contribute equally
to the fit of the model, we should weight our ob-
servations according to the confidence we have
in them (usually some function of sample size).
This process is called weighted regression.

Figure 3.1b shows the data for Example 1
with the size of the symbols reflecting the size
of the sample upon which the sex ratio was esti-
mated (i.e. the denominator of the sex ratio; the

Df Sum of Sg Mean Sg F Value Pr (F)

Distance 1
Residuals 18

4.2161
9.6465

4.2161
0.5359

And the relationship (in logits) is described by the
following regression line

Sex ratio = —1.3102 + 0.0016

x Distance. {eq. 3.9)

Back-transforming eq. 3.9 (using eq. 3.8), the pre-
dicted sex ratio at the pollution source is e~13102/
(1 + e~ %3102y = 02124 and even at 10 000 m away
from the pollution source, the predicted sex
ratio remains within realistic bounds (e.g.
el=1:3102+0.0016x10000) [ +e(—1.3102+0.0016x10000)]
0.9999996).

As we shall see in section 3.5, the logit trans-
formation forms the basis for logistic regression (i.e.
generalized linear modelling with binomial er-
rors and logit link function). We do this within
the GLM context (rather than using simple linear
regression, as above), because: (1) logistic regres-
sion allows for the nonconstant binomial vari-
ance (the variance of the binomial distribution
equals np(1 — p) and peaks at p = 0.5); (2) it deals
with the fact that logit(p) values near 0 or 1
are infinite; and (3) it allows for differences be-
tween sample sizes by weighting the regression
(Crawley 1993, 2002).

3.3.3.4 Weighted linear regression

In all of the models we have considered so far,
each data point (i.e. sex ratio) contributes equally.
However, it is clear that if we have two sex ratios,
and one is based on a sample of five individuals

7.8672 0.0117 *~*

second and fourth columns in the Table B3.5). It
is very clear that there is considerable sample size
variation between the data points. A weighted
ANCOVA on the logit-transformed data finds
that neither Species nor Distance (nor their
interaction) is statistically significant (e.g. for
Distance, P > 0.16). Thus, when we weight sex
ratios according to sample size, it appears that
there is no consistent relationship between sex
ratio and distance from the source of pollution.
This is because most of the extreme sex ratios
(i.e. those that deviate most from 0.5) are based
on small sample sizes.

In section 3.4 we incorporate the ideas of
weighted regression and logit transformation
into a technique known as generalized linear
modelling.

3.4 | Generalized linear models

The general linear models we discussed in the
previous section are based on the underlying
assumption that the distribution of residuals
around the fitted model (i.e. the error distribu-
tion) is Gaussian (= ‘normal’), and that these
residuals show no systematic variation with re-
spect to the mean (i.e. that the variance is con-
stant). However, these two assumptions are often
violated (as we have seen already for sex ratio
data). Generalized linear models (GLMs) differ from
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the general linear models encountered previously
in allowing one to also specify non-normal error
variances, such as Poisson, binomial, negative bi-
nomial, gamma and exponential (section 3.4.2.1).
We can use GLMs to analyse sex ratio data, but be-
fore we can do that we need to understand the
rationale and some of the benefits of the GLM
approach.

3.4.1 The pros and cons of using GLMs
Generalized linear modelling provides a single
theoretical framework for analysing many differ-
ent types of data. This makes it an extremely
powerful and flexible approach. Also, by care-
ful choice of an appropriate link function (section
3.4.2.3), the GLM will constrain the predicted val-
ues to lie within realistic bounds (as with the lo-
gistic transformation, section 3.3.3.3). The main
limitation of the GLM approach is that it is re-
stricted to models that are linear. This does not
mean that GLMs can be used only to describe
straight-line relationships, but that it must be
possible for the model to be structured in such
a way that it describes a linear relationship. For
example, the following nonlinear equation

y = el@+b¥) (eq. 3.10)
can be linearized by log-transforming both sides
In(y) = a + bx. (eq. 3.11)

Within GLMs, this process is performed by log.
transforming the dependent variable by specify-
ing a log link function (section 3.4.2.3). Some mod-
els are intrinsically nonlinear because there is
no transformation that can linearize them in all
parameters. For example

y=a-+ (eq. 3.12)

c+x
In these circumstances, the GLM is unable to est-
imate all of the parameters (a, b and ¢} and we
must undertake nonlinear modelling.

3.4.2 Components of a GLM

Generalized linear models have three essential
ingredients (Crawley 1993, 2002 provides a fuller
explanation).

3.4.2.1 Error structure

The error structure describes the shape of the
distribution of residual values around the fitted
model. Classical linear models assume a normal
(Gaussian) distribution; GLMs allow other error
distributions to be defined such as Poisson errors
(e.g. for count data), negative binomial errors (e.g.
for parasite load data), exponential errors (e.g.
survival times) and binomial errors {e.g. sex ra-
tios, mortality and other proportion data).

3.4.2.2 Linear predictor

The linear predictor is a linear equation defining
the relationship between the predicted y values
and one or more explanatory variables, on the
scale determined by the link transformation (section
3.4.2.3). The number of terms in the linear predic-
tor is the same as the number of parameters to
be estimated from the data. So, for a simple lin-
ear regression, there are two terms in the linear
predictor (slope and intercept). To determine the
fit of a given model, the GLM evaluates the linear
predictor for each value of the response variable
and compares this with a transformed value of y
that is determined by the link function. The fit-
ted value is determined by back-transforming the
predicted values to the original scale (so, for ex-
ample, with a log link, the fitted value is the anti-
log of the linear predictor and with the reciprocal
link it is the reciprocal of the linear predictor). This
will become clearer when we go on to examine
a specific example (section 3.5.1.1).

3.4.2.3 Link function

Data on proportions, such as sex ratios,
are frequently described by the logistic cutrve
(Figure 3.2a), because this equation (eq. 3.13)
asymptotes at 0 and 1 (or 0% and 100%), and
guards against unrealistic values being predicted.

e(a+bx)

p {eq. 3.13)

=15 elaton
Clearly, eq. 3.13 describes a nonlinear relation-
ship. However, it can be linearized by applying
the logit transformation we encountered earlier

ln(l f p) =a + bx. (eq. 3.14)
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The logistic curve (a) can be used to ensure that the
fitted values lie between 0 and |, and the logit transformation
(b) can be used to linearize the relationship.

This transformation is known as the link function,
and it relates the mean value of y to its linear
predictor (section 3.4.2.2). It is essentially just a
transformation that linearizes the model and en-
sures that the fitted values stay within reason-
able bounds (Figure 3.2). As indicated in section
3.4.2.2, the values that emerge from the linear
predictor are on the scale of the link function,
and predicted values of y are generated by back-
transforming the linear predictor to the original
scale. So, for example, to ensure that predicted
count data (e.g. number of beetles per quadrat)
never become negative, a log link function would
be applied. This is because the fitted values would
then be antilogs of the linear predictor, and all
antilogs are greater than or equal to zero. In the
case of proportion data, the logit link function is
generally applied to ensure that predicted values
never exceed one or drop below zero (other link
functions include the identity link for normal er-
rors, the reciprocal link for gamma errors, the pro-
bit link for bioassays and the complementary log-log
link for dilution assays). Although the default link
function for binary and binomial data is the logit
link, the (asymmetrical) complementary log-log
link should also be assessed as it will sometimes
lead to a lower residual deviance {Crawley 1993,
for an empirical example see Petersen & Hardy
1996).

(b)

logit

11

T T T T

X

3.4.3 Determining the best-fit model:
maximum-likelihood

The ‘classical’ methods with which most of us
are familiar (linear regression, ANOVA, etc.) uti-
lize least-squares (LS) methods for determining the
best-fit model. In other words, we find the model
that minimizes the sum of squares of the departures
from the observed y values from their predicted
values. In contrast, generalized linear mod-
elling determines the best-fit model by maximum-
likelihood (ML) methods. When the GLM has nor-
mal errors and an identity link function (as in
‘classical’ models), ML and LS give identical re-
sults (indeed, linear LS methods are a subset of
ML, in much the same way as general linear mod-
els are a subset of generalized linear models).
For other kinds of error structure and link func-
tions, LS methods may produce biased parameter
estimates, and so ML is generally preferred (e.g.
McCullagh & Nelder 1989). Even though ML esti-
mation is relatively straightforward, it is rather
laborious, and so most biologists are happy to
treat the process as a ‘black box’. Those interested
in the mechanistic basis to ML estimation in a
biological context can find examples in Crawley
(1993, 2002) and McCallum (2000).

The basic idea behind any statistical mod-
elling procedure is to determine the parameter
values that lead to the best fit of the model to
the data, With LS regression, the best-fit model
is determined by minimizing the residual sum
of squares. With ML, we ask: given our data
and our choice of model, what parameter values
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_ Table 32| Aldescri

e S e
tion of deviance terms

Deviance term

Description

Null deviance
Residual deviance (deviance)

Deviance associated with the null model (= total sum of squares)
Deviance remaining after some or all terms have been included

in the model (= residual sum of squares)

Change in deviance

Deviance associated with inclusion of a particular term in a mode!

(= sum of squares for a particular term)

Maximal model
Current model
Minimal model

- Tuble 3.3 [ Termiinology for stages of model simplification”
Model Description
Saturated (full) model Perfect fit; zero deviance and df; one parameter for each observation

Contains all factors, interaction terms and covariates under consideration
The current model; number of parameters < maximal and > minimal model
A model with minimal number of terms, in which all parameters are

significantly different from zero, and no important terms have been

omitted

Null model Only the grand mean (i.e. one parameter) is fitted; deviance = total sum of
squares in ‘normal’ models

maximize the likelihood of the data being observed
{hence the term ‘maximum likelihood’)? Likeli-
hood (or more commonly loglikelihood) is used
here in a formal sense for assessing the statis-
tical odds of producing a particular outcome. The
‘best’ model is therefore the model that pro-
duces the minimal residual deviance (Table 3.2),
subject to the constraint that all the parameters
in the model should be statistically significant
(Table 3.3).

