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Abstract

The Mathieu groups are the first five discovered sporadic simple groups.
In this dissertation, we aim to construct the large Mathieu groups. We first
introduce and establish the main properties of multiply transitive groups and
projective spaces. This allows us to construct the large Mathieu groups using
one-point extensions of multiply transitive groups. Finally, we view the large
Mathieu groups as automorphism groups on Steiner systems.
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1 Introduction

1.1 Motivation

In 1861, Mathieu published a paper constructing the groups now known as M11

and M12, in 1873 he published another paper in which he constructed the large
Mathieu groups M22,M23, and M24, these were the first of the 26 groups known as
the sporadic simple groups to be discovered. As the name suggests, the Mathieu
groups are simple, and their label “sporadic” means that they do not belong to any
of the 18 countably infinite classes of finite simple groups given by the Classification
Theorem for Simple Groups [1, p.2].
In this dissertation, we will be taking the same approach to building the Mathieu
groups as Biggs and White [2]. As a consequence of this, many of the results (and
in some cases the proofs) are taken verbatim from the book, but as often as possible
we aim to add clarification to proofs and reasoning for using each theorem (e.g.
the full construction of the large Mathieu groups will be significantly longer in this
dissertation).

1.2 Preliminary definitions

We first recap some basic definitions in group theory that will be used throughout
this dissertation.
Recall that for a group G, the centre of G, denoted Z(G), is the set of all elements
of G which commute with every other element. A group G is called abelian if all of
its elements commute with each other (or, equivalently, if Z(G) = G).

Definition 1.1 ([3, p.69]). Let p be a prime and G a group. A group whose order
is a positive power of p is called a p-group. A subgroup of G whose order is a power
of p is called a p-subgroup.

Definition 1.2 (Sylow p-subgroup [4, p.78]). If p is a prime, then a Sylow p-
subgroup P of a group G is a maximal p-subgroup.

Another important concept to recall is that of a commutator.

Definition 1.3 (Commutator [4, p.33]). Let a, b ∈ G, the commutator of a and b,
[a, b] is given by:

[a, b] = aba−1b−1.

Definition 1.4 (Commutator subgroup [4, p.33]). The commutator subgroup (or
derived subgroup) of G is the subgroup of G generated by all of the commutators.
We denote this subgroup by G′.

When G = G′ we call G a perfect group. Further, recall that for elements
g, h ∈ G, we say that h is conjugate to g if there is some x ∈ G such that h = xgx−1,
and conjugacy is an equivalence relation on G [3, p.5]. We can also conjugate
subgroups as well as elements.
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Definition 1.5 ([4, p.44]). If H ≤ G and g ∈ G, then the conjugate gHg−1 is
{ghg−1 : h ∈ H}.

Definition 1.6 (Normaliser [4, p.44]). If H ≤ G, then the normaliser of H in G,
denoted by NG(H), is

NG(H) = {a ∈ G : aHa−1 = H}.

The final part of this section will be looking at results related to group actions.

Definition 1.7 (Group action [4, p.247]). If X is a set and G is a group, then
X is a G-set if there is a function α : G × X → X (called an action) denoted by
α : (g, x) 7→ gx, such that:

(i) 1x = x for all x ∈ X, and

(ii) g(hx) = (gh)x for all g, h ∈ G and x ∈ X.

We also say that G acts on X. If |X| = n, then n is called the degree of the G-set
X.

In fact, the following theorem allows us to see that G-sets are another way of
viewing permutation representations.

Theorem 1.8 ([4, Theorem 3.18]). If X is a G-set with action α, then there is a
homomorphism α̃ : G → SX given by α̃ : x 7→ gx = α(g, x). Conversely, every
homomorphism ϕ : G→ SX defines an action, namely, gx = ϕ(g)(x).

Proof. Let g ∈ G and x ∈ X, then,

α̃(g−1)α̃(g) : x 7→ α̃(g−1)(gx) = g−1g(x) = x,

so we have that each α̃(g) is a permutation of X with inverse α̃(g−1). The definition
of an action ensures that α̃ is a homomorphism.

Definition 1.9 (Faithful [4, p.248]). A G-set X with action α is faithful if α̃ : G→
SX is injective.

We note that this definition means that, when X is a faithful G-set, if gx = x
for all x ∈ X, then g = e.
For a G-set with action α, Theorem 1.8 gives that the subgroup Im(α̃) ≤ Sx is a
permutation group, so, if X is a faithful G-set then G can be identified with Im(α̃)
and we recover the permutation group (G,X), and say that the group has degree
|X|. From this point, whenever we are working with a permutation group (G,X),
it is given that X is a faithful G-set.
We now give a reminder of orbits and stabilisers for group actions which will be
used throughout the following section.
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Definition 1.10 (Orbit [3, Definition 4.2] ). If G acts on X, the orbit of an element
x ∈ X is the set:

Ox = {gx : g ∈ G}

Definition 1.11 (Stabiliser [3, p.55]). If G is a group acting on a set X, then the
stabiliser of x ∈ X in G is the subset:

Gx = {g ∈ G : gx = x}.

For a subset Y of a set X, say Y = {x1, · · · , xn}, we call the set GY = {g ∈
G : gxi = xi,∀i = 1, · · · , n} the pointwise stabiliser of Y . Similarly, we call the set
G(Y ) = {g ∈ G : gxi ∈ Y, ∀xi ∈ Y } the set-wise stabiliser of Y . Finally, we recall
the Orbit-Stabiliser Theorem.

Theorem 1.12 (Orbit-Stabiliser Theorem [3, p.56]). If G acts on X and x ∈ X,
then |Ox| = |G : Gx|.

2 Transitivity

2.1 Multiply transitive groups

This section will establish multiply transitivity and - most importantly - extensions
of multiply transitive groups. We begin with establishing the definition of transitive
groups.

Definition 2.1 (Transitive [2, Defintion 1.3.1]). The permutation group (G,X) is
transitive if there is just one orbit in the action of G on X.

From this, we can see that when (G,X) is transitive, the Orbit-Stabiliser Theorem
(Theorem 1.12) becomes:

|X| = |G : Gx|.

Definition 2.2 (k-transitive [2, Definition 1.3.5]). Let G be a group acting on a
set X of degree n. The permutation group (G,X) is called k-transitive (k ≤ n) if
for any two ordered pairs of k-tuples, say (x1, · · · , xk) and (y1, · · · , yk) with distinct
entries in X, we can find some g ∈ G such that:

g(xi) = yi

for all 1 ≤ i ≤ k.

From this, we can see that any group which is k-transitive is also l transitive for
any l = 1, · · · , k, so a group being called k-transitive is meant to imply that k is
the largest integer for which the condition is satisfied. A group is called multiply
transitive if it is k-transitive for some k ≥ 2.
We now establish some important properties of multiply transitive groups, which
will allow us to consider extensions of multiply transitive groups.
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Lemma 2.3 ([2, Lemma 1.3.6]). Let G be a transitive group on X. Then (G,X) is
k-transitive if and only if, for any x ∈ X, (Gx, X \ {x}) is (k − 1)-transitive.

Proof. First, suppose (G,X) is k-transitive, then by the above we have that it is
(k − 1)-transitive, and the set of all pairs of (k − 1)-tuples in X must contain all of
the (k − 1)-tuples in X \ {x}, so the result follows.
For the converse, suppose that (Gx, X \ {x}) is (k − 1)-transitive. For any two
ordered k-tuples (x1, · · · , xk) and (y1, · · · , yk), we can find g1, g2 ∈ G and h ∈ Gx

which satisfy the following:

g1(x1) = x , g2(y1) = x

h(g1(xi)) = g2(yi) (2 ≤ i ≤ k)

So that g−1
2 hg1(x1) = g−1

2 (x) = y1, and (for i = 2, · · · , k), g−1
2 hg1(xi) = g−1

2 g2(yi) =
yi. Hence g

−1
2 hg1 is an element of G which transforms the k-tuples as required.

The above theorem tells us that we can determine whether a group is multiply
transitive by looking at successive stabilisers Gx, (Gx)y, and so on. Let |X| = n and
suppose G is k-transitive on X, then the Orbit-Stabiliser Theorem gives the result:

|G| = n(n− 1)(n− 2) · · · (n− k + 1)|Gx1x2···xk
|,

where Gx1x2···xn is the pointwise stabiliser of x1, x2, · · · , xk.
If G is k-transitive with the identity being the only permutation which fixes k points,
then we call G sharply k-transitive, and the order of G is exactly n(n− 1) · · · (n−
k + 1). We are particularly interested in sharp transitivity when k = 1 [2, p.8].

