
Smooth Tabular Reinforcement
Learning for Dynamic Pricing

Adam Page1 James Grant1 Chris Kirkbride1 Anna-Lena Sachs1

Jeremy Bradley2 Alexander Green2 Jordan Palmer2

1STOR-i Lancaster University, 2Datasparq

1gProblem

We want to find an optimal pricing strategy for pre-bookable car parks.

Figure 1: We can draw from hotel literature to help us price car parks (Klein et al. 2020).

This involves the dynamic pricing of a perishable good with limited inventory.
We make four assumptions:

Customers have a random maximum price they are willing to pay.

Customers have a lead time between booking online and arriving.

There is a limited capacity of spaces we can offer.

We can only set one price per day.

2gReinforcement Learning

Reinforcement learning (RL) is a tool which involves an agent taking sequential
actions within an environment and receiving reward signals to learn an optimal
policy. The agent must balance exploring uncertain actions and exploiting the
current best action whilst learning.

Environment

Agent

State
St

Reward
Rt

St+1

Rt+1
Action

At

Figure 2: Agent-Environment interactions (Sutton & Barto 2018)

The reward, R(S ,A), is the revenue generated for a set price, A, and usage level,
S . Action value functions, Q(S ,A), store the expected total reward starting
from the state-action pair. An ϵ-greedy exploration policy is used. Choosing a
random price with probability ϵ, otherwise setting A = argmaxa∗Q(S , a∗).

3gQ-Learning

The Q-learning agent is a member of a family of
algorithms known as temporal difference learners.
Every time step the Q-learner updates its Q-value
towards the newest observation of the environment.

S

A

S'

Figure 3: Back up diagram of the Q-learning algorithm

Introduced by Watkins (1989), each update step
consists of the following update rule:

Q(S ,A)← (1− α)Q(S ,A) + α
(
R + γmax

a
Q(S ′, a)

)
α := Learning rate/step size.

γ := Discount factor for look ahead value.

S ′ := New state after taking action A.

4gSmoothness in Pricing

It is likely that similar prices yield similar revenues.
The reward function can be shown to be Lipschitz
continuous:

|R(S , a1)− R(S , a2)| ≤ LR dA(a1, a2) ,

where dA is a distance metric on the action space.

Price

R
ev
en

ue

Figure 4: Lipschitz continuity of the revenue function

This shows that the gradient of our reward function
is bounded. So there is no sudden jump in revenue
when the price changes.

5gCross-Learning

Novel RL agent which updates multiple Q-values
within the same step, leveraging the smoothness.

for each learning episode do
Set price, A, dependent on Q(S , ·);
Observe reward R , and new state S ′;
Take a Q-learning update step with α;
for all other actions, ai do
Set d = dA(A, ai);
Set α̂ < α dependent on α, d and LR ;
Take Q-learning update on ai with α̂;

end
S ← S ′;

end

Figure 5: One update pulls up neighbouring Q-values

6gResults

Agents tested on a small instance: selling 100 car parking spaces over 10 time steps.
Both reinforcement learning algorithms perform close to optimal without knowledge of the demand.
Cross-learning outperforms Q-learning in terms of mean and median total revenue.

0.0 0.2 0.4 0.6 0.8 1.0
Episode 1e6

1250

1500

1750

2000

2250

2500

2750

3000

M
ea

n
Re

wa
rd

 p
er

 E
pi

so
de

Mean Cumulative Reward Per Episode

Oracle
Cross-learning
Q-learning

Oracle

Cross-learning
Q-learning

2540

2560

2580

2600

2620

2640

2660

Re
wa

rd
 P

er
 E

pi
so

de

Cumulative Reward Per Episode at Episode 10^6

Figure 6: Agents tested on a pricing problem with Log-Uniform demand. Ran for 106 episodes with 30 macro-replications. The oracle
is provided as a benchmark and is found through dynamic programming. Left: Mean cumulative reward per episode. Best and worst
runs are shown in dotted lines of the respective algorithm. Right: Box plot showing cumulative reward per episode on the final
episode, over the 30 macro-replications.

7gState Smoothness

Cross-learning has been found to outperform other
tabular forms of RL, on a range of demand
distributions (Selcuk & Avs.ar 2019). The algorithm
requires little to no tuning to get these
improvements.

A Lipschitz continuity bound can be made for the
reward function with respect to states. A Lipschitz
constant with respect to both states and actions can
also be found. Both of these are weaker; this means
more tuning is needed for a successful algorithm.

gReferences
Klein, R., Koch, S., Steinhardt, C. & Strauss, A. K. (2020), ‘A review of revenue

management: Recent generalizations and advances in industry applications’,

European Journal of Operational Research .

Selcuk, A. M. & Avs.ar, Z. M. (2019), ‘Dynamic pricing in airline revenue

management’, Journal of Mathematical Analysis and Applications .

Sutton, R. S. & Barto, A. G. (2018), Reinforcement Learning: An Introduction,

second edn, MIT Press.

Watkins, C. J. C. H. (1989), Learning From Delayed Rewards, PhD thesis,

King’s College, Cambridge United Kingdom.

www.stor-i.lancs.ac.uk 5th IMA-ORS Conference 2025 a.d.page@lancaster.ac.uk

	References

