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Summary 

1. Empirically, parasite distributions are often best described by the negative binomial 
distribution; some hosts have many parasites while most have just a few. Thus ident- 
ifying heterogeneities in parasite burdens using conventional parametric methods is 
problematical. In an attempt to conform to the assumptions of parametric analyses, 
parasitologists and ecologists frequently log-transform their overdispersed data prior 
to analysis. In this paper, we compare this method of analysis with an alternative, gen- 
eralized linear modelling (GLM), approach. 
2. We compare the classical linear model using log-transformed data (Model 1) with 
two GLMs: one with Poisson errors and an empirical scale parameter (Model 2), and 
one in which negative binomial errors are explicitly defined (Model 3). We use simu- 
lated datasets and empirical data from a long-term study of parasitism in Soay Sheep 
on St Kilda to test the efficacies of these three statistical models. 
3. We conclude that Model 1 is much more likely to produce type I errors than either of 
the two GLMs, and that it also tends to produce more type II errors. Model 3 is only 
marginally more successful than Model 2, indicating that the use of an empirical scale 
parameter is only slightly more likely to generate errors than using an explicitly defined 
negative binomial distribution. Thus, while we strongly recommend the use of GLMs 
over conventional parametric analyses, either GLM method will serve equally well. 
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Introduction 

Macroparasites, in common with many herbivorous 
insects (Southwood 1978), tend to be aggregated over 
their host populations; some hosts have high parasite 
burdens, while others have none or a few (e.g. 
Pennycuick 1971; Anderson 1974, 1978; Pacala & 
Dobson 1988). If parasites were randomly distributed 
over their host population, their frequency distribution 
would conform to the Poisson and the population vari- 
ance in parasite load, &, would be equal to its mean, 
g. However, for most parasites, & > g, and thus there 
is greater variance in parasite loads than expected by 
chance. Theoretical studies suggest that the degree of 
aggregation may profoundly influence the stability of 
host-parasite interactions (e.g. Anderson & May 
1985, 1991), and so it is important to establish the 
causes and extent of such patterns of dispersion. A 
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tPresent address: Department of Parasitology, Faculty of 
Veterinary Medicine, University of Gent, Salisburylaan 133, 
9820 Merelbeke, Belgium. 

first step in this direction is to quantify the observed 
patterns accurately. Generalized linear modelling pro- 
vides a readily accessible technique for doing this and 
is the subject of this paper. 

In general, parasite distributions are empirically 
best described by the negative binomial distribution 
(Crofton 1971; Anderson 1974; 1978; Elliot 1977; 
Southwood 1978; Shaw & Dobson 1995), which is 
completely defined by its mean and the exponent k. 
The variance of a negative binomial distribution is 
described as follows: 

2 
_ 
P 

2 eqn 1 
k 

Thus, the degree of aggregation declines as k 
increases until, as k approaches infinity (or in practice, 
above about 20), the distribution converges on the 
Poisson (Elliot 1977). In order to fit the negative bino- 
mial distribution, we need to estimate the exponent k. 
The most accurate estimate of k is obtained by maxi- 
mum-likelihood methods (Elliott 1977), but a 
moment-estimate can be calculated by rearrangement 
of equation 1 and this is usually close to the maxi- 
mum-likelihood estimate: 
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x-2 
k= 

(S2_j) 
I eqn2 

where a is the sample mean, S2 is the sample variance 
and k is the estimated value of k. 

Traditionally, classical linear regression models 
(and analyses of variance) are used by ecologists and 
parasitologists to determine differences between 
mean parasite burdens. However, they have the disad- 
vantage that they assume that the error distribution is 
normal (i.e. Gaussian). Because parasite distributions 
tend to be aggregated, this assumption is usually vio- 
lated and so the analysis is often performed on loga- 
rithmically transformed data (Gregory & Woolhouse 
1992; Fulford 1994). While the log-normal distribu- 
tion provides a good fit to much parasite data, it fails 
when the parasites are highly aggregated, as this often 
results in the distribution of the transformed data 
being bimodal because of an excess of zeros (Wilson 
& Grenfell, in press). As a result, both type I and type 
II errors (as defined below) are likely when using this 
method. 