Definition 2.4 (Regular). A group G is called regular on X if (G,X) is sharply
1-transitive.

When G is regular on X, we have |G| = |X|. Equivalently, we have that G is
regular on X if for any pair x, y ∈ X, there is a unique element g ∈ G such that
gx = y [5, p.78].

Theorem 2.5 ([4, p.81]). Let (G,X) be a permutation group, if H ≤ G acts tran-
sitively on X, then G = HGx for each x ∈ X.

Proof. Fix x ∈ X, it is clear that Gx ≤ HGx. Hence it remains to show that for
any g ∈ G such that g /∈ Gx, we have g ∈ HGx. For any g ∈ G, we have that there
is some h ∈ H with h · (g · x) = x, so hg = g′ ∈ Gx and g = h−1g′ ∈ HGx. Hence
the result follows.

We are interested in constructing multiply transitive groups (the Mathieu groups),
the following lemma is useful for this purpose.

Lemma 2.6 ([2, Lemma 1.3.9]). Let (G,X) be a k-transitive group, where k ≥ 2.
Then for g /∈ Gx, we have G = Gx ∪GxgGx.
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Proof. Let h ∈ G \ Gx, and fix g as above. Since G is transitive, we can find some
g1 ∈ G which sends g−1(x) to h−1(x) and fixes x, so that g1 ∈ Gx. This then gives
hg1g

−1(x) = h(h−1(x)) = x, so we have:

hg1g
−1 ∈ Gx =⇒ h ∈ GxgGx.

Since this holds for all h ∈ G \Gx, the result follows.

Definition 2.7 (One-point extension [2, Definition 1.5.1]). Let (G,X) be a transitive
group. We call (G+, X+) a one-point extension when X+ = X ∪ {∗}, with ∗ /∈ X
and G+ is transitive on X+ with stabilizer (G+)∗ = G.

We then have from Lemma 2.3 that if G is k-transitive, then G+ is (k + 1)-
transitive. Further, if G is sharply k-transitive, then the one-point extension G+ is
sharply (k + 1)-transitive, as any permutation fixing k + 1 points in G+ must fix k
points in G, hence the only such permutation is the identity.
Now that we have defined a one-point extension for a multiply transitive group, we
want to see when it is possible to find such an extension. To this aim, we establish
the following theorem.

Theorem 2.8 (Conditions for the existence of a one-point extension [2, Theorem
1.5.2] ). Let (G,X) be a k-transitive group with k ≥ 2, and let X+ = X∪{∗}, where
∗ /∈ X. Suppose that there is some permutation h of X+ and an element g ∈ G such
that:

(i) h switches ∗ and some x ∈ X, and h fixes some point y ∈ X;

(ii) g switches x and y;

(iii) (gh)3 and h2 are elements of G;

(iv) hGxh = Gx.

Then the group G+ = ⟨G, h⟩ acts on X+ as a one-point extension of (G,X).

Proof. From condition (ii), we have that g /∈ Gx, and so Lemma 2.6 gives us that
G = Gx∪GxgGx. The result will follow if we can show that G+ = ⟨G, h⟩ = G∪GhG,
as h does not fix ∗, so no element in GhG can fix ∗, hence (G+)∗ = G.
Clearly, G∪GhG ⊆ ⟨G, h⟩, and if G∪GhG is a group, ⟨G, h⟩ ⊆ G∪GhG. Therefore,
it is enough to show that G∪GhG is a group. We first show that G∪GhG is closed
under composition. For this, we only need to show that hGh ⊂ G ∪GhG, since we
have that, if x ∈ hGh, either x ∈ G or x ∈ GhG, so it follows that for all g1, g2 ∈ G,
either g1xg2 ∈ G or g1xg2 ∈ GhG, which gives the following:

GhG ·GhG = G · hGh ·G ⊆ G ∪GhG.

We know that h2 ∈ G fixes x, so that h2 ∈ Gx, combining this with condition (iv),
we have that hGx = Gxh. Also, (gh)

3 ∈ G, so:

(ghg)hgh ∈ G =⇒ hgh ∈ (ghg)−1G
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and (ghg)−1G = g−1h−1G = g−1hG. So that hgh ∈ g−1hG. These three remarks
are used in the following calculation:

hGh = h(Gx ∪GxgGx)h

= hGxh ∪ hGxgGxh

= Gx ∪Gx · hgh ·Gx

⊆ G ∪Gx · g−1hG ·Gx

⊆ G ∪GhG,

as required. Thus G ∪GhG = ⟨G, h⟩.

In most cases, g and h are chosen so that both (gh)3 and h2 are the identity. Using
the assumptions in Theorem 2.8 we can make the following useful observation. Since
h(∗) = x, h(x) = ∗, h(y) = y, g(x) = y, g(∗) = ∗, g(y) = x, we have that:

(gh)3(x) = ghghgh(x)

= ghgh(∗) = gh(y)

= x.

(gh)3(y) = ghghgh(y)

= ghgh(x) = gh(∗)
= y.

(gh)3(∗) = ghghgh(∗)
= ghgh(y) = gh(x)

= ∗.

Therefore, when we check condition (iii) in future proofs, we are only concerned
with showing the result for the other elements of G.

2.2 Primitivity

Now that we have looked at multiply transitive groups, we want to discuss another
property of groups that is useful when establishing properties of the Mathieu groups.

Definition 2.9 ([4, p.256]). Let (G,X) be a permutation group, then a block is
subset B of X such that, for each g ∈ G, either gB = B or gB ∩ B = ∅. (Here,
gB = {gx : x ∈ B}).

Clearly, ∅, singleton sets and X are blocks, we call these trivial blocks. Any other
block is called non-trivial.

Definition 2.10 (Primitive [4, p.256]). The transitive group (G,X) is primitive if
it has no non-trivial blocks.

If we can find non-trivial blocks of X, then we say it is imprimitive.

Theorem 2.11 ([4, Theorem 9.12]). Any 2-transitive group is primitive.
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Proof. Suppose that there is a non-trivial block B, then, since |B| ≥ 2 and B ̸= X,
we can find elements x, y, z ∈ X, with x, y ∈ B and z /∈ B. Since (G,X) is 2-
transitive, we can find some g ∈ G such that gx = x and gy = z. Hence we have
that x ∈ B ∩ gB, so that B ∩ gB is non-empty, and B ̸= gB, contradicting the
assumption that B is a block.

Combining the above theorem with the fact that any k-transitive group is i-
transitive, for 1 ≤ i ≤ k, it follows that any k-transitive group with k ≥ 2 is
primitive.

Theorem 2.12 ([4, Theorem 9.15]). Let (G,X) be a transitive permutation group.
(G,X) is primitive if and only if, for any x ∈ X, the stabiliser Gx is a maximal
subgroup of G.

Proof. Assume Gx is not maximal, so we can find a subgroup H satisfying Gx <
H < G, we want to show that Hx = {hx : h ∈ H} is a non-trivial block (meaning
that (G,X) is imprimitive). If g ∈ G and Hx ∩ gHx ̸= ∅, then hx = gh′x for
some h, h′ ∈ H, and h−1gh′ ∈ Gx ⊂ H. So we have g ∈ H. Hence we have that
gHx = Hx and Hx is a block. It remains to show that Hx is non-trivial. We
already have that Hx is non-empty. To show that Hx ̸= X, let g ∈ G with g /∈ H.
If Hx = X, then for every y ∈ X, there is a h ∈ H with y = hx; in particular
gx = hx for some h ∈ H. Therefore g−1h ∈ Gx < H, and g ∈ H, contradicting
g /∈ H. Finally, if Hx is a singleton, then Hx = {x}, so H ≤ Gx, contradicting
Gx < H. Therefore, (G,X) is imprimitive.
For the converse, assume that every Gx is a maximal subgroup and that there is a
non-trivial block B in X. Define a subgroup H of G by

H = {g ∈ G : gB = B}.

Choose x ∈ B, if gx = x, then x ∈ B ∩ gB, and so gB = B (by the assumption that
B is a block), therefore Gx ≤ H. Since B is non-trivial, there is y ∈ B with y ̸= x.
Since (G,X) is transitive, there is a g ∈ G with gx = y; hence y ∈ B ∩ gB and so
gB = B. Thus g ∈ H while g /∈ Gx, i.e Gx < H. If H = G, then gB = B for all
g ∈ G. It then follows that for b ∈ B and c ∈ X \ B, there is no g ∈ G satisfying
g ·b = c, which contradicts X ̸= B being a transitive G-set. Therefore Gx < H < G,
contradicting the assumption that Gx is maximal.

