

Getting More from NMR

Michael Thrippleton Steve Wimperis

Purpose:

- To provide a guide to the background knowledge necessary for recording good quality NMR spectra
- To introduce some of the many modern NMR techniques available to laboratory chemists for both assignment and structure determination
- To give a brief introduction to what is possible (and not possible!) with solid-state NMR

Overview:

- 1. NMR basics: recording and processing good spectra (SCW)
- 2. NMR experiments for assignment (MJT)
- 3. NMR experiments for structure determination (MJT)
- 4. Introduction to NMR of solids (SCW)

NMR basics: recording and processing good spectra

Suggested reading:

Bulk magnetization

Larmor precession: $d\vec{M}/dt = -\gamma \vec{B} \times \vec{M}$

Motion is complex \Rightarrow view problem in "rotating frame" where Larmor precession is removed (or nearly removed)

Ζ

Х

M

Spectrometer detects FID in rotating frame, so it appears to oscillate at audio- and not radio-frequencies

$$\theta = 2\pi y_1 \tau - \frac{\pi}{2} (90^\circ)$$

Effect of a 90° pulse about the rotating frame x axis

maximum signal obtained with "90°" or " $\pi/2$ " pulse

Fourier transformation

Signal is digitized

Relaxation

Stolen from: "Nuclear Magnetic Resonance" by P. J. Hore

In ideal world...

But spatial B₀ inhomogeneity broadens lines and hides natural linewidth

therefore, we **shim** the magnet and **spin** the sample

Stolen from: "Nuclear Magnetic Resonance" by P. J. Hore

Quadrature detection

Absorption and dispersion Lorentzian lineshapes

 $R = 1/(\pi T_2)$

Stolen from: "Understanding NMR Spectroscopy" by J. Keeler

NMR basics: recording and processing good spectra

Acquiring spectra

The "pulse-acquire" experiment

Stolen from: "Understanding NMR Spectroscopy" by J. Keeler

$$\theta = 2\pi y_1 \tau - \Xi (90^\circ)$$

$$\theta = \pi (180^{\circ})$$

Effect of a 90° pulse about the rotating frame x axis

Effect of a 180° pulse about the rotating frame x axis

Pulse length calibration

Signal averaging

Signal averaging

Signal averaging

T₁ measurement

inversion-recovery experiment: $180^{\circ} - \tau - 90^{\circ}$ acquire

T₁ measurement

How long between scans?

Allow ~5 T_1 for a careful relaxation time (T_1) measurement (!);

~1.5 T_1 for a typical pulse-acquire experiment

so total duration of FID is TD.DW = TD/(2.SW)

Importance of acquisition time

Importance of acquisition time

NMR basics: recording and processing good spectra

Processing

Weighting functions

Stolen from: "Understanding NMR Spectroscopy" by J. Keeler

Zero filling

Signal phase

"Phasing" the spectrum

Stolen from: "NMR: The Toolkit" by P. J. Hore et al.

"Phasing" the spectrum

→ Mm there is a deadtime ("DE") between pulse and start of acquisition

⇒ need to do two phase corrections: a frequency-independent ("zeroth-order") correction and a frequency-dependent ("first-order") one

Frequency-dependent phase correction

note that this correction varies the phase across the linewidth, which is wrong!

NMR basics: recording and processing good spectra

Two-dimensional NMR

Stolen from: "Understanding NMR Spectroscopy" by J. Keeler

Basic experiment

Basic experiment

Two-dimensional Fourier transform

Stolen from: "NMR: The Toolkit" by P. J. Hore et al.

Two-dimensional Fourier transform

Stolen from: "Understanding NMR Spectroscopy" by J. Keeler

Double-absorption Lorentzian lineshape

To end...

- Have discussed some of the basic features of practical NMR spectroscopy
- In next two lectures (5 pm tomorrow and Tuesday) MJT will discuss some of the advanced NMR methods available for spectral assignment and structure determination

Thank you for your attention!