Clearly, differences between mean parasite bur- 
dens would be assessed more accurately if one could 
specify a model that explicitly accounted for the nega- 
tive binomial error distribution. Generalized linear 
modelling provides a readily accessible technique for 
doing this (for an gentle introduction into the ecologi- 
cal applications of generalized linear modelling, see 
Crawley 1993). GLMs are generalizations of classical 
linear models (which assume normally distributed 
errors) in which the error structure is explicitly 
defined by one of a series of distributions from the 
exponential family, and in which the expected values 
of the response variable are mapped on to the explana- 
tory variables by a link function. For the negative 
binomial distribution (which is not in the exponential 
family), the GLM error structure is defined by equa- 
tion 1 and the log or square-root link is usually used 
(Crawley 1993; Venables & Ripley 1994). 

A commonly used alternative to explicitly defining 
a negative binomial error distribution is to assume a 
Poisson distribution and to adjust the scale parameter 
(or dispersion parameter) so that the ratio of the resid- 
ual deviance and its degrees of freedom is approxi- 
mately equal to unity (Aitkin et al. 1989; Crawley 
1993; see below). Thus, instead of asssuming that the 
variance of the parasite distribution is equal to its 
mean (a2 = g, for the Poisson distribution), we assume 
that it is proportional to it (i.e &2 = O, where 0 is 
referred to as the scale or dispersion parameter). 

This paper is in two parts. In the first part, we use 
randomly generated data from the negative binomial 
distribution to show that, in general, GLMs provide a 
major improvement upon conventional linear regres- 
sion analyses of log-transformed data, especially 
when negative binomial errors are explicitly defined. 
In the second part, we use post-mortem worm counts 
and faecal egg counts from an unmanaged population 

of Soay Sheep on St Kilda to show that GLMs and 
traditional methods can give markedly different pic- 
tures as to the heterogeneities in parasite loads. We 
conclude by assessing the limitations of the GLM 
technique. 

Materials and methods 

GENERALIZED LINEAR MODELS 

Most currently available statistical packages have 
GLM procedures. However, only a limited number of 
error structures (those in the exponential family) are 
generally available. For example, GLIM and Genstat 
allow only for normal, gamma, Poisson, binomial and 
inverse Gaussian errors. At present, no statistical 
packages explicitly provide for negative binomial 
errors. Thus, when data are overdispersed, as indi- 
cated by a ratio of residual deviance to residual 
degrees of freedom significantly greater than 1 for the 
minimal model (Crawley 1993), the model must be 
adjusted. This is usually achieved by multiplying the 
scaled deviances by an empirical scale parameter. 
Often this is calculated as simply the ratio of the 
scaled deviance to its degrees of freedom, but Aitkin 
et al. (1989) recommend that it be estimated as 
Pearson's X2 divided by the residual degrees of free- 
dom. In either case, the parameter estimates are not 
affected but the standard errors are inflated (Crawley 
1993) and, in a manner directly analogous to standard 
analysis of variance and regression procedures, the 
scaled deviances for terms in the model are compared 
using F-tests instead of X2-tests (Aitkin et al. 1989; 
Crawley 1993). 

Although no statistical packages explicitly describe 
negative binomial errors, there are appropriate func- 
tions available in the public domain. For example, 
Crawley (1993) provides macros both for estimating k 
by maximum-likelihood methods and for using that k 
in a GLM. Here, we use the Splus statistical package 
(MathSoft, Inc. 1993; Seattle, WA) and the glm.nb 
function available by anonymous ftp from StatLib (ftp 
lib.stat.cmu.edu; see also Venables & Ripley 1994). 
This function also uses maximum-likelihood methods 
to estimate both the common k (referred to as theta in 
glm.nb output, see below) and the parameter values 
associated with the terms in the model. 