Residual deviance is twice the difference be-
tween the maximum achievable log-likelihood
(i.e. that obtained when the predicted and ob-
served values are identical) and that attained
by the model under consideration (McCullagh
& Nelder 1989). For most error structures, de-
viance is distributed asymptotically as chi-square
{(x?) and so the goodnessoffit of a model can be
determined by calculating the deviance and test-
ing it against the chi-square distribution with the
appropriate degrees of freedom (df). By conven-
tion, if P > 0.05, then we usually declare that the
model fits the data well (Hardy & Field 1998 give
further explanation and examples). A commonly
used alternative test statistic is Pearson’s X2,
which has the same asymptotic x 2-distribution as
the deviance.

Several analogues of the r? measure com-

monly used in linear models have been proposed
(e.g. Hosmer & Lemeshow 1989), but these do
not possess the same statistical meaning and are
not as widely used: one could, for example, give
the percentage of the deviance explained by each
term in the model.

3.4.4 Overdispersion and
underdispersion

For a wellfitting model, the residual deviance
should be approximately equal to the residual
degrees of freedom (i.e. the residual mean deviance
(residual deviance/residual df) should be approxi-
mately equal to one and certainly less than about
1.5). When this is not the case, either the model
does not adequately describe the variation in
the data, or the variation in the data is greater
than that under binomial sampling. Either way,
the most likely result is that the mean deviance
will be greater than one. When the model is
thought to be correct (i.e. we believe that all im-
portant explanatory terms have been included),
but the residual mean deviance is greater than
one, the data are said to exhibit extra-binomial
variation, super-binomial variation or overdispersion
(Chapter 5).
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3.4.4.1 Causes of overdispersion

There are two main causes of overdispersion in
grouped binary data expressed as proportions:
either the model is mis-specified in some way,
or there is correlation between the responses
(i.e. the sexes). Mis-specification could be due to
one of the following: (1) a systematic component
of the model has been mis-specified (e.g. impor-
tant variables have not been measured, impor-
tant interaction terms have been omitted or an
explanatory variable needs to be transformed);
(2) there are one or more outliers in the ob-
served dataset; (3) an inappropriate link function
has been chosen (for proportion data, a comple-
mentary log-log link may reduce the degree of
overdispersion); or (4) the proportions are based
on small numbers of individuals (under these
circumstances, the chi-square approximation to
the distribution of deviance breaks down and
hence a large residual mean deviance may not
be problematic).

Once these possible explanations have been
eliminated, the most likely explanation for
overdispersion in binomial data is correlation be-
tween the binary responses. In essence, this means
that there has been a violation of the assumption
that the individual binary observations (i.e. the
individual organisms) making up the binomial
proportions (i.e. the sex ratios) are independent of
each other. Since individuals are often grouped
together within clutches, broods or families, if
sex ratios are biased in any way the individual
binary data points {offspring sexes) will be pos-
itively correlated, leading to sex ratios that are
more variable than they would have been under
the assumption that the sexes were distributed
binomially. As a consequence, the residual mean
deviance will be greater than unity. Overdisper-
sion can be generated not just by interclutch
variation in sex ratio, but also by any factor
that leads to individual binary responses being
nonindependent. Overdispersion is also common
in mortality data as groups of individuals may
tend to survive or die collectively (Chapter 5); Jim
Morrison’ ‘no one here gets out alive’

8.44.2 Correcting overdispersion
Since overdispersion simply means that the vari-
ance is greater than that expected under the bi-

nomial expectation, the simplest solution is to as-
sume that the variance is not equal to np(1 — p),
as assumed by the binomial probability distri-
bution, but is proportional to it and equal to
np(1 — p)s, where s is an unknown scaling fac-
tor variously referred to as the scale parameter,
dispersion parameter or heterogeneity factor. We can
estimate s by dividing the Pearson’s X2 value (or
simply the residual deviance for the full model) by
the residual degrees of freedom. We can then use
this estimate of s (usually termed the empirical
scale parameter) to compare the scaled deviances for
terms in the model using F-tests, rather than x?
tests (in exactly the same way as we would for
a conventional linear model). Applying an empir-
ical scale parameter does not affect parameter
estimates, but it does inflate their standard er-
rors (which are multiplied by a factor ,/s); thus,
type II errors are more likely (and type I errors
less likely). This approximation works well, and
is the standard method used by most ecologists
{indeed, some ecologists would advocate the use
of F-tests rather than x? tests for all GIMs with
binomial errors whenever there is any overdisper-
sion, especially when sample sizes are small).

Models using empirical scale parameters are
prone to inaccuracies when sample sizes (denom-
inators) vary dramatically between proportions.
Williams (1982) developed an alternative method
that allows for unequal sample sizes by apply-
ing an additional weighting function to the data;
this method is now known as Williams’ procedure.
A number of statistics packages have the facil-
ity to implement Williams’ procedure, including
GLIM and Genstat, but not S-Plus. F-tests (or t-tests)
should be employed to evaluate the significance
of variables after using Williams’ procedure.

A further method is quasi-likelihood estimation.
This allows estimation of regression relationships
without fully knowing the error distribution of
the response variable. Thus, instead of providing
an error distribution and link function, one pro-
vides a link function and a variance function. For
example, perhaps the logit link transformation
linearizes the response correctly, but the variance
appears to be a linear function of the mean; un-
der these circumstances, both attributes could
be incorporated into a quasi-likelihood model.
Quasi-likelihood also allows one to estimate the
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scale parameter in under- and overdispersed re-
gression models. For example, in sex ratio analy-
ses, we can estimate the degree of overdispersion
in a logistic regression model by supplying the
appropriate link and variance functions for the
logistic model and determining the significance
of parameter estimates using F-tests.

Yet another method of dealing with overdis-
persion is to use generalized linear mixed models
{GLMMs). One of the problems with GLMs is
that they allow only one error term; all effects
other than the residual error at the lowest level
of the data are assumed fixed (McCullagh &
Nelder 1989). Therefore, for parameter estima-
tion purposes, each offspring in the sex ratio
is treated as an independent data point. How-
ever, if variation between ‘clusters’ (e.g. broods)
does not follow the binomial expectation (e.g.
due to sex ratio manipulation), then there will
be overdispersion and these estimates will be bi-
ased. While we might use an empirical scale para-
meter, Williams’ correction or quasi-likelihood to
deal with this (see above), an alternative method
would be to introduce a second random effect
(e.g. the identity of the brood) to deal with the
‘between-cluster’ variation in sex ratio, in addi-
tion to the ‘within-cluster’ variation, i.e. to use
GLMMs (Krackow & Tkadlec 2001). These models
will give the same parameter estimates for the
fixed effects as the conventional GLMs, but their
standard errors will be inflated if the random ef-
fect (e.g. nest identity) is influential. Currently,
GLMMs are possible in only a few statistical pack-
ages (e.g. Genstat, but not S-Plus or GLIM), but their
use and availability are likely to grow. For recent
examples of the use of GLMMs in sex ratio analy-
ses, see Kruuk et al. (1999) and section 3.5.4. Fur-
ther details of dealing with overdispersion are
given by Collett (1991) and Crawley (1993). It is
important to emphasize, however, that if overdis-
persion is very large, then this indicates a badly
fitting model and it might be that a different ap-
proach would reflect the biology of the system
better (e.g. log-linear modelling of the number
of males in the clutch).

3.44.3 Overdispersion in binary data
Since the deviance for (ungrouped) binary data
does not exhibit a x 2 distribution, its magnitude

depends solely on the value of the fitted proba-
bilities. Therefore, large values of residual mean
deviance for binary data cannot be taken to indi-
cate overdispersion. Overdispersion may still oc-
cur in binary data, but it will not be possible to
detect it from the value of the residual mean de-
viance and it can be modelled only by including
a random effect in the model (Collett 1991).

3.44.4 Underdispersion

Underdispersion occurs when the variance of a
binomial response variable is less than that for
the binomial distribution and may be produced
when the individual binary observations are neg-
atively correlated. Although underdispersion is
rare in sex ratio analyses of vertebrates and most
invertebrates, it is common among haplodiploid
insects and mites (Chapter 5). Despite this, it has
yet to receive much attention from statisticians
{but see Podlich et al. unpublished manuscript).
Another reason is that the costs of ignoring
underdispersion appear to be relatively small,
as it simply leads to conservative tests, i.e. tests
in which the chance of a type I error is not
increased. On the other hand, ignoring under-
dispersion reduces the statistical power of the
test and hence increases the chances of mak-
ing type II errors. In the absence of alternative
methods, rescaling the data in the same way as
for overdispersed data is recommended (Gordon
K. Smyth pers. comm.). For example, Hardy and
Mayhew (1998) found a significant negative re-
lationship between mean sex ratio and mean
clutch size across 26 species of bethylid wasps
using classical regression of arcsine-transformed
sex ratio data. When we analysed the same data
using logistic regression, the relationship ap-
peared to be nonsignificant (x2; = 0.86, P > 0.1).
However, the model exhibited considerable
underdispersion (heterogeneity factor = 0.178)
and when rescaling was applied, using Pearson’s
X2, it transpired that the relationship was indeed
significant (F; 24 = 27.0, P < 0.001). Analysis of
species-mean data is discussed in Chapter 6.

3.4.5 Model simplification

The aim of statistical modelling is to produce
a model that fits the data well while also be-
ing as simple as possible: this is known as the
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" Toble 3.4 The saquence of steps in model simplification (after Crawley 1993) .

