NMR Experiments for Assignment

Dr Michael Thrippleton

Introduction

Selecting experiments for assignment:

- 1. what type of information do you want?
 - chemical shifts
 - coupling constants
 - correlations
- 2. what type of spectrum do you want?
 - quick
 - sensitive
 - high-resolution
 - information-rich
- 3. choose/modify/invent an experiment

1. 1D Carbon NMR

- 1D carbon spectrum
- 1D carbon spectrum (proton decoupled)*
- APT*
- DEPT*
- 2. 2D proton NMR
 - COSY
 - DQF COSY*
 - long-range COSY
 - TOCSY
- 3. 2D carbon NMR
 - INADEQUATE
- 4. 2D proton-carbon NMR
 - HMQC
 - HMQC (proton-decoupled)*
 - multiplicity-edited HSQC*
 - HMBC*
 - HSQC
 - HETCOR
- 5. The rest
 - 1D analogues
 - macromolecules, solids, multinuclear

1D Carbon NMR 1D spectrum

•reveals ¹³C **chemical shift** interaction AND J_{CH} interactions (1-bond and multiple-bond)

1D Carbon NMR 1D spectrum

•high information content but low resolution and sensitivity

•spectrum reproduced from Modern NMR Spectroscopy, by Sanders and Hunter

1D Carbon NMR proton-decoupled 1D spectrum

•reveals ¹³C chemical shift interaction
•*J*_{CH} interactions are removed (decoupled)

1D Carbon NMR proton-decoupled 1D spectrum

•high resolution and sensitivity but lower information content

•spectrum reproduced from Modern NMR Spectroscopy, by Sanders and Hunter

1D Carbon NMR APT

•Use ${}^{1}J_{CH}$ interaction to change sign of peaks and provide multiplicity information. •Decouple ${}^{1}J_{CH}$ interaction during acquisition for high resolution and sensitivity.

1D Carbon NMR APT

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

1D Carbon NMR DEPT

•alternative to APT

•better sensitivity than APT

•Quaternaries **not** visible

	С	СН	CH ₂	CH ₃
DEPT-90	absent	+100%	absent	absent
DEPT-135	absent	+70%	-50%	+35%

1D Carbon NMR DEPT

•spectra reproduced from Structure Elucidation by Modern NMR (workbook), by Duddeck and Dietrich

1D Carbon NMR Summary

1D spectrum	1D spectrum	APT	DEPT
	(proton decoupled)		
 low sensitivity information-rich crowded spectra 	 high sensitivity and resolution low information content 	 low sensitivity multiplicity information quaternaries visible 	 high sensitivity multiplicity information no quaternaries

1. 1D Carbon NMR

- 1D carbon spectrum
- 1D carbon spectrum (proton decoupled)*
- APT*
- DEPT*
- 2. 2D proton NMR
 - COSY
 - DQF COSY*
 - long-range COSY
 - TOCSY
- 3. 2D carbon NMR
 - INADEQUATE
- 4. 2D proton-carbon NMR
 - HMQC
 - HMQC (proton-decoupled)*
 - multiplicity-edited HSQC*
 - HMBC*
 - HSQC
 - HETCOR
- 5. The rest
 - 1D analogues
 - macromolecules, solids, multinuclear

2D Proton NMR COSY

Use J_{HH} interaction to correlate protons connected by 2–3 bonds
Correlations represented by *cross peaks* in 2D spectrum

•spectrum reproduced from Modern NMR Spectroscopy, by Sanders and Hunter

2D Proton NMR DQF COSY

- •Improved lineshapes and resolution
- •Singlet (uncoupled) peaks suppressed

2D Proton NMR long-range COSY

•correlations via small $J_{\rm HH}$ enhanced

e.g. allylic coupling, *W* and *para* coupling in aromatic rings •short-range correlations may be weakened

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Proton NMR long-range COSY

•spectrum reproduced from Modern NMR Spectroscopy, by Sanders and Hunter

2D Proton NMR COSY – inorganic example

•¹¹B—¹¹B COSY spectrum of $[As_2B_9H_{10}]^-$ ion •¹H decoupled

•spectrum reproduced from Modern NMR Spectroscopy, by Sanders and Hunter

2D Proton NMR TOCSY

•correlations between all protons within spin system (not just those directly coupled)
•useful when key COSY cross-peaks are obscured
•useful for assigning resonances in side-chains of proteins