Lemma 2.13 ([4, Lemma 9.16]). Let (G,X) be a permutation group and x, y ∈ X.
Then,

(i) If H ≤ G then Hx ∩Hy ̸= ∅ ⇒ Hx = Hy.

(ii) If H ◁G, then the subsets Hx are blocks of X.

Proof. (i) We have that Hy = Hx if and only if y ∈ Hx. If Hx ∩Hy ̸= ∅, then
there must be some h, h′ ∈ H with hx = h′y. Then we have y = (h′)−1hx ∈
Hx, so that Hy = Hx.
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(ii) Let g ∈ G and assume gHx∩Hx ̸= ∅. Since H ◁G, gHx∩Hx = Hgx∩Hx.
Then there are h, h′ ∈ H with hgx = h′x so that gx = h−1hx ∈ Hx, hence
gHx = Hx and Hx is a block.

Theorem 2.14 ([4, Theorem 9.17]). If (G,X) is primitive and H⊴G, H ̸= 1, then
H is transitive on X.

Proof. Lemma 2.13 gives that Hx is a block for every x ∈ X. Since X is primitive,
either Hx = ∅, Hx = {x}, or Hx = X. Clearly, Hx ̸= ∅. If Hx = {x}, then H ≤
Gx, but if g ∈ G, then the normality of H gives that H = gHg−1 ≤ gGxg

−1 = Ggx.
By the transitivity of (G,X), H ≤ ∩y∈XGy = 1 (since X is faithful), which gives a
contradiction. Hence we must have Hx = X, so that H is transitive on X.

This result allows us to establish the following theorem, which in turn will be
instrumental in proving the simplicity of the Mathieu groups.

Theorem 2.15 ([2, Theorem 1.6.7]). Let (G,X) be a primitive group with Gx sim-
ple, then either:

(i) G is simple, or

(ii) G has a normal subgroup N which acts regularly on X.

Proof. For this proof, we first note that, since (G,X) is primitive, it is transitive
and so, since we have assumed that Gx is simple for some x ∈ X, we have Gx

∼=
gGxg

−1 = Ggx, hence Gx is simple for all x ∈ X. Suppose that G is not simple,
so that there exists some proper non-trivial normal subgroup N . Given x ∈ X,
consider N ∩ Gx, this group is normal in Gx, and since Gx is simple, it must be
either 1 or the whole of Gx. Suppose Gx ∩ N = Gx, then we have Gx ≤ N . Since
N ◁ G, we have that N is transitive, and clearly Gx is not transitive, so we must
have Gx < N . Thus by Theorem 2.12, N = G, which contradicts the assumption
that N is proper, and so N ∩Gx = 1, hence N acts regularly.

We now look at some results which will be used when proving the simplicity of
the large Mathieu groups. It is first useful to define equivalence of permutation
groups.

Definition 2.16 (Equivalent permutation groups, [2, Definition 1.7.1]). The permu-
tation groups (G,X) and (G′, X ′) are equivalent if there is an isomorphism g 7→ g′

of G and G′, and a one-to-one correspondence β : X 7→ X ′ such that:

g′(βx) = β(gx)

for all g ∈ G and x ∈ X.
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Lemma 2.17 ([2, Lemma 1.7.2]). Let (G,X) be a transitive permutation group, and
suppose there is a normal subgroup N of G acting regularly on X. Given x ∈ X,
there is an action of Gx on N∗ = N \ {1}, equivalent to its action on X \ {x}.
Furthermore, the elements of Gx act as automorphisms of N .

Proof. Let f : X \ {x} → N∗ be the map defined by f(y) = ny, with ny ∈ N being
the (unique) element taking x to y. Given g ∈ Gx, we define the corresponding
permutation g′ of N∗ by:

g′(ny) = ngy.

By definition, this action is equivalent to the action of Gx on X \{x}. Now, gng−1 ∈
N sends x to gy, and since N is regular, ngy = gnyg

−1. Thus, each g ∈ Gx acts
by conjugation, g′(n) = gng−1, on N∗. If we extend the action to N , by letting
g′(1) = 1, then we have an automorphism of N .

From the above, we have that for any transitive permutation group (G,X) to have
a regular normal subgroup N , N must admit a group of automorphisms equivalent
to the action of the stabiliser Gx on X \ {x}. The following theorem aims to show
that there are only a few circumstances in which this happens. For this theorem,
recall that an n-dimensional vector space V over a field K satisfies V ∼= Kn, and let
Zp be the cyclic group of order p.

Theorem 2.18 ([4, Lemma 9.24]). Let (G,X) be k-transitive for some k ≥ 2, with
degree n. If G has a regular normal subgroup H, then k ≤ 4 and,

(i) If k ≥ 2, then H ∼= (Zp)
n, for some prime p.

(ii) If k ≥ 3, then H ∼= (Z2)
n or H ∼= Z3.

(iii) If k = 4, then H ∼= (Z2)
2.

Proof. We first note that from Lemma 2.3, (Gx, X \ {x}) is (k − 1)-transitive for
each fixed x ∈ X. Also, as in the proof of Lemma 2.17 we have that each g ∈ Gx

acts by conjugation on H∗ = H \ {1} and so (Gx, H
∗) is (k − 1)-transitive.

(i) Let k ≥ 2, since Gx acts by conjugation on H∗, we have that any g ∈ Gx

preserves the order of an element of H∗, and so every element must have the
same order. Further, if an g element has order nm, then gn has order m, hence
every element is of order some prime p. Thus, H is a p-group and its centre
Z(H) is non-trivial, again, each g ∈ Gx must preserve the elements of Z(H),
and so we have H = Z(H), and H is abelian. Hence H ∼= (Zp)

n [2, p.18].

(ii) Suppose k ≥ 3 and let h ∈ H∗, then we want to show that {h, h−1} is a
block. If h′ = ghg−1, for some g ∈ G then (h′)−1 = gh−1g−1, so it follows that
{h, h−1} and {h′, h′−1} = g{h, h−1}g−1 are either equal or disjoint, so {h, h−1}
is indeed a block. Then, (Gx, H

∗) is 2-transitive, and hence (by Theorem 2.11)
is primitive, so that either {h, h−1} = H∗, or {h, h−1} = {h}. In the first case,
|H| = 3, so that n = 3 and H ∼= Z3. In the second case, h has order 2, and so
applying part (i), we get p = 2, H ∼= (Z2)

n.
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(iii) Let k ≥ 4, by part (ii), we can assume that H ∼= (Z2)
n, with n ≥ 2 (we

exclude the cases Z2 and Z3 as they are too small). We have that H contains a
4-group {1, h, k, hk}. Then, the stabiliser (Gx)h acts 2-transitively, and hence
primitively, on H∗ \ {h}. In this case, we have that, for g ∈ (Gx)h, we have
g{k, hk}g−1 = {gkg−1, hgkg−1}, so letting k′ = gkg−1, we have if {k, hk} ∩
{k′, hk′} ̸= ∅, then either k = k′, in which case hk = hk′, or k = hk′, which
gives hk = h2k′ = k′ (since all elements of H have order 2 by assumption). In
both cases {k, hk} = {k′, hk′}. Hence, {k, hk} is a block, and so H∗ \ {h} =
{k, hk}. Hence H = {1, h, k, hk} ∼= (Z2)

2 as required. Further, this shows that
k ̸= 5, as 5 ≥ 4 would give H ∼= Z2

2, and so it is not possible to be 5-transitive
on H∗, which has only 3 elements.

Corollary 2.19 ([2, Theorem 1.7.6] ). Let (G,X) be k-transitive, and suppose it
has a regular normal subgroup N , then:

(i) k ≥ 2 ⇒ |X| = pn, p prime

(ii) k ≥ 3 ⇒ |X| = 2n, or 3,

(iii) k ≥ 4 ⇒ |X| = 4,

Proof. If (G,X) is k-transitive, (Gx, X \{x}) is (k−1)-transitive, and so, by Lemma
2.17, N admits a (k − 1)- transitive group of automorphisms. Then, we can apply
Theorem 2.18, and the result follows.

3 Projective spaces

3.1 Finite fields and finite vector spaces

Throughout the remainder of this dissertation, we will be working over finite fields
and finite vector spaces, this section aims to give a brief overview (without proof)
of the relevant properties of these, beginning with finite fields.
Let F be a finite field, then we must have |F | = pn, where p is a prime number and
n is a positive integer. Furthermore, given any prime power pn, there is a unique
field (up to isomorphism) of size pn [6, p.60]. We call this the Galois field, denoted
GF (pn).