Step Procedure Explanation
I Fit the maximal model Fit all the factors, interactions and covariates of interest
Note the residual deviance
If you are using Poisson or binomial errors, check for
overdispersion and rescale if necessary
2 Begin model simplification Inspect the parameter estimates
Remove the least significant terms first, starting with
the highest order interactions, progressing on to
lower order interaction terms and then main effects
Remember that main effects that figure in significant
interactions should not be deleted
3 If the deletion causes an Leave that term out of the model
insignificant increase in Inspect the parameter values again
deviance Remove the least significant term remaining
4 If the deletion causes a Put the term back in the model
significant increase in These are the statistically significant terms as assessed
deviance by deletion from the maximal model
5 Keep removing terms Repeat steps 3 or 4 until the model contains nothing

from the model

but significant terms

This is the minimal adequate model
If none of the parameters is significant, then the minimal
adeguate model is the null model

principle of parsimony or Occam’s razor; in other
words, a model that does not contain any redun-
dant parameters or factor levels. Fitting GLMs
is a journey of exploration! Often, there is no sin-
gle best model; several models may adequately
fit the data and different modelling procedures
may yield very different solutions. But remem-
ber that at all times biology should drive your
choice of models. Indeed, Hosmer and Lemeshow
{1989) have argued that ‘successful modelling of
a complex data set is part science, part statisti-
cal methods, and part experience and common
sense’.

The first step in the model simplification pro-
cess is to fit a maximal model that contains all of
the factors, covariates and interaction terms that
might be important in the analysis (Table 3.3).
Then, via a series of step-wise deletion tests (sec-
tion 3.4.5.1), any nonsignificant explanatory vari-
ables, factors and interaction terms are removed,
starting with the highest order terms (e.g. three-
way interactions). Once the number of terms in

the model has been reduced such that no more
can be removed without reducing the model’s ex-
planatory powers (i.e. causing a statistically sig-
nificant reduction in the amount of variation
explained), and none can be replaced that in-
crease the model’s explanatory powers, it may
be possible to simplify the model still further
by grouping together factor levels that do not
differ significantly from one another (aggrega-
tion) and amalgamate explanatory variables that
have similar parameter values (as long as such
simplifications make good biological sense). The
resultant model is the minimal model (Tables 3.3
and 3.4).

Crawley’s (1993, 2002) books contain whole
chapters on model simplification and it is well
worth reading one of these prior to embarking
on any GLM exercise. His views on the sequence
of steps in the model simplification process are
summarized in Table 3.4 but, as Crawley himself
is at pains to point out, there are no hard and
fast rules.
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3.4.5.1 Determining the significance of
individual terms in the model

Step-wise deletion tests are x 2 tests (or F-tests) that
assess the significance of the increase in deviance
that results when a given term is removed from
the current model. For example, imagine we
have two hierarchical models (i.e. two models for
which one of the models contains all of the terms
of the other model, plus one or more additional
terms) - model 1: y =a +bx; +cxz +dxz; and
model 2: y = a + bx; + ¢xz, which differ in that
model 2 does not contain the dx; term. To test the
significance of the parameter d, we determine
the likelihoods for model 1 {I;) and for model
2 (I2), and calculate the (change in) deviance for
the comparison of the two models {~2 In(l2/14)],
which can then be compared to x 2, with degrees
of freedom equal to the difference in the num-
ber of terms in the two models. Here, P <0.05
indicates that the variable was making a signif-
icant contribution to the fit of the model and
hence should generally be retained. However, for
very large sample sizes, or where there are many
higher-order interaction terms, statistically sig-
nificant results may be generated even though
the effect sizes are small. In these instances, it
may be prudent to increase the critical probabil-
ity level for retention in the model. For exam-
ple, a good rule of thumb is that the acceptance
probability is set at 5% (P < 0.05) for main ef
fects, 1% for two-way interactions, 0.5% for three-
way interactions, and so on (M] Crawley pers.
comm.).

A less rigorous method of evaluating the sig-
nificance of a variable in a statistical model is the
Wald-test, which tests whether the regression co-
efficient is significantly different from zero by
comparing the estimated coefficient to its stan-
dard error. In practice, the Wald-test is usually
used as a guide to the sequence in which vari-
ables are removed from the model, and the
amount of deviance the variable explains is used
as the final criterion of its significance.

3.4.6 Model checking

Once the minimal model has been obtained it
can be checked using a number of regression
diagnostics, discussed in detail by, for exam-
ple, Hosmer and Lemeshow (1989) and Crawley

(1993, 2001). These include assessing the over-
all fit of the model (section 3.4.3) and producing
diagnostic plots. For example, we need to assess
whether the standardized residuals exhibit any
trends with respect to the explanatory variables
or fitted values (Figure 3.3a), and whether the
standardized residuals are normally distributed
(Figure 3.3b). We use standardized residuals when
the error distribution is binomial (or Poisson or
gamma) because the variance changes with the
mean (Crawley 1993). Examples of both a ‘resid-
uals plot’ and a ‘normality plot’ are shown in
Figure 3.3. A lack of pattern in the residuals plot
indicates a well-specified model, while the nor-
mality plot should generate a reasonably straight
line when the model provides a good fit to the
data. However, while these plots are good for de-
tecting extreme observations deviating from a
general trend, extreme caution should be exer-
cised in over-interpreting them. This is partic-
ularly true for binary data, because all of the
points on the residuals plot lie on one of two
curves depending on whether the response is
0 or 1. Diagnostic plots are produced as standard
in S-Plus and some other statistical packages, and
Crawley (1993, p. 288) provides a macro for gen-
erating them in GLIM; as well as an example for
binomial data.

3.5 | Logistic analysis of sex
ratio data

Having set the GLM scene, we now examine.

the GLM modelling process as it applies to pro-
portion data in general, and sex ratios in par-
ticular. Logistic regression is the term used to
describe GLMs in which the error distribution is
assumed to be binomial and a logit link function
is applied (section 3.4). Many statistical packages
now include logistic regression as a special mod-
elling procedure, even if they also have a generic
GLM function (e.g. S-Plus) or have no other GLM
functions (e.g. Minitab) (see Apendix 3.1). Logis-
tic regression can be used to model both binary
and binomial (grouped binary) data. The statis-
tical methodologies for analysing these two data
types are essentially the same. We begin with the
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model. The data are plots derived from a logistic regression
model fitted to binomial data from Example | (panels a & b)
and binary data from Example 2 (panels ¢ & d). In (a) and (c),
the deviance residuals are plotted against the fitted values; we
refer to these as residuals plots. In (b) and (d), the ordered
Pearson residuals are plotted against quantiles of the standard
Normal distribution; we refer to these as normality plots.
When the data are binomial {(grouped binary), a random
scatter of points around zero indicates a well-fitting model, as
shown in (a). When the data are (ungrouped) binary, residuals
plots are not very useful because all of the points lie on one of
two curves depending on whether the response is 0 or | (c).
For both binomial (b) and binary {d) data, deviation from the
line of unity on a normality plot may indicate a poorly fitting

| model; both of these models appear to fit reasonably well.

analysis of binomial data (section 3.5.1) and fol-
low this up with the analysis of binary data and
highlight where the differences lie (section 3.5.2).
We give a worked example of analysis of avian sex
ratios (section 3.5.3) and discuss a case history of
analyses of mamimalian sex ratios (section 3.5.4).

(®)
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Logistic analyses of social insect sex ratijos are
discussed in Chapter 4.

3.5.1 Analysis of proportions

Because sex ratios are proportions, and involve
dividing one integer by another, important in-
formation about the size of the sample from
which they were calculated is lost. This is one
of the main problems with traditional (non-
weighted) methods that rely on classical regres-
sion or nonparametric statistics (section 3.5.3).
When proportions are modelled by logistic re-
gression, this information is regained because in-
formation about ratios (e.g. number of males ver-
sus number of females or number of successes
versus number of failures) and sample sizes (i.e.
the magnitude of the binomial denominator) is
included.

In most statistical packages, the data (e.g.
sex ratio) are included in the model as two vec-
tors: one describing the ratio, and the other the
sample size, or (as in GLIM) one describing the

——————
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numerator (e.g. males) and the other the sample
size (i.e. denominator = males + females). In oth-
ers (e.g. S-Plus), the two vectors may be bound to-
gether (using the ¢bind command) and represent
the raw data that combine to make the ratio (e.g.
number of males and number of females). In all
cases the method of analysis involves performing
a weighted regression using the individual sam-
ple sizes as weights, and a logit link function to
linearize the model (section 3.4.2.3).

3.5.1.1 Example 1: Fish sex ratios revisited

We begin by going back to Example 1. You will
remember that we wanted to determine whether
pollution from a known source resulted in bi-
ased sex ratios in two species of fish living in
an Australian creek. Having conducted a visual
inspection of the data, we can proceed to fitting

logit link is the default option), and the data
we want to analyse are in the dataset called
Example 1 (data=Examplel). The difference lies
in how we tell S-Plus that we have proportion data
with a known denominator. In (1), we give S-Plus
a term for the proportion of males (SexRatio)
and a term for the denominator of the ratio
(weights=SampleSize), whereas in (2) we give
it the two vectors that together indicate the mag-
nitude of the denominator (cbind (NumMales,
NumFemales); cbind simply ‘binds’ these two
vectors together, such that the number of males
in the sample is paired to the number of fe-
males from the same sample; the denominator =
NumMales+NumFemales=SampleSize).