SIMULATED DATASETS 

In order to assess the utility of the GLM approach, we 
first compared it with traditional methods using a 
series of randomly generated datasets from the nega- 
tive binomial distribution. The datasets comprised 20, 
100 or 500 numbers from distributions with means 
ranging between 1 and 2000, and with k values rang- 
ing between O-5 and 20. These ranges cover those of 
most parasite burdens and faecal egg counts. For each 
of a pair of datasets, with either identical means or 
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means differing from each other by 100% (1 vs 2, 5 
vslO, 10 vs 20, etc.), the statistical significance of the 
difference between the means was assessed over 100 
trials using three models of increasing sophistication: 

1. Model 1: a generalized linear model with Gaussian 
errors using log10-transformed data (equivalent to a 
classical linear regression or analysis of variance 
model). 
2. Model 2: a generalized linear model with Poisson 
errors and adjusted scale parameter, using untrans- 
formed data. 
3. Model 3: a generalized linear mbdel with negative 
binomial errors, using untransformed data. 

The explanatory variable of the three models com- 
prised a single factor, which coded for each of the pair 
of distributions. The number of times that the different 
models detected significant differences between dis- 
tributions was scored over 100 trials using F-tests 
(Model 1 and Model 2) or x2 tests (Model 3). Thus, by 
comparing the output of the three models it was possi- 
ble to assess the probabilities of each performing: 

1. Type I errors (i.e incorrectly rejecting the null 
hypothesis of no difference between the means). 
2. Type II errors (i.e. incorrectly accepting the null 
hypothesis). 

SOAY SHEEP PARASITE DATA 

In the second part of the analysis we use the three 
methods to examine the factors influencing the post- 
mortem worm counts and faecal egg counts of an 
unmanaged population of Soay Sheep on the Scottish 
island group of St Kilda (see Gulland 1992, Gulland & 
Fox 1992). This population exhibits severe 'crashes' 
every 3-4 years, when up to 60% of the sheep die. This 
mortality is mainly due to the population overexploit- 
ing its winter food supply (Grenfell et al. 1992; 
Clutton-Brock et al., in press), but parasites have been 
implicated in the differential survival of their hosts 
(Gulland 1992; Gulland et al., 1993; K. Wilson et al., 
unpublished observation). 

In the first comparison, we- use worm burdens of 
sheep that died during the population crash of 1991/92 
(described in detail in K. Wilson et al. unpublished 
observations). Out of the 75 sheep that were autopsied 
at this time, 53 were lambs (< 12-months-old), 14 were 
yearlings (22-26-months-old) and eight were adults. 
Preliminary analysis indicated that a maximum of two 
age-classes were distinguishable: lambs (< 12-months- 
old) and 'adults' (> 12-months-old). Thus, analyses are 
presented in which the maximal model included two 
factors and their interaction: AGECLASS (two levels) 
and SEX (two levels). 

In the second comparison, we examined the factors 
influencing the August faecal egg counts of sheep (K. 
Wilson et al. unpublished observations). Preliminary 
analyses established that sampling year (1988-93) 

explained more variance in August faecal egg counts 
than sheep population density alone, and that the min- 
imum number of Adefinable sheep age-classes was 
four: lambs (4-months old), yearlings (16-months old), 
two-year-olds (28-months old) and adults (?40-months 
old). Thus, analyses were performed in which the 
maximal model included 3 factors and their interac- 
tions: AGECLASS (four levels), SEX (two levels) and 
YEAR (six levels). 

In these analyses, as well as testing the efficacies of 
the three linear models against each other, we also 
tested them against a simple non-linear maximum- 
likelihood model (see Shaw 1994 for details). The pri- 
mary difference between this model and Model 3 is 
that, if appropriate, it can fit separate k values to each 
of the component distributions, rather than having to 
rely on a single common k. 