The Galois field GF (pn) can be constructed in the following manner [2, p.26]:

1. Identify the sequence (a0, a1, · · · , ar−1), with the polynomial a0 + a1t + · · · +
ar−1t

r−1 in the ring of polynomials Zp[t];

2. Choose a polynomial f(t) of degree r which is irreducible in Zp[t];
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3. Define multiplication of two sequences by multiplying the corresponding poly-
nomials in Z and then reducing modulo f(t).

The following example gives a finite field that we will be working over in later
sections.

Example 3.1. To construct GF (22), consider the polynomial t2 + t + 1, which is
irreducible over Z2 = {0, 1}. The elements of GF (4) may be given as follows:

element 0 t t2 t3

reduction 0 t t+ 1 1

In particular, we have that for any element x ∈ GF (4), x3 = 1, and x2+x+1 = 0.

We now discuss some properties of finite vector spaces, letting V = V (n, q) denote
a vector space of dimension n over the field F = GF (q). The vector space V will
have qn elements. Recall that the general linear group GL(V ) is the group of all
linear automorphisms of V , i.e permutations l of V which satisfy:

l(x+ y) = l(x) + l(y) for all x, y ∈ V

l(λx) = λl(x) for all x ∈ V λ ∈ GF (q).

Similarly, the special linear group SL(V ) is the group of all linear automorphisms
of V with determinant 1.
It will first be useful to establish some properties of GL(V ) and SL(V ).

Lemma 3.2 ([2, Lemma 2.3.3]). SL(V ) is a normal subgroup of GL(V ), and if
V = V (n, q) then the index |GL(V ) : SL(V )| = q − 1.

Proof. GL(V ) is the group of all linear automorphisms of V , and so is the group of
automorphisms with non-zero determinant. Hence, we have that the determinant
function maps GL(V ) into F ∗ = F \ {0}. We then have the following property of
the determinant:

det(AB) = det(A) det(B).

We also have that det is surjective, as for any x ∈ F , we can find a matrix X ∈
GL(V ) with determinant x, by letting X have first entry x, all other diagonal
entries being 1, and off diagonal entries being 0. These properties show us that the
determinant is a homomorphism onto the multiplicative group F ∗. Furthermore,
the kernel of this homomorphism (the elements which are mapped to 1) is SL(V ).
Hence, SL(V ) is a normal subgroup of GL(V ), and its index is |F∗| = q − 1.

Theorem 3.3 ([2, Theorem 2.3.4]). The orders of GL(V ) and SL(V ) are given by:

|GL(n, q)| = qn(n−1)/2

n∏
i=1

(qi − 1);

|SL(n, q)| = qn(n−1)/2

n∏
i=2

(qi − 1).
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Proof. To show the result for |GL(n, q)|, we see that for each pair of ordered bases
{e1, · · · , en}, {f1, · · · , fn} of V (n, q) there is a unique linear automorphism l taking
ei to fi (for i = 1, · · · , n). From this, we have that |GL(n, q)| is equal to the
number of ordered bases of V (n, q). The first member of an ordered basis can be
any element of V except 0, and so there are qn− 1 choices for the first element. The
second element cannot be linearly dependant on the first, so there are qn− q choices
for the second element. Continuing in this fashion we have:

|GL(n, q)| = (qn − 1)(qn − q) · · · (qn − qn−2)(qn − qn−1)

= q1+2+···+(n−1)(qn − 1)(qn−1 − 1) · · · (q2 − 1)(q − 1)

= qn(n−1)/2

n∏
i=1

(qi − 1),

which gives the desired result.
For SL(n, q), we apply Lemma 3.2 and the result follows directly.

3.2 Projective planes

We begin by introducing the idea of a projective plane:

Definition 3.4 ([2, p.24]). A finite projective plane is a pair (P,L) of finite sets
and an incidence relation between them which satisfy the following three axioms:

• Any pair of distinct elements of P is incident to exactly one element l ∈ L.

• Each pair of distinct elements of L is incident to a single element of P .

• There are at least four members of P having the property that no three of them
are incident to a single member of L.

We refer to the elements of P as points and the elements of L as lines.

Definition 3.5 (Projective geometry [2, Definition 2.5.1]). Let V be a vector space
of dimension n over some field K. The statement “x = λy for some λ ∈ K∗” defines
an equivalence relation on V ∗ = V \ {0}, and the equivalence classes are the points
of the projective geometry PG(V ).

We will denote the equivalence class of x ∈ V ∗ by [x]. A subspace [U ] of PG(V )
is the image of U ≤ V under the map x 7→ [x]. The convention is to say that if U
has dimension k, then the equivalence class [U ] has projective dimension k− 1, and
so for V = V (n, q), we write PG(V ) = PG(n − 1, q). In cases where we can view
PG(V ) as a projective plane, the points are given by [x], for x ∈ V ∗ and the lines
are given by:

L = {[U ] : U is a 2-dimensional subspace of V }.

We have that a point [x] ∈ P is incident with [U ] ∈ L if x ∈ U . In general, PG(2, q)
is a projective plane. To see this, we note that if [x] and [y] are distinct points of
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PG(2, q), then x, y ∈ V (3, q) and there is no λ ∈ GF (q)∗ which satisfies x = λy.
Here U = ⟨x, y⟩ is the unique 2-dimensional subspace of V (3, q) containing x and y,
so [U ] is the unique element of L incident to [x] and [y], so the first axiom is satisfied.
For the second axiom, let [U ], [W ] ∈ L with [U ] ̸= [W ]. We have U∩W ≤ U , so that
dim(U ∩W ) ≤ dimU = 2. If U ∩W = U , then U ≤ W and dimW = dimU = 2,
so W = U . Hence we must have dim(U ∩W ) ≤ 1. If U ∩W = {0} then U +W
would have dimension 4, which is impossible in a 3-dimensional vector space. Hence
dim(U ∩W ) = 1, so U ∩W = ⟨v⟩, and [v] ∈ P is the unique element of P incident
to [U ] and [W ] in L. For the final axiom, let {v1, v2, v3} be a basis of V (3, q), then
[v1], [v2], [v3] and [v1 + v2 + v3] have the property that no three of them are incident
to a single member of L.

Example 3.6 ([2, p.37]). Let V = V (3, 2), so V has 8 points, and V ∗ has 7 points.
Since V is a vector space over the field K = GF (2), we have K∗ has only one element,
and so every element of V ∗ is in its own equivalence class. Hence PG(2, 2) has 7
elements. To give an explicit representation of PG(2, 2) we can choose coordinates
(x0, x1, x2) for points x ∈ V ∗, and denote [x] in PG(2, 2) by [x0, x1, x2]. If we let U
be the subspace whose equation is x0 + x1 + x2 = 0, then this gives rise to a line [U ]
containing the points [1, 1, 0], [1, 0, 1] and [0, 1, 1], there are 7 such lines,written in
the same format as above, these lines are:

L = {[⟨(1, 0, 0), (0, 0, 1)⟩], [⟨(1, 0, 0), (0, 1, 0)⟩], [⟨(0, 1, 0), (0, 0, 1)⟩],
[⟨(1, 1, 0), (0, 1, 1)⟩], [⟨(1, 0, 0), (0, 1, 1)⟩], [⟨(0, 0, 1), (1, 1, 0)⟩],
[⟨(0, 1, 0), (1, 0, 1)⟩]},

and so we can construct the below figure 3.1. In fact, we can see from figure 3.1 that
this is a projective plane, as all of the conditions of 3.4 are satisfied. The projective
plane given by PG(2, 2) is called the Fano plane.

Figure 3.1: The Fano Plane; PG(2,2) [2, p.38]
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In this dissertation, we are interested in permutations of projective planes. In
particular, we will want to look at permutations which preserve the structure of the
projective plane. By “preserve the structure”, we mean that for a line l ∈ L, the
permutation π satisfies π(l) ∈ L.

3.3 Transvections

In this section, we continue to work with V as a vector space over the field F =
GF (q), with the assumption that n ≥ 2 (where n = dimV ). We also note that a
function ϕ : V → F is called a linear functional if it is a F -linear transformation (i.e
ϕ(x + λy) = ϕ(x) + λϕ(y) for x, y ∈ V, λ ∈ F ). The main aim of this section is to
discuss transvections, which are useful for studying certain matrix groups. We first
define a hyperplane.

Definition 3.7 (Hyperplane [4, p.228]). If V is an m-dimensional vector space over
a field F , then a hyperplane H in V is a subspace of dimension m− 1.