In both cases, we get the following output
(the diagnostic plots for this model are shown in
Figure 3.3a,b):

Coefficients Value std. Error t value
(Intercept) —0.8069 0.1779 —4.5343
Distance 0.0007 0.0002 2.8799
Species -0.1304 0.1779 —-0.7328
Distance:Species 0.0001 0.0002 0.7791

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 118.0099 on 19 degrees of freedom
Residual Deviance: 107.7797 on 16 degrees of freedom

Terms added sequentially (first to last)

Term Df Deviance Resid.Df Resid.Dev Pr(Chi)
NULL 19 118.0099

Distance 1 9.6185 18 108.3914 0.0019
Species 1 0.0023 17 108.3890 0.9612
Distance:Species 1 0.6092 16 107.7797 0.4350

our maximal model, which in this case includes The first table in this output tells us, for each
just three terms, Distance, Species and the of the coefficients, the value of the parameter es-
Distance:Species interaction. In S-Plus, we timate (Value), its standard error (Std. Error)
can specify this model in one of two ways: and a tvalue comparing the estimate against zero

(1) modell_glm (SexRatio~Distance*Species, family=binomial,
weights=SampleSize, data=Examplel)

(2) modell_glm (cbind (NumMales,NumFemales) ~Distance*Species,
family=binomial, data=Examplel)

~

In both cases, we tell S-Plus that we are creating a ‘ (t value). The second table tells us the change
generalized linear model (g1m) with binomial er- in the number of degrees of freedom (Df) and
rors and logit link function (family=binomial; change in deviance (Deviance) associated with
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the sequential inclusion of each of the terms
(Term) in the model and the statistical signifi-
cance of the change in deviance, as determined

model2_update (modell,~.-Distance:Species)

anova (modell, model?2, test="F")

Resid.Df Resid.Dev ATerms

tion term. This produces the following output
(which has been adapted from S-Plus to make it ;
clearer): '

ADf ADeviance F-value P(F)

17 108.3672

by chi-square tests (Pr (Chi)). The other values
in this table indicate the sequential reduction
in the residual degrees of freedom (Resid.Df),
and residual deviance (Resid.Dev). Sandwiched
between these two tables are three important
lines. These tell us that the statistical analysis
of this model assumes that the dispersion para-
meter is taken to be 1; in other words that there
is no overdispersion (section 3.4.4). Is this true?
We can get a rough idea of this by dividing
the residual deviance by the residual degrees of
freedom (Resid.Dev/Resid.Df = 107.8/16 =
6.73). Clearly, there is massive overdispersion,
whereas our model currently assumes that there
is none (i.e. that Resid.Dev/Resid.Df ~ 1).
Having checked that we have included all pos-
sible terms in our model, and that it has not
been mis-specified in any way {e.g. by omitting
an important interaction term), that we have
not ignored any outliers, and that we have the
correct link function (section 3.4.2.3), it seems
likely that we have genuine overdispersion. This
is perhaps not too much of a surprise given that
these data are not real, but we shall not let that
worry us at this stage. To proceed as we would
do with real data, we need to employ an empir-
ical scale parameter (s = 6.73). In S-Plus, we do
this simply by testing the significance of terms
in the model using F-tests, rather than chi-square

Model3_update
Modeld_update
anova (model2,modeld, test="F")

Resid.Df Resid.Dev

-Distance:Species -1

(model2, ~.-Species)
{model2,~.-Distance)
anova (model2,modell, test="F")

—-0.6132 0.0955 0.7612

The first command simply removes the interac-

tion term from our maximal model (model 1}.

The second command asks S-Plus to examine the

difference between the amount of variation ex- |
plained by models 1 and 2 (with and without '
the interaction term) using F-tests. In the table,
Resid.Df and Resid.Dev are the residual de-
viance and residual degrees of freedom, respec-
tively, for the model that excludes the terms
indicated by ATerms (A, ‘delta’, simply means
‘change in’). The table tells us that the process of
removing the Distance:Species interaction
generates a final model that has a deviance of l
108.36 and 17 degrees of freedom, and results in '
a change in deviance of 0.6132 and 1 degree of ;
freedom. But, remember that we are no longer
interested in deviances, because our data are
overdispersed. We therefore need to concentrate
on the F-test. This indicates that removing the in-
teraction term from the model does not reduce
the amount of variation explained by our model
(F117 = 0.0955, P = 0.7612). If it did significantly
reduce it, then our current model would also be
the minimal model (Table 3.3) and the modelling
process would be complete for this particular ex-
ample. However, as it doesn’t, we need to go on |
to test each of the main effects in turn, starting
with the term with the lowest t value, In S-Plus,
this is how we would do it:

ATerms ADf ADeviance F-value P(F)
18 108.3697 -Species -1 —0.0025 0.0004 0.9839 ns
18 116.1776  -Distance -1  -7.8104 1.2856  0.2726 ns

tests, We begin the process of step-wise dele-
tion by testing the significance of the interac-

Thus, although Distance appears to have a
bigger effect on the fit of the model than
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P-value
Model  Test Type of model Species (Distance)
! Spearman'’s rank order Nonparametric Shirazfish P >0.16ns
correlation Merlotfish P = 0063+
Combined P P = 0.036*
2 Pearson’s product- Parametric — normal errors Shirazfish P > 0.14ns
moment correlation Merlotfish P =0.057+
(arcsine-transformed Combined P P =0.029*
data)
3 General linear model Parametric — normal errors Both P =0.013*
(unweighted,
untransformed data)
4 General linear model Parametric — normal errors Both P =0.012*
(unweighted, arcsine-
transformed data) )
5 General linear model Parametric — normal errors Both P =0.012*
(unweighted,
logit-transformed data)
6 General linear model Parametric — normal errors Both P > 0.16ns
(weighted, arcsine-
transformed data)
7 Generalized linear Parametric — binomial errors  Both P >021ns

model (weighted,
untransformed data)

ns=P >0, +=005<P <0.1,*=P <0.05.

Species, neither term is statistically significant
(Species: Fqi 13 = 0.0004, P = 0.9839; Species:
F118 = 1.2856, P =0.2726). This suggests that
there is no consistent effect of pollution on sex
ratio in this population. Just to be sure, we
should try adding terms back into the model,
starting with Distance. When Distance alone
is added to the model, no significant variation
in sex ratio is explained (Fy 13 = 1.675, P = 0.21),
even if we employ quasi-likelihood estimation to
obtain a better level of compensation for overdis-
persion (Fy 13 = 1.726, P = 0.21).

3.5.1.1.1 SUMMARY OF EXAMPLE 1

In summary, if we compare the performance of
the different tests (Table 3.5), we see that the non-
parametric tests (Spearman’s correlation) gave
lower significance values for Distance than
the equivalent parametric tests (Pearson’s cor-
relation) (cf. models 1 and 2) (section 3.3.1.2).
This is almost certainly due to this tests lack

of power. Using a general linear model (in ef
fect, an ANCOVA), we were able to combine a fac-
tor and a covariate within a single model, and
this improved the significance level associated
with Distance, regardless of whether we trans-
formed our sex ratio data or not (cf. model 2
and models 3, 4 and 5) (section 3.3.2). However,
when we added a weighting factor to our model,
to control for differences in sample size within
our dataset, Distance disappeared as a signif-
icant term in the model (cf. models 5 and 6)
(section 3.3.3). Applying a GLM with binomial er-
rors and logit link function yielded similar re-
sults, and confirmed that there was no signifi-
cant change in sex ratio with distance from the
pollution source (section 3.5.1.1). The similarity
between the results of models 6 and 7 is probably
due to the overriding importance of sample size
effects in this analysis (i.e. power, rather than the
lack of fit of the data to the normal distribution).
Careful examination of Table 3.5 indicates that
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although the single-species nonparametric tests
gave the correct result (i.e. no effect of Distance
on sex ratio) it appears to have given it for the
wrong reason (i.e. due to lack of power)!

At this point, it is worth emphasizing that
although our comparison of the different meth-
ods has focused on the statistical significance of
the result (i.e. the P value), as biologists we are
usually more interested in the biological signifi-
cance of the result rather than its statistical sig-
nificance (though journal editors may sometimes
disagree!). If sample sizes are large enough, then
even a 1% difference between treatment groups
will be statistically significant (this is why poll-
sters question such large numbers of people in
the run-up to elections). Thus, it is not sufficient
to consider just the statistical significance of any
trends in our data, but also their magnitude.
Thus, in Example 1, the equation for the (non-
significant) logistic regression was

—0.7504 + 0.0006808

x Distance.

Logit{Sex ratio)=

Thus, back on the original scale, the sigmoidal re-
lationship between sex ratio and distance from
the pollution source is described as follows

a(—0.7504 + 0.0006808 x Distance)
Sex ratio =

1+ e(—0.7504 -+ 0.0006808 x Distance)’

Thus, the sex ratio was predicted to vary from
0.33 at the source (100 m) to 0.48 at the furthest
distance from the source (1000 m). Since this a
fairly large increase in the proportion of males
(45%) over a relatively short distance, it would
be premature to dismiss pollution as a correlate
of sex ratio variation at this stage and we might

want to gather a new, larger dataset that will
increase the power of our analysis.

3.5.2 Analysis of binary data

Often, sex ratio data are best analysed in the form
of binary responses. The analysis of binary data
using GLMs is exactly the same as for binomial
(grouped binary) proportions, except that we do
not include any weighting factor because each
‘sex ratio’ (0 or 1) represents a single individual
and we cannot detect or correct for overdisper-
sion (section 3.4.4.3). Effectively, we assume that
each data point comes from a binomial trial in
which the sample size {n) is equal to 1. In other
words, the data are assumed to come from a spe-
cial, abbreviated form of the binomial distribu-
tion, known as the Bernoulli distribution (Collett
1991). Whether it is worth analysing data in this
format (rather than as sex ratios based on lump-
ing together individuals from similar groupings,
e.g. nests or sampling points) is largely depen-
dent on whether each individual in the analysis
has unique explanatory variables associated with
it (e.g. an individual weight or colour, or individ-
uals are produced one at a time by parents, i.e.
brood size = 1, etc)). If it does, then the data are
best analysed in binary form; if not then there is
little to be gained and the data can be lumped
without loss of information.