Results 

SIMULATED DATASETS 

Comparisons are made between the three different 
models under five scenarios: (a) when the means and 
the k values of the two distributions are identical; (b) 
when the means are identical, but the k values differ; 
(c) when the means differ, but the k values are the 
same; (d) when the means and the k values both differ, 
and the k values and means are positively related (in 
other words, distributions with relatively larger means 
also have relatively larger k values, as appears to be 
true of most parasite distributions; Shaw & Dobson 
1995; Grenfell et al. 1995; present study); and (e) 
when the means and k values both differ, and the k 
values and means are negatively related. Mistakes in 
the cases (a) and (b) are referred to as type I errors (i.e. 
incorrectly rejecting the null hypothesis of no differ- 
ence between the means), and in the cases of (c), (d) 
and (e) are referred to as type II errors (i.e. incorrectly 
accepting the null hypothesis). 

(a) Comparisons of distributions with the same means 
and the same k values 

In this and the following series of comparisons, we 
determined the probability of each of the models pro- 
ducing type I errors. Thus, we assessed the number of 
times (out of 100 trials) that each of the models indi- 
cated a significant difference between two simulated 
distributions that had exactly the same mean and k 
value. All three models, over all combinations of sam- 
ple sizes (n), means (x) and k values had similar, and 
very low, probabilities of producing this kind of type I 
error (Fig. 1). 

(b) Comparisons of distributions with the same 
means, but different k values 

In this series of comparisons, the probability of 
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60 60. 60 O k = 20-0 
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0 __ 0. 
1 10 100 1000 1 10 100 1000 1 10 ioo iooo 
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Fig. 1. Probability of producing type I errors when the component distributions have the same mean and the same k value. Each 
box refers to a series of simulations to assess the probability of three statistical models making type I errors and incorrectly 
rejecting the null hypothesis (see main text for a description of the three models and the simulations). The sample size for each 
of the component datasets is indicated in the top left-hand corner of each box and the k values are indicated by the different 
symbols, shown in the bottom right-hand box. All three models have a low probability of producing a type I error when the 
means and k values are identical. 

Model 1 (the linear regression model using log-trans- 
formed data) producing type I errors ranged between 
between 0 and 100% and increased with sample size 
(n), sample mean (x) and difference between the 
component k values. By comparison, both the GLMs 
(Model 2 and Model 3) produced many fewer type I 
errors over all values of n, x and k, and both models 
failed with a probability ranging between about 0 and 
15% (Fig. 2). 

(c) Comparisons of distributions with different 
means, but the same k values 

The probability of producing a type II error (incor- 
rectly accepting the null hypothesis) was first deter- 
mined for two distributions that had different means, 
but the same k values (Fig. 3). For all three models, 
there was a significant probability of producing a type 
II error from such a comparison, except when sample 
sizes were very large (n > 100) or the k value was 
large (k ? 10). 

At low sample sizes (n = 20), the probability of 
Model - incorrectly accepting the null hypothesis 
increased as the distribution became increasingly 
aggregated (and k declined), such that for k << 10 
between 50 and 80% of comparisons resulted in 

type II errors over the range of sample means exam- 
ined. As sample size increased (to n = 100), the 
probability of type II errors was approximately zero, 
except when the distributions were highly aggre- 
gated (k < 1). Thus, when comparisons are made 
between samples with different means, but similarly 
shaped distributions, linear models using log-trans- 
formed data are highly likely to produce type II 
errors, especially when sample sizes are small (< 
100) or the distributions are highly overdispersed (k 
<< 10). 