In particular, if u : V → F is a non-trivial linear functional, the set

U = {x ∈ V : u(x) = 0}

is a hyperplane, and u(x) = 0 is an equation for it. We also have that for any
g ∈ GL(V ), g(U) is a hyperplane with equation u′(x) = 0 where u′ = u ◦ g−1. If
u(x) = 0 and t(x) = 0 are two equations for the same hyperplane, then there is
some λ ∈ F ∗ = F \ {0} satisfying u(x) = λt(x) for all x ∈ V [2, p.30]. To see this,
let {v1, v2, · · · , vm} be a basis for V , with {v2, · · · , vm} a basis for U . Then we can
write each x ∈ V as x = λ1v1 + λ2v2 + · · ·λmvm for λ1, · · · , λm ∈ F , and we have
u(x) = λ1u(v1), t(x) = λ1t(v1). So then v1 /∈ U implies that u(v1) ̸= 0 and t(v1) ̸= 0,
which means λ = u(v1)t(v1)

−1 ∈ F ∗ satisfies u(x) = λt(x).

Definition 3.8 (Transvection [2, Definition 2.4.1]). A linear automorphism τ in
GL(V ) is a transvection, with direction d ∈ V ∗, if τ fixes d and τ(x)− x is a scalar
multiple of d (dependent on x) for all x ∈ V .

Transvections can be viewed as maps moving every point in a direction parallel
to d. An easy example of a transvection is the identity (which is a transvection for
any direction d). We also note that a transvection with direction d is a transvection
with direction λd, for all λ ∈ F ∗.

Theorem 3.9 ([2, Theorem 2.4.2]). If τ is a transvection with direction d, then
there is a hyperplane containing d each of whose points is fixed by τ .

Proof. When τ is the identity, the result is clear, so let τ be a non-identity transvec-
tion.
Let τ(x) − x = u(x)d for each x ∈ V . Since τ is linear, u is a non-trivial linear
functional on V . Let U be the hyperplane with equation u(x) = 0; then τ(x) = x
whenever x ∈ U and u(d) = 0, as required.
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The above theorem allows us to write any transvection in the form τ = τu,d,
where

τu,d(x) = x+ u(x)d, (3.1)

with u a linear functional, 0 ̸= d ∈ V and u(d) = 0.

Lemma 3.10 ([2, Lemma 2.4.3]). Given g ∈ GL(V ), and using the notation for
transvections given in (3.1), we have:

(i) τu,dτv,d = τu+v,d,

(ii) gτu,dg
−1 = τu′,d′, where u

′ = u ◦ g−1 and d′ = g(d).

Proof. We proceed by direct calculation, using (3.1), and noting that u(v(x)x) =
v(x)u(x) since v(x) is a scalar.

(i)

τu,dτv,d(x) = τu,d(x+ v(x)d)

= x+ v(x)d+ u(x+ v(x)d)d

= x+ v(x)d+ u(x)d+ u(v(x)d)d

= x+ v(x)d+ u(x)d+ v(x)u(d)d

= x+ (u(x) + v(x))d = τu+v,d(x).

(ii)

gτu,dg
−1(x) = g(g−1(x) + u(g−1(x))d)

= x+ u(g−1(x))g(d) = τu′,d′(x).

Theorem 3.11 ([2, Theorem 2.4.4]). Let T denote the set of all transvections in
GL(V ) and T ∗ = T \ {1}, then we have:

(i) If dimV ≥ 2, then T ∗ is a complete conjugacy class in GL(V );

(ii) T ⊆ SL(v);

(iii) if dimV ≥ 3, then T ∗ is a complete conjugacy class in SL(V ).

Proof. (i) By Lemma 3.10, the conjugate of a transvection is a transvection. For
the converse, suppose that τ = τu,d and τ ′ = τu′,d′ , are two transvections.
Choose bases {d, v1, · · · , vm} and {d′, w1, · · · , wm} for the hyperplanes U and
U ′ with equations u(x) = 0 and u′(x) = 0 respectively. We can then select
v /∈ U,w /∈ U ′ satisfying u(v) = u′(w) = 1. The sets {d, v1, · · · , vm, v} and
{d′, w1, · · · , wm, w} are both bases for the whole space V , and consequently we
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can find h ∈ GL(V ) such that h(d) = d′, h(vi) = wi and h(v) = w. We claim
that τ ′ = hτh−1.
Since h(d) = d′, both transvections have the same direction, d′, and we have
that u′(x) = 0, (u ◦ h−1)(x) = 0 are both equations for the hyperplane U ′, so
that there is some λ ̸= 0 such that u′(x) = λ(u ◦ h−1)(x) for all x ∈ V . If we
let x = w, then u′(w) = 1, and λ(u ◦ h−1)(w) = λu(v) = λ, so λ = 1. Hence τ ′

and hτh−1 have the same formula, so τ ′ = hτ ′h−1.

(ii) Since (by (i)) all transvections are conjugate in GL(V ), they all have the same
non-zero determinant δ. So, δ2 = det(τu,d) det(τu,d) = det(τu+v, d) = δ, which
implies δ = 1.

(iii) Let dimV ≥ 3, and τ and τ ′ as in part (i) of this proof. Let the determinant
of h (also as found in (i)) be µ ̸= 1. Replace the basis vector v1 by µv1 (since
dimV ≥ 3, the dimension of a hyperplane is at least 2, so d, v1 ∈ U), and
let h ∈ GL(V ) be as in (i). Then, we define the map ϕ with ϕ(µv1) = v1,
and ϕ(y) = y for all y ∈ {d, v2, · · · , vm, v}, and let h∗ = hϕ ∈ GL(V ), with
τ ′ = h∗τh∗

−1
. Further, deth∗ = deth detϕ = µµ−1 = 1; so we have that τ and

τ ∗ are conjugate in SL(V ).

Theorem 3.12 ([2, Theorem 2.4.5]). The set T (d) of transvections with direction
d is an abelian normal subgroup of the stabiliser of d in the action of SL(V ) on V ∗.
The groups T (d) (d ∈ V ∗) are all conjugate in SL(V ).

Proof. Theorem 3.11 gives T ⊆ SL(V ). We then have that T (d) is an abelian group
from Lemma 3.10 (i), and Lemma 3.10(ii) gives that if g is an element of SL(V )
fixing d, then gT (d)g−1 = T (d). Hence T (d) is an abelian normal subgroup of the
stabiliser of d. Let d1 and d2 be any two elements of V ∗, then let {d1, u1, · · · , um} and
{d2, u′1, · · · , u′m} be bases for V . Then we can find ϕ ∈ GL(V ) with ϕ(d1) = d2 and
ϕ(ui) = u′i (for 1 ≤ i ≤ m), and ψ ∈ GL(V ) with ψ(d2) = det(ϕ)−1d2 and ψ(u

′
i) = u′i

(for 1 ≤ i ≤ m). It then follows that ψϕ ∈ SL(V ) with ψϕ(d1) = (det(ϕ))−1d2,
hence we have an element of SL(V ) taking d1 to a scalar multiple of d2, and T (d1)
and T (d2) are conjugate under this element.

One of the main aims of this section is to show that the set of transvections
generates SL(V ), for the proof of this, we need to introduce some more notation.
Suppose that y is a non-zero element of V , and let ⟨y⟩ = {λy : λ ∈ F}. We denote
the quotient vector space V/⟨y⟩ by V , the elements of this set will be cosets of the
form x = {x′ ∈ V : x′ − x ∈ ⟨y⟩} = x+ ⟨y⟩.

Lemma 3.13 ([2, Lemma 2.4.6]). Taking y, ⟨y⟩, V be as above. Given g ∈ SL(V )
such that gy = y, put g(x) = g(x+ ⟨y⟩) = g(x) + ⟨y⟩ = gx. Then:

(i) g is a well defined element of SL(V );

(ii) if we are given a transvection σ ∈ SL(V ), there is a transvection τ ∈ SL(V )
such that τ = σ.
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Proof. (i) We first show that g is well defined as a linear automorphism of V . Let
x, u ∈ V with x = u, then x−u ∈ ⟨y⟩, so that g(x)− g(u) = g(x−u) ∈ g(⟨y⟩).
We also have that g(⟨y⟩) = ⟨g(y)⟩ = ⟨y⟩. Hence g(x) = g(u) and g is well
defined.
It remains to show that g ∈ SL(V ). Let {y, v2, · · · , vn} be a basis for V , and
letM be the corresponding matrix representing g; we are given that detM = 1
(since g ∈ SL(V )). Since gy = y, the first column of M is the transpose of
(1, 0, · · · , 0), so that detM = 1, where M is obtained by deleting the first row
and column of M . We then note that if g(vi) = m1iy + m2iv2 + · · ·mnivn,
where m1i, · · · ,mni ∈ F , then g(vi) = g(vi) = m1iy +m2iv2 + · · · +mnivn =
m2iv2 + · · ·mnivn, hence, M is the matrix representing g with respect to the
basis {v2, · · · , vn} of V , and so g ∈ SL(V ).