3.5.2.1 Example 2: Crest size in Crested

Auklets
To address this issue, we examine the relation-
ship between chick sex and paternal crest size
in the Crested Auklet (Box 3.7 gives background
information). Hunter et al. (in prep.) collected

'Box 3.7|Example 2: Crest size in Crested Auklets

Data on the refationship. between crest size and ‘chigk sex in‘the Crested Auklet
(Aethia cristatella) was compiled by Fiona Hunter and colleagues (Hdnter et dl. in
< prepy). Fhese small seabcrds breed in coastal colonies around the Bering Sea, nestin.
_crevices and produce )ust one chick each year. The aduhs are socnally monogamous
“and both sexes prefer mates with. a iarge crest (a sexua! ornament sproutmg jUS[ y

above the beak). Hunter et al. wanted 1o know whether females were more fikely
* to produce male chicks when they: were peured 1o males with longer crests. Since:

thene is mutual sexual selection in this speces, Hunter etdl. predlcted that, prowded )
“erest length was heritable, females would produce sons if they were paxred tolong-

i crested males. and daughters if they were patred to short-crested ma!e&
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Table B3.7a | Sex ratios in Crested Auklets across three years

Number of - Number of male Total number of
Year female chicks chicks chicks
1993 11 [ 26
f994: - 3 3 6
1995 13 12 25
Total 27 30 55

Data were collected from 57 breeding pairs over three years: 1993, 1994 and 1995
(Table B3.7a). In each year; Hunter et dl. recorded the sex and mass of the chick
each pair produced, plus the body mass, tarsus (leg) length and crest length for

the male and female parents (referred to as the sire and dam, respectively). Table 1

B3.7b shows data for-1993 only.

Table B3.7b | Chick sex and morphometric data in Crested
Auklets in 1993

Sire Dam

Pais s | Tarsus  Crest : Tarsus . Crest
number - Chick sex Mass (g) - (mm) (mm) Mass(g) (mm) (mm)

293 Pl B 255 262 30T

[ M
fi F 278 282 406 271 266 362
: fie M 258 TrAL ATe e 2747 570
3 M st B S B T e 7
i F 276 -ty S T T 274 444
6 F 256 160 TSN JRAE 9]
7 M 306 294 394 =154 283350
8 F 248 LT i e AR b 773395
9. M 254 288 389 269 y 11 it 15
10 M 264 303 497 22 294 420
I M 267 206 36T BT e R
12 M 309 284 404 - 265 284 364
(3 M 308 289 - 448 256 279 354
14 F G ) PP e T T T E R
15 M 248 284 383 26l 29,402
16 F iy AR KBS A L i
|7 M 271 283 363 255 290 365
I8 F 241 293 359 249 285 . 380
19 M 262 750 =g e 295 34l
20 M w2t BN - R TR . ST 288 383
21 £ 274 R s E Ve e e R
22 F 258 284 415 283 294 374
23 Ft A LI5S D 242 263 - 424
24 F 277 343 A0 RIEEIE 280 360
25 M 281 P88 R4 S0 28.1 380
M

N
5 o~

271 281 43.3 o el ]
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these data to find out whether females were more
likely to produce male chicks when they were
paired to males with longer crests. Before ad-
dressing this issue (section 3.5.2.1.4) we ask a
simpler question, namely: does sex ratio vary be-
tween years? There are several ways that we can
address this question.

To analyse the Example 2 data, we need to or-
ganize them so that there is a single dependent
variable (Count = number of chicks in a given
category), and two factors {each with two levels)
corresponding to Year and Sex, and then im-
plement a GLM with Poisson errors and log-link
function. In S-Plus, the resulting model is:

modeld_glm(Count~Year+Sex, family=poisson, data=Examplela)

Terms added sequentially (first to last)

Df Deviance

Resid.Df Resid.Dev Pr(Chi)

NULL
Year 1 0.8618
Sex 1 0.1579

3.5.2.1.1 CONTINGENCY TABLES

Often, the simplest way is to construct a 2 x 1 con-
tingency table and calculate Pearson’s chi-square to
test the null hypothesis that individuals are dis-
tributed independently with respect to year and
sex. A problem with the data in Table B3.7a is that
the sample sizes are rather small for 1994. There-
fore, in our analyses we shall combine the 1993
and 1994 data (combining 1994 with 1995 gives
similar results). This generates a 2 x 2 contin-
gency table and a chi-square test gives x?, = 0.38,
P =0.54, suggesting that the sex ratio is similar
in all years.

3.5.2.1.2 LOG-LINEAR MODELS

A better method for analysing these types of
data (often called the G-test) extends the contin-
gency table approach and uses loglinear models.
These are generalized linear models for mod-
elling Poisson-distributed data (as opposed to
binomial data). Like the chi-square test, log-
linear models yield a x? statistic. Their great
advantage is that they can be readily general-
ized to analyse datasets that are much more
complicated than simple 2 x 2 contingency ta-
bles (e.g. Crawley 1993). Moreover, since log-
linear models are GLMs, their relation to the
other models we have discussed is more easily
appreciated.

3 1.4031
2 0.5413 0.3532
1 0.3833 0.6910

The significance of the model is tested by com-
paring its residual deviance (0.3833) with the
tabulated x? statistic with 1 degree of freedom
(3.841). Since the calculated x? statistic is lower
than the critical value in the tables (x?; = 0.3833,
P > 0.53), we cannot reject our null hypothe-
sis that the two sexes are distributed randomly
across years (i.e. that sex ratio varies between
years). Note that if we had a more complicated
model, with more factors, we would be better off
starting the analysis by constructing a saturated
model (Table 3.3), so that we end up with zero de-
viance and zero degrees of freedom. This would
allow us to determine that we had all possible
factors in the model before we began the step-
wise deletion process (Table 3.4).

3.5.2.1.3 LOGISTIC REGRESSION

A third way of looking at these data is to con-
vert them to proportions and analyse them using
logistic regression (rather than analysing them as
counts using log-linear regression). A model in
which just the intercept term is fitted yields a
residual deviance (0.3833 with 1 df) that is equal
to that determined by the log-linear model, and
again indicates that there is no significant varia-
tion in sex ratio between years.

We can perform exactly the same analy-
sis by constructing an unweighted logistic re-
gression model using the raw (binary) data
(Table B3.7a):

ModelS5_glm(Sex~Year, family=binomial, data=Example2b)
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In this case, we obtain the following output:

Terms Df Deviance Resid.Df Resid.Dev Pr(Chi)

NULL 56 78.8608
Year 1 0.3833 55 78.4774

Again, we find that there is no difference in sex
ratio between 1993/94 and 1995 (x?; = 0.3833,
P = 0.5358). In fact, log-linear and logistic regres-
sion models are exactly equivalent when the re-
sponse is two level (Aitkin et al. 1989, pp 225-255).

3.5.2.1.4 PATERNAL CREST LENGTH AND

CHICK SEX
Here we address the question of whether there is
an association between the sex of chick produced
by female Crested Auklets and paternal crest
length. The usual first step of plotting the data
for visual inspection is difficult when the data are
binary because the dependent variable has just
two states: male and female. In some instances,
summarizing the data with respect to sex can
be helpful, but in others (particularly more com-
plex models) it is not. In Example 2, the aver-
age crest length of males that sired daughters
was 38.77 + 1.18 mm (s.e), whereas the aver-
age for males siring sons was 42.51 + 0.99 mm
(t = —2.4543, df =55, P = 0.0173). Thus, males
siring sons have longer crests than those siring
daughters. The focus of the analysis is, however,
on the factors that determine offspring sex, and
so the dependent variable is chick sex, rather
than male crest length.

One way we could address this question
would be to perform a simple logistic regression,
with chick sex (Sex) as the dependent variable
and male crest length (Mcrest) as the only ex-
planatory variable

0.5358

following linear equation (on the logit scale):
Logit(Sex) = —4.8992 + 0.1231 x Mcrest.

Thus, back on the original scale, the sigmoidal re-
lationship between offspring sex ratio and pater-
nal crest length is described as follows

e(—4.899 +0.123 x Mcrest)

Sex=p= 1+ o(—4.899+0.123 x Mcrest)’

Of course, it is possible that this relationship
is spurious, generated by some third factor. For
example, perhaps good-quality females produce
sons and also find good-quality mates with long
crests. Alternatively, perhaps, females produce
more sons in ‘good years’ and males produce
longer crests in ‘good years’, leading to a posi-
tive correlation between sex ratio and male crest
length across years, which is not present within
years. Although we cannot examine all possi-
ble confounding variables, we can determine
whether any of the other variables we measured
are important. Hunter et gl. (in prep) measured
a variety of morphometric characteristics in ad-
dition to male crest size, including tarsus length
and body mass, and they did this for both sexes
(Table B3.7b). We also know in which year the
measurements were made. Therefore, we are in
a position to answer our main question while
testing for additional factors that might be ei-
ther accentuating or masking the relationship
between paternal crest length and chick sex.