Model 2 and Model 3 again tended to perform bet- 
ter than the linear model, though only marginally so. 
The probability of either of them producing type II 
errors was significant only when sample sizes were 
small (n = 20) and when the distributions were 
severely overdispersed (k << 10) or the sample mean 
was very low x < 5). The GLM with negative bino- 
mial errors (Model 3) was slightly less likely to pro- 
duce type II errors than the Poisson one with an 
empirical scale parameter (Model 2), or the classical 
linear model (Model 1). For example, for a compari- 
son of two distributions with means of 100 and 200, k 
values of 1, and sample sizes of 20, the probability of 
type II error was 62%, 50% and 40% for models 1-3, 
respectively. 
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Fig. 2. Probability of producing type I errors when the component distributions have the same mean but different k values. See 
legend to Fig. 1. When the means are identical, models 2 and 3 have a low probability of producing type I errors, even when the 
k values differ. Model 1, on the other hand, generates errors over a range of sample sizes, sample means and component k values. 
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Model 3 
100 n =20 100 n 100 100 n 500 3 k = 0-5 

80 80 80 0 k=1-0 A k =10.0 
60 60 60 V k = 20-0 
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20 20 20. 
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Sample mean 

Fig. 3. Probability of producing type II errors when the component distributions have different means but the same k values. 
See legend to Fig. 1. When the means differ by 100%, but the k values are identical, all three models have a low probability of 
producing type II errors when sample sizes are large. When sample sizes are small and k values are small, all three models gen- 
erate type II errors. 
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Fig. 4. Probability of producing type II errors when the component distributions have both different means and different k val- 
ues, and means and k values are positively related. See legend to Fig. 1. When the means and k values differ and are positively 
related to each other, as appears to occur in nature, all three models have a low probability of producing type II errors when 
sample sizes are reasonably large (n ? 100). However, when sample sizes are small, all three models (and especially the GLMs) 
generate type II errors, particularly when the component k values are markedly different. 

(d) Comparisons of distributions with different means 
and different k values, where the k values and means 
are positively related 

When both the means and the k values of the two dis- 
tributions differ and the k values and means are posi- 
tively related, all three models have a low probability 
of producing type II errors, except when sample sizes 
are small (n = 20). Paradoxically, Model 1 produced 
fewer errors than either Model 2 or Model 3 at this 
time, but did so only when the k values of both distri- 
butions were very small (e.g. 0-5 and 1.0) or the sam- 
ple means were low (x? < 5) (Fig. 4). This counterintu- 
itive result is due to the fact that the coefficients of 
variation for log-transformed distributions are gener- 
ally smaller than those for the non-transformed distri- 
butions (Fig. 5) and hence, when sample sizes are 
small, Model 1 is less likely than the other two models 
to indicate significant differences between similar 
means (as witnessed by the higher probability of type 
I errors, see above). Under these circumstances it is 
therefore advisable to use alternative modelling meth- 
ods, such as non-linear maximum-likelihood analysis. 

At low sample sizes (n = 20), the probability of 
Model 2 and Model 3 producing type II errors ranged 
between 0 and 70%, and declined as the overall k of 
the combined distribution increased. There seemed to 

be little effect of sample mean on the probability of 
error when the means of both distributions were 
greater than 5, but below this point the probability of 
error was generally much higher. As illustrated in Fig. 

5 o k=01 
4 Ak = 

1 
CV(1og10(x+1)) = CV(x) 

_ Ak= 100 

So3 
- 

?0 2 - 

0 

0 1 2 3 4 5 
CV(x) 

Fig. 5. Relationship between the coefficient of variation (CV) 
of data randomly generated from the negative binomial dis- 
tribution (CV(x)) and that for the same data following loga- 
rithmic transformation (CV[loglO(x+l)]). The means of the 
untransformed distributions ranged between 1 and 1000, and 
k values between 0.1 and 100. The degree of variation in the 
log1o-transformed data is consistently less than that in the 
untransformed data, especially when k values are low, thus 
increasing the probability of Model 1 generating type I errors 
and reducing the probability of it generating type II errors. 
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Fig. 6. Probability of producing type II errors when the component distributions have both different means and different k val- 
ues, and means and k values are negatively related. See legend to Fig. 1. When the means and k values differ and are negatively 
related to each other, models 2 and 3 have a low probability of producing type II errors and have a high probability of produc- 
ing type II errors only when sample sizes are small (n = 20). However, Model 1 has a high probability of generating type II 
errors even when sample sizes are large (n = 500). 