(ii) If a transvection σ in SL(V ) has direction d ∈ V , and its hyperplane has the
equation u(x) = 0, then choose a representative d ∈ V for d, and define a
linear functional u on V by:

u(y) = 0, u(x) = u(x) (x /∈ Y ).

We can confirm that this is indeed a linear functional by the following:

u(x+ a) = u(x+ a) = u(x+ a)

= u(x) + u(a) = u(x) + u(a),

u(λx) = u(λx) = u(λx) = λu(x) = λu(x).

The transvection τ on V given by τ = τu,d satisfies τ = σ, since,

τ(x) = τ(x)

= x+ u(x)d

= x+ u(x)d

= σ(x).

Theorem 3.14 ([2, Theorem 2.4.7]). The set T of transvections generates SL(V ).

Proof. We want to show that every element of SL(V ) can be written as a prod-
uct of transvections, we proceed by induction on n = dimV . When n = 1,
T = {1V } = SL(V ), since V = ⟨d⟩ and a transvection maps d to d, and hence
fixes V pointwise, and so the result holds.
Let n ≥ 2 and g ∈ SL(V ). There are three cases to consider, the first being the case
where g fixes some non-zero y ∈ V . In this case, we can apply Lemma 3.13(i) to
find a corresponding g ∈ SL(V ), where dimV = n− 1. We can then (by induction)
assume that g is a product of transvections g = σ1σ2 · · · σk.
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We can now apply Lemma 3.13(ii) to find transvections τ1, · · · , τk ∈ SL(V ) satisfy-
ing τi = σi for all i ∈ 1, · · · , k. Let h = τ1τ2 · · · τk, then we have:

hx = h(x)

= τ1τ2 · · · τk(x)
= τ1 τ2 · · · τk(x)
= σ1 · · ·σk(x) = g(x)

= g(x).

From this, we have that, for all x ∈ V , h(x) − g(x) is a scalar multiple of y, and
since g fixes y, we have that g−1h(x)− x is a scalar multiple of y. Hence g−1h is a
transvection with direction y. Since h is a product of transvections, so is g, and so
we have the desired result in this case.
The next case we consider is when g takes y to some linearly independent vector
g(y). Then y− g(y) and g(y) are linearly independent, and we can find some linear
functional t on V satisfying t(y−g(y)) = 0 and t(g(y)) = 1. Let θ be the transvection
τt,y−g(y) (so that θ(x) = x+ t(x)(y − g(y))), then we have:

θg(y) = θ(g(y)) = g(y) + t(g(y))(y − g(y))

= y,

so θg fixes y, and we can apply the previous argument to see that θg is a product
of transvections. Hence g is a product of transvections, as required.
The final case we need to consider is the case where g takes y to some linearly
dependant (but not equal) vector g(y). We choose some b ∈ V which is not linearly
dependent on y, and a linear functional w satisfying w(g(y)) = 1 and w(b) = 0. Let
ϕ = τw,b, (so that ϕ(x) = x+ w(x)b), so that we have:

ϕg(y) = ϕ(g(y)) = gy + w(g(y))b

= gy + b,

which is linearly independent to y, and so we can apply the above case, and again we
find that g is a product of transvections. Hence the induction step is complete.

Theorem 3.15 ([2, Theorem 2.4.8]). SL(n, q) coincides with it commutator sub-
group when n ≥ 2 and (n, q) ̸= (2, 2), or (2, 3).

Proof. By Theorem 3.14, it is sufficient to show that any transvection can be written
as a commutator [a, b] = aba−1b−1, with a, b ∈ SL(n, q).
First, suppose n ≥ 3, and τ ∈ T (d) (so τ is a transvection with direction d). Let
σ ∈ T (d) be such that σ ̸= τ−1 so τσ ∈ T (d). Then, by Theorem 3.11(iii), there is
some g ∈ SL(n, q) such that τσ = gσg−1, that is τ = [g, σ].
For the case n = 2, we use the matrix representation. If τ is a given transvection in

SL(2, q) with matrix

(
1 γ
0 1

)
then we can consider the following identity:

(
α 0
0 α−1

)(
1 β
0 1

)(
α−1 0
0 α

)(
1 −β
0 1

)
=

(
1 β(α2 − 1)
0 1

)
,
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which is valid over any field. This identity shows that we only need to find α, β ∈
GF (q) such that γ = β(α2 − 1). When q ̸= 2, 3 we can take α to be a primitive
element of GF (q) (so that α2 ̸= 1) and set β = γ(α2 − 1)−1.

3.4 PGL and PSL

This section aims to introduce the groups PGL(V ) and PSL(V ) and give some
important results, particularly concerning PSL(V ), as we use a specific example of
these groups to form the large Mathieu groups. Before we can define these groups,
we need the following theorem concerning the centre of GL(V ).

Theorem 3.16 ([2, Theorem 2.4.9]). The centre of GL(V ) consists of the scalar
transformations x 7→ λx(λ ∈ F ∗); the centre of SL(V ) consists of those scalar
transformations for which λn = 1, where n = dimV .

Proof. The scalar transformations clearly belong to the center of GL(V ). So we only
need to show the converse inclusion. Let g be an element which commutes with every
element of GL(V ), so that for any x ∈ V ∗, g commutes with a transvection τ which
has direction x. Since τ = gτg−1 and gτg−1 is a transvection with direction g(x),
there must be some λx ∈ F ∗ satisfying g(x) = λxx. This is true for any x ∈ V ∗, and
since g is linear we have, for x, y ∈ V ∗,

λx+y(x+ y) = λxx+ λyy.

If x and y are linearly independent, we have λx = λy = λx+y. Otherwise, we can
choose a z independent of both x and y, so that λx = λy = λz. Hence λx is constant
and g is a scalar transformation.
Since, by Theorem 3.11, transvections belong to SL(V ), the same argument applies
to SL(V ), the additional requirement that the determinant is 1 means that we must
have λn = 1.

We are interested in how the action of the general linear group is affected by
passing from V to PG(V ). Let g ∈ GL(V ), we can define a permutation ĝ of
PG(V ) by the rule:

ĝ[v] = [g(v)] (v ∈ V ∗).

We will call this the induced permutation. Note that this definition is independent
of the representative of [v] since if [v] = [v′], then v = λv′, and g(v) = λg(v′), and
so [g(v)] = [g(v′)]. However the assignment g 7→ ĝ is not a faithful representation of
GL(V ) on PG(V ), since some non-identity automorphisms may induce the identity
on PG(V ).

Lemma 3.17 ([2, Lemma 2.5.2]). Given g ∈ GL(V ), the induced permutation ĝ is
the identity of PG(V ) if and only if g is a scalar transformation.

Proof. Suppose that g is a scalar transformation, then it is clear (from the definition
of the projective geometry) that [g(v)] = [v], and so the induced permutation ĝ is
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the identity.
Conversely, suppose that ĝ[v] = [g(v)] = [v] for all v ∈ V ∗, let {v1, · · · , vn} be
basis of V . Then for any i, j ∈ 1, · · · , n, we have ĝ([vi]) = [vi], ĝ([vj]) = [vj] and
ĝ([vi + vj]) = [vi + vj], so that g(vi) = λivi, g(vj) = λjvj, and g(vi + vj) = λ(vi + vj).
Then, by the linearity of g, we have:

λ(vi + vj) = g(vi + vj) = g(vi) + g(vj) = λivi + λjvj

=⇒ (λ− λi)vi + (λ− λj)vj = 0.

Since vi and vj are linearly independent, we must have λ = λi = λj. Hence, for any
element v = µ1v1 + · · ·µnvn ∈ V we have:

g(v) = g(µ1v1 + · · ·+ µnvn)

= µ1g(v1) + · · ·+ µng(vn)

= µ1(λv1) + · · ·+ µn(λvn)

= λ(µ1v1 + · · ·+ µnvn) = λv.

Hence g is a scalar transformation, as required.