Model6_glm(Sex~Mcrest, family=binomial, data=Example2b)

Terms Df Deviance Resid.Df Resid.Dev Pr(Chi)

NULL 56 78.8608
Mcrest 1 6.0653 55 72.7954 0.0137 =

This appears to confirm that the proportion of
sons produced increases with increasing paternal
crest length; the relationship is described by the

The first problem is which model to be-
gin with. There are seven possible explanatory
variables: one factor and six covariates (for a
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reminder about the difference between a fac-
tor and a covariate, refer back to Box 3.1). This
means that we have 13 main effects, if we include
the six possible quadratic terms. If we also fit
all 78 pairwise interactions (12+11+10 ... +
2 + 1), this means that we have 91 parameters to
estimate, yet only 56 data points! In these circum-
stances, it is less obvious what the correct proce-
dure for model simplification is (section 3.4.5).
Clearly, a compromise is needed, and this is
where the art of statistical modelling comes into
its own (and where individual modellers’ opin-
ions may differ). The trick is to start at a sensible

quadratic terms. Even with just a single inter-
action term, our model includes 14 terms! Once
we had removed all terms that did not contribute
significantly to model fit (stepwise deletion tests),
we tried to add more terms, including terms
that had previously been rejected and high-order
interaction terms. In practice, this involved go-
ing through each of the seven main effects, one
by one, and testing for inclusion all interaction
terms involving that effect. It is important to act
systematically. We obtained the following mini-
mal model, based on a series of stepwise-deletion
tests

Model8_glm(Sex~Year+Ftarsus+Mcrest, family=binomial, data=Example?2)

Resid.Df Resid.Dev ATerms ADf ADeviance Pr{(Chi)
54 69.3214 —Year -1 —4.8827 0.0271 *
54 69.4760 —Ftarsus -1 —-5.0373 0.0248 *
54 72.1635 —Mcrest -1 —7.7247 0.0054 =xx*
Coefficients:

Terms Value Std.Error t-value

(Intercept) —27.0913 10.1588 —2.6667

Year —0.7745 0.3773 —2.0527

Mcrest 0.1775 0.0744 2.3831

Ftarsus 0.7014 0.3289 2.1325

point and then go back to test those terms
that were initially ignored. Crawley (1993) rec- -
ommends including not more than n/3 param-
eters in an initial model. Thus, in this exam-
ple, no more than 56/3 = 19 terms. Starting with
the seven main effects plus six quadratic terms
leaves room for just six interaction terms. An al-
ternative starting point might be seven main ef-
fects plus 12 interaction terms. There are no hard
and fast rules, but we started with the following
model

model7_glm(Sex~Year*
family=binomial, data=Example2)
This was based on the idea that we could only
reasonably allow one interaction term in the ini-
tial model and we felt that the most important
interaction terms were likely to involve ‘year’,
but we could easily have chosen to start with
interactions involving male crest length or the

Thus, a higher proportion of male offspring were
produced in 1995 than in 1993/94, and the pro-
portion of male offspring increased with ma-
ternal tarsus length (body size) and paternal
crest length. The fitted logistic regression lines
are shown in Figure 3.4a,b (diagnostic plots are
shown in Figure 3.3c,d).

3.5.3 A worked example: Sex ratio
manipulation in zebra finches

In this section, we take an example from the lit-

erature to illustrate the advantages of logistic

(Mcrest+Mmass+Mtarsus+Fmass+Ftarsus+Fcrest),

regression over traditional methods. Our aim is
not to highlight the weaknesses of the published
study (which are not atypical, Box 3.4), but rather
to highlight the advantages of the GLM approach.

Our example comes from a study by Becky
Kilner (1998) on sex ratio manipulation in zebra
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> 1995
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Relationships between sex
ratio and (a) male crest length and
(b) female tarsus length in Crested
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Auklets. Some of the data used to
create these plots are given in

Table B3.7b. The curves are the
fitted partial logistic regression lines.

0.8

Our analysis revolves
around the data presented
in Figure 3.5a. This shows
the relationship between
the order in which chicks
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finches. The background to this study and the
original analysis are given in Box 3.8. Kilner
predicted that sex ratios would be more female-
biased when food was abundant and more male-
biased when food was restricted. Further, since
first-hatched chicks tend to attain heavier fledg-
ing weights, she reasoned that within broods fe-
males would tend to hatch earlier than males.
Here, we address the question: how does diet af
fect the relationship between hatch order and sex

fed pairs, but not for those from pairs given a
restricted diet. This conclusion was largely based
on a series of nonparametric analyses (outlined
in Box 3.8) in which sex ratio was calculated for
each of the six hatch ranks separately, resulting
in n =6 for each diet. This is despite the fact
that the analysis is based on 23 pairs of birds, 42
broods and 162 eggs. This loss of information is
particularly important because sample sizes vary
considerably across hatch ranks. This point is il-

ratio?

lustrated in Figure 3.5b, where the size of each

Box 3.8} Example 3: Sex ratio manipulation
‘in zebra finches

This example comes from a study by Kilner (1998) on sex ratio manipulation
in the zebra finch (Toeniopygia guttata), a small, seed-eating passerine bird that
lives throughout the arid and semi-arid zones of Australia and Indonesia. Zebra

"finches are nomadic and breed opportunistically when there is sufficient food

avaflable. There is evidence from other studies that females may manipulate clutch
sex ratios in relation to mate quality and food abundance. In wild populations,
secondary sex ratios tend to be female-biased when food is abundant, though

trends are not consistent between years. In order to test this experimentally, Kilner

manipulated the quantity of food available to captive breeding birds and monitored
their subsequent primary and secondary sex ratios (here, we restrict our discussion
to her analysis of primary sex ratios, i.e. the proportion of males in the brood at |
hatching). Kilner predicted that sex ratios would be more female-biased when: :
food was abundant and more male-biased when food was restricted. Further, since”
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 first-hatched individuals tend to attain heavier fledging weights, she reasoned that
* within broods females would tend to hatch earfier than males.
Kilner reared |2 pairs of birds under two regimes of food availability. For their .
first clutch, all birds were reared on a food-restricted regime in which food was .

rationed via an electronic hopper: Ten of these pairs then produced a second brood
of eggs, again on a restricted food regime. Then, for the third brood (n = 9 pairs),
the hoppers were removed and food was supplied ad fibitum. A second group of

11 birds was also established at this point, which laid their first batch of eggs under

conditions of abundant food. This was to control for any variation in sex ratio due
to the number of broods that a pair had previously reared.
Kitner conducted a number of analyses on these data, but here we concentrate

- on trying to address one question: how does diet affect the relationship between

hatch order and sex ratio?

Original analysis _

Kilner performed a series of separate tests designed to answer specific aspects
of the main question. For example, using Mann-Whitney U-tests she showed
that, across all 42 broods, sex ratio was significantly more male-biased when food
was restricted than when it was abundant (P < 0.01). Using Friedman two-way

' ANCOVAS, she showed that, within the nine pairs of birds for which she had three

broods, sex ratios were significantly more male-biased when food was restricted

_than when it was abundant (P < 0.05). Using Wilcoxon signed-ranks tests she

showed that, across all 22 food-restricted’ broods, female offspring hatched signif-
icantly earfier than male offspring (P < 0.01), and a similar relationship was also
apparent across the 20 ‘food-abundant’ broods (P < 0.05). Using Spearman rank
correlations, she showed that within the food-restricted group, the proportion of
males hatching increased significantly with increasing hatch order (P < 0.05) and
a similan, but nonsignificant (P < 0.1), trend was apparent in the food-abundant
group Using Wilcoxon signed-ranks tests, she showed that across the six hatch
order positions (1-6), the proportion of males hatching was significantly lower

_when food was abundant (P < 0.05). Finally, using the nine pairs for which she

had data for three broods, she used Friedman’s two-way ANOVA to show that

«the proportion of males hatching at each rank was significantly lower when food

was restricted than when it was abundant (P < 0.05), The retattonshlp between
diet, hatch order and sex ratio is shown in Figure 3.6a.

While all these tests point to there being a genuine effect of diet and hatch

“rank on. brood sex ratio, this analysis has a number of problems. First, it uses
B nonparametnc tests, which tend to lack power and are susceptnble to type ll errors
3 (le incorrectly accepting the-null hypothesis). Second, while some of the tests
{ inderutilize the data, by not weighting sex ratios by clutch or brood size (eg.
_ the Spearman rank correlations), others appear to be pseudo-replicated '(e.g. the
_‘_-Manhé\l\/hitney U-tests, where all of the data are lumped together with respect
10 diet regime, without taking account the identity of the pair). Third; at least six
'gdufferent tests are used, when one test could do the job; as xllustrated in section

3 A problem associated with this approach is that the probabmty of generating,
e | errors increases and so Bonferonm correctlons generally need to be apphed

( ice 1990).
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symbol is proportional to the size of the denom-
inator. By plotting the data in this way, it be-
comes abundantly clear that the original analy-
sis is likely to be unduly influenced by those data
points that are based on small sample sizes (e.g.
hatch ranks 5 and 6).

We can re-analyse these data using simple lo-
gistic regression in which the dependent variable
is the proportion of hatchlings that are male and
the explanatory variables are HatchOrder, Diet
and their interaction (HatchOrder:Diet). The
regression is weighted by clutch size (the denom-
inator of the proportion), so making full use of
the available data. Of course, as this is logistic

of hatch order on sex ratio, but that diet and
the interaction between hatch order and diet
is nonsignificant. However, to test this properly,
we need to delete each term from the model
in turn and determine whether it results in
a significant decrease in the proportion of de-
viance explained (stepwise deletion tests). Since
HatchOrder:Diet is the only interaction term
in the model, and is nonsignificant, we can delete
it and test the significance of the two main ef-
fects (but, clearly, if there was more than a sin-
gle interaction term, we would perform stepwise
deletion tests for each of the interaction terms
as well). This produces the following results:

Resid. Df Resid. Dev ATerms ADf ADeviance P (x?)
10 8.5487 -Diet -1 —2.1841 0.1394 ns
10 20.6345 -HatchOrder -1 —14.2699 0.0002 **x*

regression, we initially assume a binomial error
distribution and a logit-link function.