4, there was little difference in the efficacies of the 
two GLMs. 

(e) Comparisons of distributions with different means 
and different k values, where the k values and means 
are negatively related 

When the k values and means are negatively related, 
Model 1 performs badly (Fig. 6). Over the range of k 
values, sample means and sample sizes employed in 
this study, Model 1 was much more likely to accept 
the null hypothesis incorrectly than either Model 2 or 
Model 3. At very small sample sizes (n = 20), the 
probability of error ranged between about 80 and 
100%, except when both samples were approximately 
Poisson distributed (k values 2 10). When sample sizes 
were larger (2 100), the probability of a type II error 
ranged between 0 and 100% and either increased with 
sample mean (when distributions had similar k val- 
ues); decreased with sample mean, after an initial 
increase (when distributions had very dissimilar k val- 
ues); or was unaffected by sample mean and equal to 
zero (when both samples were approximately Poisson 
distributed). 

For both Model 2 and Model 3, the probability of 
type II error was negligible for sample sizes greater 
than or equal to 100. At low sample sizes (n = 20), the 

probability of error increased as the overall k value 
declined and was unaffected by sample mean when 
both means were greater than or equal to 5. Model 3 
performed significantly better than Model 2. For 
example, when two samples comprising 20 data points 
were compared, one with a sample mean of 100 and a k 
value of 10 and another with a mean of 200 and a k 
value of 1, the probabilities of type II errors were 82%, 
38% and 20% for Models 1-3, respectively. 

SOAY SHEEP PARASITE DATA 

Worm burdens 

The three models were used to examine the effects of 
AGECLASS, SEX and AGECLASS:SEX interaction on the 
burdens of six species or genera of adult helminth 
worms (Table 1). Two species of worm were excluded 
from this analysis either because their distributions 
failed to conform to the negative binomial (Moniezia 
sp.) or because Model 3 failed to reach convergence 
(Capillaria sp.). This analysis identified three qualita- 
tive discrepancies between the results of the three mod- 
els. In two of these (Trichuris ovis and Dictyocaulus 
filaria), the two GLMs (Model 2 and Model 3) identi- 
fied SEX as a significant heterogeneity in worm bur- 
dens, when the conventional linear model (Model 1) 
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failed to do so. In the third (Teladorsagia spp.), Models 
2 and 3 identified a significant AGE:SEX interaction, 
whereas Model I failed to do so. Thus, it appears that 
the conventional linear model committed type II errors 
in these analyses. This was checked for T. ovis and D. 
filaria using non-linear maximum-likelihood methods 
(for details see Shaw 1994). This indicated that for T. 
ovis, the sexes differed both in their negative binomial k 
values (X21 = 4.70, P = 0.030), and in their means (X21 = 
3-70, P=0.040), and for D. filaria there was no signifi- 
cant heterogeneity in their negative binomial k values 
(X21 = 3-03, P = 0.082), but there was in their means 
(X21=82-13,P<0.001). 

August faecal egg counts 

The variation in (log10-transformed) August faecal 
egg counts, with respect to sheep age, sheep sex and 
year of sample, is illustrated in Fig. 7. Analyses were 
performed in which the maximal models included the 
following three factors and their interactions: AGE- 
CLASS (four levels), SEX (two levels) and YEAR (six 
levels). Analysis of deviance tables for the three max- 
imal models are shown in Table 2(a). 