Theorem 3.16 tells us that the scalar elements of GL(V ) and SL(V ) comprise
the centres of these groups. Hence, Lemma 3.17 tells us that the centre of GL(V )
(respectively SL(V )) is the kernel of its permutation representation on PG(V ). The
main consequence of this which we are interested in is that the quotient group by its
center is therefore a group which acts on PG(V ). We define these groups as follows.

Definition 3.18 ([2, Definition 2.5.3]). The projective general linear group PGL(V )
is defined by:

PGL(V ) = GL(V )/Z(GL(V )).

Similarly, the projective special linear group PSL(V ) is defined by:

PSL(V ) = SL(V )/Z(SL(V )).

Throughout, when V = V (n, q), we will denote the projective groups as PGL(n, q)
and PSL(n, q). Note that PGL(n, q) (resp PSL(n, q)) acts on PG(n− 1, q).

Theorem 3.19 ([2, Theorem 2.5.4]). PGL(n, q) and PSL(n, q) both act 2-transitively
on the points of PG(n− 1, q).

Proof. Given g ∈ GL(n, q), let [g] denote its coset in PGL(n, q) so that the action of
PGL(n, q) on PG(n− 1, q) can be defined by the rule [g][v] = [g(v)] (v ∈ V ∗(n, q)).
Then, let ([x], [y]) and ([x′], [y′]) be two ordered pairs of distinct points in PG(n−
1, q). The ordered pairs (x, y) and (x′, y′) are then both linearly independent pairs
in V (n, q), so we can choose them as the initial members of two ordered bases. Then
we we will be able to find some g ∈ GL(n, q) such that g(x) = x′ and g(y) = y′.
The corresponding element [g] takes [x] to [x′] and [y] to [y′]. Hence we have that
PGL(n, q) is 2-transitive on PG(n− 1, q).
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To show that PSL(n, q) is 2-transitive, we want to find some [h] ∈ PSL(n, q) with
the same properties as [g]. Suppose det(g) = λ ̸= 1, and let h ∈ GL(n, q) be
the element taking x to λ−1x′ and acting as g on every other member of the basis
(including sending y to y′). Then det(h) = 1, so that [h] ∈ PSL(n, q) and [h][x] =
[λ−1x′] = [x′], [h][y] = [y′]. So PSL(n, q) acts 2-transitively on PG(n− 1, q).

Lemma 3.20 ([2, Lemma 2.5.5]). Let (G,Π) denote the permutation group PSL(n, q)
acting on the set PG(n − 1, q) and suppose π ∈ Π. The stabiliser Gπ contains an
abelian normal subgroup Hπ; the groups Hπ are all conjugate in G and they generate
G.

Proof. Suppose that p ∈ V (n, q) is chosen so that [p] = π; then the set of transvec-
tions with direction p is independent of the chosen p. Let Hπ be the image of T (p)
under the morphism SL(n, q) → PSL(n, q). Theorem 3.12 gives that Hπ is an
abelian normal subgroup of Gπ, and that every Hπ is conjugate in G. Similarly,
Theorem 3.14 gives us that the Hπ generate G.

Lemma 3.21 ([2, Lemma 2.5.6]). PSL(n, q) coincides with its commutator sub-
group, when n ≥ 2 and (n, q) ̸= (2, 2), or (2, 3).

Proof. This follows from Theorem 3.15, since PSL(n, q) is a quotient of SL(n, q).

Theorem 3.22 ([2, Theorem 2.5.7]). The group PSL(n, q) is simple, provided n ≥ 2
and (n, q) ̸= (2, 2) or (2, 3).

Proof. We use the same notation as in Lemma 3.20, letting (G,Π) denote PSL(n, q)
acting on PG(n−1, q). Suppose that N ̸= 1 is a normal subgroup of G. Then, since
G acts 2-transitively (and hence primitively) Theorem 2.14 gives us that N must be
transitive on Π.
Fix π ∈ Π, and let H = Hπ be as in Lemma 3.20. We consider the set NH ⊆ G.
Since N is normal, NH = HN and NH is a subgroup of G. We want to show that
NH = G. Let k ∈ Hσ, for some σ ∈ Π, and choose n ∈ N with n(π) = σ. Then
n−1πn ∈ H = Hπ, and so k ∈ NHN = NH. We have from Lemma 3.20 that the
groups Hσ generate G, and so NH = G.
We now want to show that any commutator in G is an element of N . Let g1, g2 ∈ G,
since G = NH, we can write g1 ∈ Nh1 and g2 ∈ Nh2 for some h1, h2 ∈ H, so
g1g2g

−1
1 ∈ Nh1Nh2Nh

−1
1 . From Lemma 3.20 we have that H is abelian, and by

assumption N is normal, hence we have:

Nh1Nh2Nh
−1
1 = Nh1h2h

−1
1 N

= Nh2N

= Nh2

= Ng2.

Hence g1g2g
−1
1 ∈ Ng2, and so [g1, g2] ∈ N . Since, by Lemma 3.21 G coincides with

its commutator subgroup, we must have G = N , and so G is simple.
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Lemma 3.23 ([2, Lemma 2.6.1]). The number of points in PG(n, q) is (qn+1−1)
q−1

.

Proof. The points of PG(n, q) are equivalence classes [x] of points in x ∈ V =
V (n + 1, q). Fix a basis for V , and let the the coordinates for a typical point x be
given by (x1, x2, · · · , xn, xn+1). If xn+1 ̸= 0, then the point (y1, y2, · · · , yn, 1) with
yi = xi(xn+1)

−1 (for each i = 1, · · · , n + 1), is a representative of [x] in PG(n, q).
In fact, it is the unique representative with final coordinate 1. Since each yi (for
i = 1, · · · , n) can be any element of GF (q), there are qn such elements in PG(n, q).
Similarly, if xn+1 = 0 and xn ̸= 0, then we can find the unique representative of [x]
of the form (y1, y2, · · · , yn−1, 1, 0), so that there are qn−1 such points. Continuing in
this way, we have that there are qn + qn−1 + · · · q + 1 = (qn+1 − 1)/(q − 1) points of
PG(n, q) as required.

Theorem 3.24 ([2, Theorem 2.6.3]). For all n ≥ 2 we have:

(i) |PGL(n, q)| = qn(n−1)/2
∏n

i=2(q
i − 1);

(ii) |PSL(n, q)| = (q − 1, n)−1|SL(n, q)|, where (, ) denotes the greatest common
divisor.

Proof. (i) By definition, PGL(n, q) is the quotient of GL(n, q) by its centre, and
from 3.16, the centre consists of q − 1 elements. Hence applying the formula
for GL(n, q) given in Theorem 3.3 we get the result.

(ii) By definition PSL(n, q) is the quotient of SL(n, q) by its centre, and again by
Theorem 3.16 consists of the scalar transformations with λn = 1. Since the
non-zero elements of GF (q) form, under multiplication, a cyclic group of order
q − 1, there are (q − 1, n) such transformations.

In particular, we have that |PSL(3, 4)| = 20160.

4 Designs

In this section, we will be looking at purely combinatorial structures on a set. We
want to find a family of subsets which satisfy some particular conditions. We will
be interested in determining when these families exist and if we can find a transitive
group of permutations on them. To this aim, we introduce designs.

Definition 4.1 (t-design [7, Definition 3.16]). Let v ≥ k ≥ t ≥ 1 and λ ≥ 1 be
natural numbers. A t-design (X,B) with parameters v, k, λ consists of a family B of
subsets of X such that:

(i) |X| = v;

(ii) |B| = k, for all B ∈ B;

23



(iii) each t-subset of X is contained in exactly λ sets from B.

We call the elements of X points, and the elements of B blocks.

A t-design with t ≥ 2 and λ = 1 is called a Steiner system, we will use the
notation S(t, k, v).

Example 4.2. The Fano plane, PG(2, 2) as introduced in example 3.6 is a 2 −
(7, 3, 1) design. We can re-label the points given in example 3.6 as follows; let
[1, 0, 0] = 1, [1, 1, 0] = 2, [1, 0, 1] = 3, [0, 1, 0] = 4, [0, 1, 1] = 5, [1, 1, 1] = 6, [0, 0, 0] =
7, so that the points of the Fano plane can be written as the set X = {1, 2, 3, 4, 5, 6, 7}.
We can now explicitly write the blocks of X when viewed as a 2− (7, 3, 1) design as
follows:

1 2 4 2 3 5 3 4 6 4 5 7

1 5 6 2 6 7 1 3 7.