The results of this first step in the analysis is
shown below:

The loss of Diet from the model results in the de-
viance explained decreasing by a small and non-
significant amount (x?; = 2.18, P > 0.13). How-
ever, the loss of HatchOrder from the model

Coefficients Value Std. Error t value
(Intercept) —0.7583 0.4835 —1.5682
HatchOrder 0.4357 0.1672 2.6055
Diet —0.6223 0.7398 —0.8412
HatchOrder:Diet 0.0508 0.2591 0.1961

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance:
Residual Deviance:

23.61876 on 11 degrees of freedom
6.32614 on 8 degrees of freedom

Terms Df Deviance Resid. Df Resid. Dev P(x?)
Null model 11 23.6182

HatchOrder 1 15.0691 10 8.5487 0.0001
Diet 1 2.1841 9 6.3646 0.1394
HatchOrder:Diet 1 0.0385 8 6.3261 0.8444

Checking for overdispersion by calculating
the heterogeneity factor (i.e. Resid.Dev/
Resid.Df = 6.3261/8 = 0.7907) suggests that
there is, in fact, underdispersion, and since it is
only slight it is safe to proceed. The output ap-
pears to show that there is a significant effect

results in a highly significant decline in the
amount of deviance explained (x?, = 14.27, P <
0.001). So, the only significant explanatory vari-
able is HatchOrder, and the analysis of de-
viance table for this model is shown below (note
that when Diet is the only term in the model,
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(@) (b)

m Sex ratio at hatching with
respect to hatch order, for zebra
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finch broods reared with abundant
(O) and restricted food (O). Data
taken from 42 broods, after Kilner
(1998, Box 3.8). In (a), the data are
shown as they appeared in Kilner
(1998); in (b) symbol size is
Q proportional to sample size (which
are indicated above or below each
15 symbol) and the line is the fitted
logistic regression line to all of the

One
data.
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Hatch rank
it is marginally nonsignificant: %, = 2.98, P =
0.084):

3 4 5 6
Hatch rank

Terms Df Deviance Resid. Df Resid. Dev P (x?)
Null model 11 23.6187
HatchOrder 1 15.0699 10 8.54877 0.0001 ***

And the summary output for the mode! (from
S-Plus) is as follows:

Coefficients Value Std. Error t value
{Intercept) —1.0523 0.3628 —2.9001
HatchOrder 0.4647 0.1268 3.6632

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance:
Residual Deviance:

This indicates that the intercept for the logist-
ic regression line is significantly different from
zero and that there is a significant positive rela-
tionship between hatching order and proportion
of males in the brood. In other words, by using
a weighted analysis of covariance in which we
model sex ratio with binomial errors and a logit-
link function, it appears that although females
tend to hatch before males, this effect is inde-
pendent of diet, which is nonsignificant.
Remember that the parameter estimates
shown here are from the linear predictor {section
34.2.2), and so are on a logit scale (logit =

23.618 on 11 degrees of freedom
8.548 on 10 degrees of freedom

In(p/(1 — p)). To back-transform from logits
{(z) to proportions (p), we apply eq. 3.13 (i.e.
p=-e?/{1+e?]). Thus, the predicted sex ra-
tio for first-hatched eggs is el™1052+1%0465),
(1 + el~1:052F1x0465)) — 0 357, for second-hatched
eggs s el"1.05242x0:465) /(1 4 o(~1.05242x0.465)) -
0.469 and for sixth-hatched eggs is
e(~1.052+6x0.465)/(l +e(—1.052+6x0.465)) — 0.850. The
logistic regression line derived from this analysis
is shown in Figure 3.5b.

The model output also reminds us that this
model assumes that the dispersion (scale) para-
meter is equal to 1 (i.e. on the logit scale, the
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variance is independent of the mean). We can
re-estimate the scale parameter by dividing
the residual deviance by the residual degrees
of freedom 8.548/10 = 0.8548. As this is
tolerably close to unity, we need not worry
greatly about underdispersion (section 3.4.4.4).
One way that we could check the robust-
ness of this result would be by constructing a
quasi-likelihood model in which we assumed a
logit link, and tested for significance using F-
tests instead of chi-square tests (section 3.4.4.2).
This produces similar results, with hatching or-
der being the only significant term in the model
(F110 = 20.791, P = 0.0010). However, diet was
close to significance in this model (F;o = 4.108,
P =0.0733), suggesting that further experiments
or analyses may be justified.

3.5.3.1 Further analyses

While our re-analysis makes better use of the
available data and has greater power than those
conducted by Kilner, it is not the best analy-
sis possible. This is because our analysis weights
all 162 offspring equally, regardless of their par-
ents’ identity or which brood they came from.
Often, these two factors will lead to overdis-
persion, but the fact that our model is under-
rather than overdispersed suggests that these
effects are not biasing our results systemati-
cally. However, Kilners experimental design al-
lows us to test simultaneously for the inde-
pendent effects of parentage or brood number
on sex ratio. For this analysis, we need to em-
ploy generalized linear mixed models (GLMMs,
section 3.4.4.2) in which these terms are in-
cluded as random effects (see Krackow & Tkadlec
2001). When we conduct such an analysis (in
Genstat, using the irreml procedure), and deter-
mine the significance of terms in the model us-
ing F-tests (see Elston 1998), we get results sim-
ilar to those gained with the GLM: although it
is very clear that the Diet:HatchOrder inter-
action is nonsignificant (F, 4 = 0.07, P = 0.80),
and the HatchOrder main effect is significant
(Fy.14 = 13.04, P = 0.0028), the statistical signif-
icance of Diet is once again marginal (Fq 14 =
4.07, P = 0.063). After controlling for hatching
order, the predicted sex ratios from this model
are 0.61 on the restricted diet and 0.45 on the ad

libitum diet, suggesting that rationing food leads
to a 35% increase in the proportion of males in
the brood. Thus, even though the effect of Diet
was statistically nonsignificant, the magnitude of
the apparent effect suggests that it would be pre-
mature to discount the effect of diet on sex ratio
in zebra finches.

3.5.3.2 Conclusions

As with all GLMs, logistic regression allows the si-
multaneous testing of several interacting factors
and covariates in a single model. Since the under-
lying error distribution of sex ratios is known
{or presumed) to be binomial, this can be explic-
itly incorporated into the modelling process, so
avoiding ad hoc transformations and nonparamet-
ric tests which lack power. By weighting sex ra-
tios by their denominators, each individual con-
tributing to the ratio is given equal significance.
In contrast to Kilner’s (1998) analyses, we found
no statistical evidence that diet was a significant
determinant of sex ratio in zebra finches (though
nonsignificance was marginal). This conclusion
was independent of whether hatching order was
included or omitted as a covariate in the model.
However, in accord with Kilner, we found that
females tend to hatch before males. This result
was independent of adult feeding regime and,
because it utilized information from all of the
chicks that hatched successfully, the robustness
of our conclusion is illustrated by the high sig-
nificance of the result (P < 0.001).

3.5.4 A case history: Opossum sex ratios

Austad and Sunquist (1986) carried out the first
manipulative field test of the Trivers-Willard
prediction {(Chapter 13} that mothers in rela-
tively good condition will produce more male-
biased sex ratios than poor-condition mothers.
Females of the common opossum, Didelphis mar-
supialis (a polygynous marsupial producing litters
of 2-12 offspring), were given either diet supple-
ments or no supplements (control) and the sexes
of subsequent offspring were recorded. Austad
and Sunquist analysed these data by compar-
ing the overall sex ratio produced by females in
the treatment group with that produced by the
control group using a one-tailed binomial test.
They found a significant difference (P = 0.007)
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in sex ratio {but not in litter size) between the
two groups.

Subsequently, Wright et al. (1995) correctly
pointed out that comparing the overall sex ratios
of the two groups was inappropriate since the hy-
pothesis under test predicts an individual level
response, not a population (treatment group)
level response, to maternal condition. They re-
analysed the data (as presented in Sunquist &
Eisenberg 1993) using litters as the sampling
unit. Litters were classified categorically as ‘male-
biased’ or ‘unbiased or female-biased’. Using
a x°? test they found no significant differ-
ence between the proportions of male-biased lit-
ters produced by control and supplemented fe-
males (18/36 and 20/36 respectively; x* = 0.068,
P > 0.05).

However, Wright et al.’s categorization of lit-
ter sex ratio does not use all of the available in-
formation since the actual composition of each
litter (the size of the litter and the degree of any
sex ratio bias) is overlooked. For example, litters
containing six males plus one female are placed
in the same ‘male-biased’ category as litters of
four males plus three females, while the degree
of male bias is different (see also Box 3.1). Simi-
larly, litters of three males plus one female and
litters of six males plus two females have the
same sex ratio and are treated equally, despite
the fact that larger litters give more trustworthy
sex ratio estimates (section 3.3.3.4).

In an attempt to arrive at a more robust con-
clusion, the opossum data (as obtained from ME
Sunquist) were explored using weighted logis-
tic analyses (Hardy 1997). In a first analysis, lit-
ters were the sampling unit (D. marsupialis pro-
duces two cohorts of litters per season) and litters
produced by the same mother were assumed to
be statistically independent. No significant influ-
ence of cohort was found, so litters produced by
the same mother were lumped and a second anal-
ysis was performed with mothers as the sampling
unit: intuitively, this is more appropriate since

the assumption of independent litter sex ratios
does not have to be made, and it was mothers,
not litters, that received the experimental treat-
ments. Due to overdispersion, Williams* adjust-
ment {appropriate when the binomial denomi-
nator varies, section 3.4.4.2) was employed and
significance was evaluated with one-tailed t-tests.

Both analyses found that the sex ratio produced
by food-supplemented mothers was significantly
more male-biased than the sex ratios of control
females’ offspring (e.g. second analysis, t = 1.973,
df = 40, P = 0.028; mean sex ratio of supple-
mented group = 0.577, control group = 0.488).

One-tailed tests were used because there was
an anticipated direction for any difference be-
tween treatment groups (i.e. Ho: ‘there is no sex
ratio difference between the two groups’; Hi:
‘the offspring sex ratios of supplemented females
are more male-biased than those of control fe-
males’). However, not all statisticians agree that
one-tailed tests can be used when deviations in
the unanticipated direction are possible (Rice &
Gaines 1994). Using two-tailed tests would have
led to the acceptance of Hg, but would have been
suspiciously close to significance at the 5% level
(second analysis, P = 0.0566). See Hardy {1997)
for further discussion, including the use of ‘di-
rected tests’ (Rice & Gaines 1994) as an alternative
intermediate to the extremes of one- and two-
tailed testing.