Although the three models give similar results for 
the maximal model (a model including all of the fac- 
tors and their interactions), stepwise deletion tests 
(e.g. Crawley 1993) indicate that the SEX:YEAR inter- 
action is non-significant for Model 1, whereas it is sta- 
tistically significant for Model 2 and Model 3. Thus, 
conventional methods appear to fail to pick up a sig- 
nificant interaction between two important factors. 

The interpretation of this analysis is complicated by 
the large number of significant interaction terms, and 
it is therefore constructive to repeat the above analysis 
for the two sexes separately. This indicates that all 
three models identify the same heterogeneities in 
female faecal egg counts (AGECLASS, YEAR and AGE- 
CLASS:YEAR interaction; Table 2b), but that they dif- 
fer in the identified heterogeneities in male egg counts 
(Table 2c). Whilst all three models indicate important 
between-year variation in male faecal egg counts, 
only Model 1 identifies significant differences 
between the four age-classes (P < 0.01). Thus, the 
conventional linear regression model appears to have 
made a type I error that is not made by the two GLMs. 
This can be verified by using a non-linear maximum- 
likelihood model. This indicates that, in males, there 
is significant heterogeneity between age-classes in 
negative binomial k values (x23 = 12.27, P = 0 0065), 
but not in mean faecal egg counts (X23 = 3 20, P = 
0.36), thus confirming the results of models 2 and 3. 

Discussion 

The results of the simulation studies suggest that, 
overall, standard parametric tests have low utility 
even when the data are first log-transformed. 
Although type II errors are unlikely when sample 
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are compared using Model 1 (conventional linear model with log1o-transformed data and Gaussian errors), Model 2 (GLM 
with Poisson errors and an empirical scale parameter) and Model 3 (GLM with negative binomial errors). Significant terms 
are shown in bold type. Factors for which the three models give different significance levels are shown in boxes 

Probability 
Deviance 

Model 1 Model 2 Model 3 
Factor DF Model 1 Model 2 Model 2 (F-test) (F-test) (/-test) 

(a) Both sexes 
NULLMODEL 715 90 554 2775-16 1148-65 
AGECLASS (A) 3 6-613 192-43 67-63 < 0.0001 < 0*0001 < 0.0001 
SEX (S) 1 6.249 150-02 60-61 < 0.0001 < *00001 < 0.0001 
YEAR (Y) 5 6-527 207-58 64-84 < 0*0001 < 0.0001 < 0.0001 
A:S 3 1-626 83-23 24-51 0 0003 < 0-0001 < 0-0001 
A:Y 15 2.679 79-91 46-91 0 0073 0-0116 < 0-0001 
S:Y 5 0-823 32-83 12-87 l 0-0814 00293 00249 
A:S:Y 11 1-903 78-46 30-67 0-0182 0-0014 0-0012 
RESIDUAL 672 55-232 1712-77 720-54 

(b) Females only: 
NULL MODEL 492 49-645 1653-19 681-52 
AGECLASS 3 8-421 265 15 67-68 <0*0001 <0.0001 <0.0001 
YEAR 5 4.295 161-75 50-50 < 0*0001 < 0.0001 < 0.0001 
A:Y 15 3-045 118-19 58-36 0 0003 < 0-0001 < 010001 
RESIDUALS 469 33-884 1053-46 446-48 

(c) Males only: 
NULL MODEL 222 27-363 785-36 300-59 
AGECLASS 3 1-277 14-95 6-03 0*0086 0-2093 0-1103 
YEAR 5 3-063 66-39 20-93 < 0-0001 0*0015 0-0008 
A:Y 11 1-537 40-24 13-77 0-2104 0-3420 0-2460 
RESIDUALS 203 21-348 659-31 256-27 

sizes are large and k is positively related to the mean, 
when k is negatively related to the mean, type II 
errors are probable even when sample sizes are large. 
Moreover, type I errors (which are arguably the more 
serious) are always likely when using classical linear 
models, especially when the distributions being 
compared differ markedly in their degree of aggre- 
gation (as indicated by k of the negative binomial 
distribution). 