•COSY cross peaks: A—B , B—C •TOCSY cross peaks: A—B , B—C and A—C

2D Proton NMR TOCSY

•TOCSY spectrum of *n*-butyl acetate

•2 spin systems

2D Proton NMR Summary

COSY	DQF COSY	long-range COSY	TOCSY
 ¹H–¹H through-bond correlations mostly 2-bond / 3-bond correlations 	 the best standard COSY experiment high resolution and narrow lineshapes singlet peaks suppressed 	 good for obtaining correlations when J_{HH} is small useful for seeing long range correlations, e.g. 4-bond allylic, and "W" and "para" correlations in aromatics 	 shows correlations between all protons in same spin system narrow lineshapes

1. 1D Carbon NMR

- 1D carbon spectrum
- 1D carbon spectrum (proton decoupled)*
- APT*
- DEPT*
- 2. 2D proton NMR
 - COSY
 - DQF COSY*
 - long-range COSY
 - TOCSY
- 3. 2D carbon NMR
 - INADEQUATE
- 4. 2D proton-carbon NMR
 - HMQC
 - HMQC (proton-decoupled)*
 - multiplicity-edited HSQC*
 - HMBC*
 - HSQC
 - HETCOR
- 5. The rest
 - 1D analogues
 - macromolecules, solids, multinuclear

2D Carbon NMR

•Use the J_{CC} interaction to correlate different carbon nuclei.

•A nice way to trace out the carbon skeleton of an organic molecule

... but to do this you need pairs of ¹³C nuclei
 ...the chances of this are 1.1% × 1.1% = 0.0121 %
 ...so sensitivity is low!

2D Carbon NMR INADEQUATE

•Use ${}^{1}J_{CC}$ interaction to correlate neighbouring carbons •Useful when sensitivity is not an issue

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Carbon NMR INADEQUATE

•Useful for distinguishing a variety of "topologies", e.g. linear, cyclic etc.

1. 1D Carbon NMR

- 1D carbon spectrum
- 1D carbon spectrum (proton decoupled)*
- APT*
- DEPT*

2. 2D proton NMR

- COSY
- DQF COSY*
- long-range COSY
- TOCSY
- 3. 2D carbon NMR
 - INADEQUATE

4. 2D proton-carbon NMR

- HMQC
- HMQC (proton-decoupled)*
- multiplicity-edited HSQC*
- HMBC*
- HSQC
- HETCOR
- 5. The rest
 - 1D analogues
 - macromolecules, solids, multinuclear

2D Proton-Carbon NMR options

•Use the $J_{\rm HC}$ interaction to correlate proton and carbon shifts.

¹H → ¹³C

•Great variety of experiments

•Do we want 1-bond ($J_{\rm HC}$ ~ 130 Hz) correlations or just multiple-bond correlations ($J_{\rm HC}$ ~ 0-20 Hz) ?

- •Detect on proton or carbon?
- •Switch J_{HC} interaction off during acquisition for higher resolution?
- •Leave J_{HC} interaction on during acquisition to retain information?
- •Do we need to *measure* J_{HC} values or just see the correlations?
- •Remove $J_{\rm HH}$ interactions in spectrum?

2D Proton-Carbon NMR HMQC

•Use ${}^{1}J_{\text{HC}}$ interaction to correlate protons with neighbouring carbons •Proton detection for high sensitivity

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Proton-Carbon NMR HMQC with decoupling

•Use ${}^{1}J_{\text{HC}}$ interaction to correlate protons with neighbouring carbons...

•...but decouple ${}^{1}J_{\text{HC}}$ interaction during acquisition for simpler spectrum and enhanced sensitivity

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Proton-Carbon NMR multiplicity-edited HSQC

•HMQC-like spectrum

•contains multiplicity information

•20 minutes

	С	СН	CH ₂	CH ₃
me-HSQC	absent	positive	negative	positive

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D proton-carbon NMR multiplicity-edited HSQC

•spectra reproduced from http://rmn.iqfr.csic.es/guide/tutorials/specdata/spectra/suc_hsqced.html, by Teodor Parella

2D proton-carbon NMR HMBC

•Use ${}^{2}J_{\rm HC}$, ${}^{3}J_{\rm HC}$ etc. interaction to correlate protons with more distant carbons.