Sven Krackow (pers. comm.) recently re-
analysed the opossum data using both GLMs
and generalized linear mixed modelling (GLMMs,
section 3.44.2) which includes a random
between-litter effect. For these data, the analy-
sis leads to the same biological conclusion re-
gardless of whether a GLMM or a corrected GLM
is employed (Krackow opted for two-tailed test-
ing and concluded lack of significance, P > 0.061
for both analyses), while employing uncorrected
GLMs led to spurious significance (P < 0.04).

Regardless of the degree of statistical signifi-
cance, the effect of diet supplements on sex ra-
tio is not exceptionally large (‘supplemented’ lit-
ters contained 18% more males), suggesting that
more data are probably required before we can
reach satisfactorily firm conclusions. Problems in
researching mammalian sex ratios are discussed
in Chapter 13.

3.6 | Simulation studies

We have argued that GIMs (and their ‘offspring’)
are usually the most appropriate analyses for sex
ratio analyses. In this section, we challenge this
argument using a series of simulations to ask
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two questions. First, under what circumstances
are errors likely to be generated when analysing
sex ratio data? Second, when does the method of
analysis really matter?

We use simulated datasets generated using
the rbinom procedure in S-Plus and compare three
methods of analysis:

1. A nonparametric method (Wilcoxon Rank
Sum Test, equivalent to Mann-Whitney U-test).

2. A transformation method (t-test on arcsine-
squareroot transformed data).

3. A generalized linear model with binomial

eITOTS.
In each case, sex ratios are expressed as propor-
tions. (For a comparable analysis for negative bi-
nomial data, see Wilson et al. 1996 and Wilson &
Grenfell 1997.)

3.6.1 Simulation approach

Imagine we want to determine whether females
in a population of burying beetles exhibit a
clutch sex ratio response to some manipulated
variable {e.g. change in day length). We could
randomly assign the beetles to one of two treat-
ment groups (increasing day length or decreas-
ing day length) and record the sex ratios of the
broods produced (see also section 3.5.4). What
is the probability that we will incorrectly reject
the null hypothesis of no difference between the
treatment groups (type I error) or incorrectly
accept the null hypothesis (type II errors)?

To address this question, we randomly gen-
erated two datasets, representing the two treat-
ment groups. In each case, we produced a series
of ‘virtual’ clutches of a given size and sex ra-
tio drawn from the binomial distribution. We
then used our three methods to test for a sig-
nificant difference between the two groups, and
repeated this process 1000 times. Thus, the prob-
abilities of type I and type II errors are, respec-
tively, equal to the proportion of simulations in
which the analysis indicated a significant differ-
ence between the two groups when there wasn't
one, or no significant difference when there was
one. We performed these simulations for a num-
ber of different scenarios. For example, to exam-
ine the effect of clutch size on the probability of
making errors, we allowed clutch size to vary be-
tween 1 and 20 eggs per female, and to determine
the effect of sample size we varied the number of

broods included in the analysis between 10 and
50 per treatment group. Sex ratios were allowed
to vary between 0 and 1.

3.6.2 Effect of clutch size, sample size and
sex ratio

In these simulations, the probability of making
a mistake was qualitatively similar for all three
methods (K Wilson unpublished analyses). There-
fore, in Figure 3.6 we show the results just for
the GLM model. This figure comprises 12 graphs,
representing the results of the combined effects
of clutch size (1, 5, 10 and 20) and sample size
(n =10, 20 and 50). Each graph is divided into
an 11 x 11 matrix and the axes of the matrix
represent the mean sex ratio of each of the two
treatment groups (varying between 0.0 and 1.0 in
intervals of 0.1). Each cell of the matrix is colour-
coded depending on the probability of making an
error; the darker the cell, the higher the prob-
ability of making a mistake. Thus, white cells
represent instances in which there is 0-10% av-
erage probability of making a mistake and deep-
red cells indicate that the probability of making
a mistake is 90~100%. Type I errors are indicated
by the colour of cells on the leading diagonal of
each matrix {bottom-left to top-right), and type II
errors are indicated by the colour of the remain-
ing cells.

Examining just the leading diagonals of each
matrix (bottom-left to top-right), it is fairly clear
that the probability of making a type I error (i.e.
detecting a spurious difference between treat-
ments) remains at less than 10%, regardless of
clutch size, sample size or mean sex ratio. The
biggest effects are seen in the probability of mak-
ing a type Il error (i.e. failing to detect significant
differences between treatments). As expected, the
probability of making a type II error is reduced
when clutch sizes are large, sample sizes are large
and the effect of our manipulation on sex ratio
is large. In other words, we make fewer mistakes
when the power of our test is high!

3.6.3 Differences between

statistical methods
What about quantitative differences between the
three methods? Simulations indicated that the
nonparametric test and the ttest on arcsine-
transformed data differ relatively little in their
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(see text) and so here we show the results just for the GLM model. Each celi of the matrix is colour-coded depending on the probability of making an error; the darker the cell, the
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The difference between two statistical methods for analysing sex ratio data in their probability of generating type | and type Il errors. For details of the simufations, see the
legend to Figure 3.6 and the text. In this figure, quantitative differences between the nonparametric and GLM models are shown. Here, the different colours represent differences
between the nonparametric method and the GLM in their probability of producing errors (see the legend attached to plot I). When there is little difference between the two
methods (i.e. 0-5% difference in the number of errors) the cell is white; when the nonparametric method is better (i.e. produces fewer errors) the cell is coloured pink or red, and
when the GLM is better the cell is coloured various shades of blue. In general, there is little difference between the two methods in their probability of producing type | errors (the
leading diagonals tend to be white, except when clutch size is one and sample size is very small, i.e. 10), but the GLM method produces significantly fewer type Il errors, except when

sample sizes are large (outside the leading diagonal, there is much more blue than red).




KENNETH WILSON & IAN C.W. HARDY

probability of generating errors (K Wilson un-
published analyses), whereas these two methods
differ quite markedly from the GLM with bino-
mial errors. This point is illustrated in Figure 3.7.
Here, the different colours represent differences
between the nonparametric method and the GLM
in their probability of producing type I and
type Il errors. When there is little difference be-
tween the two methods (i.e. less than 5% differ-
ence in the number of errors) the cell is coloured
white; when the nonparametric method is better
(i.e. produces fewer errors) the cell is coloured
pink or red, and when the GLM is better the
cell is coloured various shades of blue. This fig-
ure suggests that there is very little difference
between the two methods in their probability of
generating type I errors (cells in the leading diag-
onal are generally coloured white). However, the
two methods differ greatly in their probability
of generating type II errors: genuine differences
between treatments are much less likely to be
detected using the nonparametric method than
when using the GLM (i.e. as expected, the non-
parametric method lacks power-efficiency; sec-
tion 3.3.1.1). It is also apparent that the benefit
of using the GLM approach is generally enhanced
when clutch and sample sizes are small. Interest-
ingly, it appears that when clutch sizes are small
(<5) the difference between the two methods is
greatest when both mean sex ratios are close to
0 or 1, whereas when clutch sizes are large (>10)
the benefits of using the GLM approach are most
evident when both sex ratios are close to 0.5.

Thus, these simulations indicate that sex ra-
tio differences are likely to be difficult to detect
in species with small clutch sizes, except when
sample sizes are large. Moreover, although type I
errors appear to be unlikely in sex ratio analyses
regardless of the analytical method used, type 1I
errors are much less likely when using logis-
tic regression than when using alternative meth-
ods, especially when clutch and sample sizes are
small.

3.7 | Conclusions

The most appropriate approach for analysing sex
ratios (and other proportion data) will often be lo-

gistic regression (GLM with binomial errors and
logit-link function). After all, sex ratios are ex-
pressed as proportions and logistic GLMs were
developed to analyse proportion data. We hope
to have shown that using GLMSs is not very much
(if at all) more complex than using classical para-
metric methods (which are currently the most
frequently used). The next time you have col-
lected a set of sex ratio data and are ready to
begin analysis, ask yourself whether you want to
make best use of the data. If you do, your initial
approach should be to use GLMs.
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A3.1 | Reference sources and
statistical packages for GLMs

The most accessible book on GLMs (i.e. a book
written by a biologist rather than a statistician)
is probably Crawley’s (1993) GLIM for Ecologists,
which has recently been superseded by Crawley’s
(2002) Statistical Computing. More detailed statisti-
cal background can be found in books by Aitkin
et al. (1989), Cox and Snell (1989), Hosmer and
Lemeshow (1989), McCullagh and Nelder (1989),
Agresti (1990), Dobson (1990), Collett (1991) and
Menard (1995). In addition to these general refer-
ence sources, biologist-friendly descriptions of lo-
gistic analysis are provided by Shanubhogue and
Gore (1987), Trexler and Travis (1993), Sokal and
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Rohlf {1995) and Hardy and Field (1998). Some
recent examples where GLMs have been used to
analyse complex sex ratio datasets are discussed
in Hartley et al. {1999). Wilson et al. (1996) and
Wilson and Grenfell (1997) give accounts of GLMs
with particular reference to analysing parasite
count data.

Logistic analysis is available in at least the
following packages: BIOM-pc, BMDP, EGRET, Gen-
stat, GLIM, GLIMStat, JMP, LOGXACT, MacAnova, SAS,
S-Plus, SPSS, SPSSX, STATA, STATISTIX and SYSTAT.
Agresti (1990) provides an appendix detailing
the options available in various packages and ad-
vice on their implementation. The manuals for
some of these packages are also excellent refer-
ence resources (e.g. SAS Institute Inc. 1995, SPSS
1999). While we de not recommend the GLIM
manual (Francis et al. 1993) for the nonprofes-
sional, the GLIM package itself becomes much
more user-friendly if you have a copy of Crawley
(1993). The following website provides updated
information about the most frequently used sta-
tistical packages:
http://www.maths.uq.edu.au/~gks/webguide/

statcomp.html.
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