A+ 3-0 (a) Females 3-0 (b) Males 
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Fig. 7. Variation in August faecal egg counts in Soay Sheep on St Kilda. Within each 
year of sample, faecal egg counts (log1o-transformed count +100) are shown for 
lambs ('L', aged c. 4 months), yearlings ('lY', aged c. 16 months), two-year-olds 
('2Y', aged c. 28 months) and adults ('Ad', aged ? 40 months). Means of log1o-trans- 
formed counts are shown, together with their standard errors. Analyses are described 
in the main text and Table 2. 

The two generalized linear models have a low prob- 
ability of producing type I and type II errors when 
sample sizes are large, and Model 3 is slightly less 
likely to incorrectly accept the null hypothesis than 
Model 2 when sample sizes are small. Then, the prob- 
ability of producing type II errors increases with the 
overall k of the aggregated distribution. The two 
GLMs do not always outperform the classical linear 
model; Model 1 appears to produce much fewer type 
II errors when sample sizes are small and k values and 
means are positively related, as is often the case with 
real parasite data (Shaw & Dobson 1995, Grenfell et 
al. 1995). 

Analysis of the Soay Sheep data confirms the find- 
ings of the simulations. For example, the two GLMs 
and the maximum-likelihood model indicate that male 
August faecal egg counts do not vary between the four 
age-classes, whereas the classical linear model shows 
a highly significant age effect (P < 0.009). Thus, using 
the standard linear model we would have erroneously 
concluded that male faecal egg counts in August vary 
with age, perhaps because of increased acquired 
immunity in older males or parasite-induced host 
mortality. However, the GLM approach is not infalli- 
ble; it sometimes fails to detect heterogeneities identi- 
fied using non-linear maximum-likelihood methods 
(K. Wilson & D. J. Shaw, unpublished observation). 
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Pacala & Dobson (1988) have also cautioned against 
the use of classical linear regression models to iden- 
tify heterogeneities in parasite loads, and show that 
the patterns that emerge with non-linear maximum- 
likelihood models can differ markedly from those of 
more conventional techniques, particularly when sam- 
ple sizes are small. Gregory and Woolhouse (1992) 
have also examined the utility of various methods for 
estimating parasite abundance and aggregation and 
concluded that the average estimated geometric mean 
(the back-transformed mean of the logarithmic data) 
was independent of sample size, k value and popula- 
tion mean. However, the confidence limits around 
each of these averages are generally large, especially 
when sample sizes are less than 100 (see Figure 1(h) 
in Gregory & Woolhouse 1992). Thus, when sample 
sizes are small, comparisons between any two random 
samples taken from the negative binomial distribution 
are likely to have a high probability of producing 
errors, as demonstrated by the present study. 

In conclusion, when sample sizes are very small 
(n - 20), the difference between the three models is 
marginal, except in the probability of producing type I 
errors when the k values of the component distribu- 
tions differ (in which case the classical linear model 
using log-transformed data fails most frequently). 
However, when sample sizes are greater than this 
(n 100), only the classical linear model produces sig- 
nificant numbers of type I and type II errors (cf. the 
central boxes for Models 1-3 in Fig 2, 3 and 5). 
Clearly, bootstrap simulations or non-linear maxi- 
mum-likelihood models would provide greater accu- 
racy in testing for heterogeneities in parasite burdens 
(Pacala & Dobson 1988, Fulford 1994, Williams & 
Dye 1994). However, both methods are impractical for 
complex model designs. In their absence, generalized 
linear models offer the best alternative, particularly if 
negative binomial errors can be explicitly defined. We 
have shown in this study that the marginally greater 
inconvenience of GLMs over conventional linear 
models is certainly worthwhile and we strongly urge 
their greater use by both ecologists and parasitologists. 
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