- •Usually acquired without decoupling
- •Low-pass filter to suppress one-bond correlations

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Proton-Carbon NMR HSQC

•Similar to HMQC

•*J*_{HH} splitting absent in ¹³C dimension (useful if carbon spectrum is crowded) •preferred technique in protein NMR

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Proton-Carbon NMR HETCOR

- •Use ${}^{1}J_{\text{HC}}$ interaction to correlate protons with neighbouring carbons •Less popular alternative to HMQC
- •Carbon signal detected, which means sensitivity is much lower...
- •...but useful when high resolution is required in ¹³C dimension

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Proton-Carbon NMR HMQC – inorganic example

- ¹H—⁵⁷Fe correlation spectrum
 ν₀(¹H) ~ 300 MHz
- $v_0(^{57}\text{Fe}) \sim 9.7 \text{ MHz}$

•spectrum reproduced from 100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger

2D Proton-Carbon NMR Summary

HMQC	HMBC	me-HSQC	HSQC	HETCOR
 ¹H-¹³C one-bond correlations standard method for small- medium size molecules 	• ¹ H– ¹³ C 2/3-bond correlations	 ¹H-¹³C one-bond correlations with multiplicity information 	 ¹H-¹³C one-bond correlations mainly used for biomolecules 	 ¹H–¹³C one-bond correlations typically lower sensitivity than HMQC high resolution in ¹³C dimension

1. 1D Carbon NMR

- 1D carbon spectrum
- 1D carbon spectrum (proton decoupled)*
- APT*
- DEPT*
- 2. 2D proton NMR
 - COSY
 - DQF COSY*
 - long-range COSY
 - TOCSY
- 3. 2D carbon NMR
 - INADEQUATE
- 4. 2D proton-carbon NMR
 - HMQC
 - HMQC (proton-decoupled)*
 - multiplicity-edited HSQC*
 - HMBC*
 - HSQC
 - HETCOR
- 5. The rest
 - 1D analogues
 - macromolecules, solids, multinuclear

Further experiments 1D Analogues

•Almost every 2D experiment has a "selective" 1D analogue, e.g. 1D COSY

•experiment time can be much shorter than for 2D

•"target" multiplet must be resolved

[•]spectra reproduced from http://rmn.iqfr.csic.es/guide/tutorials/specdata/spectra/dis_selco.html, by Teodor Parella

Further experiments

Macromolecules

•100s of experiments designed for assigning macromolecules, e.g. proteins, carbohydrates

Solids

•plenty of equivalent experiments for use on solid samples, see *lecture 4*

Multinuclear NMR

•experiments described can be used throughout the periodic table, not just for carbon and proton

Conclusion

- 1000's of NMR experiments have been developed
 about a dozen are really useful
- •the rest are occasionally useful...
- •...and nearly all of them are available in the department!

Useful Reading

General and Organic:

•Modern NMR Spectroscopy (the workbook is also useful), by J.K.M. Sanders and B.K. Hunter

•100 and more Basic NMR Experiments, by Braun, Kalinowski and Berger (a practical guide for Bruker users)

•Structure Elucidation by Modern NMR (workbook), by Duddeck and Dietrich

•Spectroscopic Methods in Organic Chemistry, by Williams and Fleming

•Carbon-carbon and C-HNMR couplings, by James L. Marshall (coupling constants)

•the literature, e.g. Magnetic Resonance in Chemistry

Inorganic:

•*NMR Spectroscopy in Inorganic Chemistry (Oxford Chemistry Primer)*, by Jonathan A. Iggo •several books in department library (look for "multinuclear" in the title)

Proteins:

•Protein NMR Spectroscopy: Principles and Practice, by Cavanagh, Fairbrother, Palmer and Skelton

Introductory NMR theory:

•Understanding NMR spectroscopy, by James Keeler

•Nuclear Magnetic Resonance (Oxford Chemistry Primer), by P.J. Hore

•NMR: The Toolkit (Oxford Chemistry Primer), by P.J. Hore, Jonathan Jones and Stephen Wimperis