Theorem 4.3 ([2, Theorem 3.2.2]). A t-design (X,B) is also an s-design, for any
0 ≤ s ≤ t. If the parameters of the t-design are t− (v, k, λ), then its parameters as
an s-design are s− (v, k, λs), where,

λs = λ · (v − s)(v − s− 1) · · · (v − t+ 1)

(k − s)(k − s− 1) · · · (k − t+ 1)
.

Proof. We proceed by induction on t− s, when t− s = 0 the result clearly holds.
Suppose that the result holds for s = i+1 for 0 ≤ i ≤ t−1, so that each (i+1)-subset
of X occurs as a subset of exactly λi+1 blocks, so we want to show that the result
holds for s = i. Let I be any i-subset of X and consider the pairs (x, β) ∈ X × B
satisfying the conditions:

x ∈ X \ I , I ∪ {x} ⊆ β.

We then note that we can find two formulas for the number of pairs (x, β). First,
we can select an x ∈ X \ I, of which there are (v− 1) choices, and then select β ∈ B
with I ∪{x} ⊆ β, of which there are λi+1 choices, so we have (v− i)λi+1 pairs (x, β).
Alternatively, we can first select β0 ∈ B with I ⊆ β0, of which we say there are
λi(I) choices, and then select an x ∈ β0 \ I, of which there are (k− i) choices. This
approach gives us that there are (k − i)λi(I) choices for (x, β), since we have two
different formulas for the same number, we then have the following:

(v − i)λi+1 = (k − i)λi(I). (4.1)

Where λi(I) is the number of blocks containing I. We can then use (4.1) to see:

λi(I) =
v − i

k − i
λi+1, (4.2)
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so that λi(I) is independent of I, and so we have an i-design. Using repeated appli-
cation of (4.2), we then have the following:

λs =
v − s

k − s
λs+1

=
(v − s)(v − s− 1)

(k − s)(k − s− 1)
λs+2

...

=
(v − s)(v − s− 1) · · · (v − (t− 1))

(k − s)(k − s− 1) · · · (k − (t− 1))
λt.

Since λt = λ, we have the required formula, so the induction step is complete.

The proof of Theorem 4.3 allows us to establish two useful formulas when working
with designs. From this point on, we will use the following notation when working
with designs; the number of blocks containing any given point (previously denoted
λ1) will be given by r; and |B| will be denoted by b. So we have that the equation
(4.1) can be written as:

(v − i)λi+1 = (k − i)λi (0 ≤ i ≤ t− 1), (4.3)

and, in particular, when i = 0 we get the equation:

vr = bk. (4.4)

Throughout the remainder of this dissertation, we will be interested in particular
permutations of designs known as automorphisms of designs.

Definition 4.4 (Automorphisms of designs [2, Definition 3.4.1]). An automorphism
of a design (X,B) is a permutation π of X such that β ∈ B if and only if π(β) ∈ B.

We can see that the automorphisms of (X,B) form a group which acts on X.
Since an automorphism takes blocks to blocks, the group also has a permutation
representation on the set B.

Theorem 4.5 ([2, Theorem 3.4.3]). Let (G,X) be a t-transitive permutation group
(t ≥ 2), and suppose β is a subset of X, with |β| = k, |X| = v, and t < k < v − 1.
Then the set

B = {g(β) : g ∈ G}

is the set of blocks of a t-design (X,B), and G is a group of automorphisms acting
transitively on B.

Proof. Let S and T be any two t-subsets of X, then there is some h in G satisfying
h(S) = T . If S belongs to a block g(β) ∈ B, then T belongs to the block hg(β). So
S and T occur as subsets of a block the same number of times.
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We now want to find the parameters of the block constructed in this theorem;
t, v and k are already given, so it remains to find λ. For this calculation, we use the
equations (4.3) and (4.4), noticing that b is the length of the orbit of β under the
action of G. So it follows from the Orbit-Stabiliser Theorem that b = |G : G(β)|,
with G(β) the set-wise stabiliser of β, hence,

λ = λt =
k(k − 1) · · · (k − t+ 1)

v(v − 1) · · · (v − t+ 1)
|G : G(β)|.

We will be interested in extending t-designs. To this aim we introduce the concept
of a contraction of a t-design. Let D = (X,B) be a t-design with parameters
t− (v, k, λ), and let x ∈ X, then the family of sets,

Bx = {β \ {x} : x ∈ β, β ∈ B}

gives a block design on X \{x}. To see this, let {x1, · · · , xt−1} ⊆ X \{x}, then there
are λ blocks β containing {x1, · · ·xt−1}∪{x} and hence there are λ blocks β\{x} ∈ Bx

containing {x1, · · ·xt−1}. This design will have parameters (t− 1)− (v− 1, k− 1, λ).
The design Dx = (X \ {x},Bx) is called a contraction of the design D. We also
notice that bx (the number of blocks of Dx) is equal to the number of blocks of D
containing x (which is r) and so, applying equation (4.4), we get:

bx =
bk

v
. (4.5)

Example 4.6 ([2, p.67]). Let us consider the 3− (8, 4, 1) design, where we take the
set X = {0, 1, 2, 3, 4, 5, 6, 7}, then the design has 14 blocks given as follows:

0 1 2 4 3 5 6 7

0 2 3 5 1 4 6 7

0 3 4 6 1 2 5 7

0 4 5 7 1 2 3 6

0 1 5 6 2 3 4 7

0 2 6 7 1 3 4 5

0 1 3 7 2 4 5 6.

Letting x = 0, we see that the block design on X \ {x} is the 2 − (7, 3, 1) discussed
in example 4.2.

Since we are more interested in extending designs, we want to try and reverse
this process, which we can do in the following manner.

Definition 4.7 (Extendable designs [2, Definition 3.5.2]). The design D+ = (X+,B+)
is an extension of D = (X,B) if X+ = X ∪ {z}, for some point z /∈ X, and the
contraction (D+)z is just D. D is said to be extendable if it has some extension D+.

Lemma 4.8 ([2, Lemma 3.5.3]). In order for a t− (v, k, λ) design with b blocks to
be extendable (k + 1) should divide b(v + 1).
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Proof. Suppose that the design is extendable, then the extension would give a (t+
1)− (v + 1, k + 1, λ) design with b+ blocks, and using (4.5) we have:

b =
b+(k + 1)

v + 1
.

So, to ensure that b+ is an integer we need (k + 1) to divide b(v + 1).

This lemma allows us to prove the following theorem, which will be useful when
constructing the large Mathieu groups.

Theorem 4.9 ([2, Theorem 3.5.4]). Let q be a prime power. A necessary condition
that a design with parameters 2− (q2+q+1, q+1, 1) (in particular PG(2, q)) should
be extendable is that q = 2 or 4.

Proof. If we have an extendable 2− (q2 + q + 1, q + 1, 1) design, then the extension
would have parameters 3− (q2 + q+ 2, q+ 2, 1), and so the condition in Lemma 4.8
says that q + 2 should divide (q2 + q + 2)(q2 + q + 1). Then

(q2 + q + 2)(q2 + q + 1)

q + 2
= (q3 + 4q − 5) +

12

q + 2
,

so that q + 2 divides 12, since q is a prime power, we must have q = 2 or 4.

As shown in Example 4.6, PG(2, 2) is extendable, and in fact PG(2, 4) is ex-
tendable too, we will discuss this at length in the next section. We can construct
extensions of designs by simultaneously extending the automorphism group of the
design, using the one-point extension discussed in Theorem 2.8.
The below flow diagram shows the procedure, where we begin with the t− (v, k, λ)
design (X,B), and we find the t-transitive group (G,X) acting transitively on B.
Then we are interested in the case where G admits a one-point extension (G+, X+),
where X+ = X ∪ {z}. We can then apply Theorem 4.5, taking the basic block
β = β0 ∪ {z}, for some β0 ∈ B, to construct a (t + 1) − (v + 1, k + 1, λ+) design
(X+,B+). It is not always the case that this design is an extension of our original
one, as, for example, we may have λ ̸= λ+ [2, p.69].

(G,X)
t- transitive group

(X,B)
t− (v, k, λ)-design

(G+,B+)
(t+ 1)-transitive group

(X+,B+)
(t+ 1)− (v + 1, k + 1, λ+)-design

one-point
extension

automorphisms

extension contraction

Theorem 4.5

The following theorem gives us the conditions for which the procedure above does
result in the new design being an extension of the original.
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Theorem 4.10 ([2, Theorem 3.5.5]). Let (X,B) be a t − (v, k, λ) design whose
automorphism group G is transitive on blocks, and suppose that (G,X) is t-transitive
and has a one-point extension. The design (X+,B+) constructed by the technique
shown in the above flow diagram is an extension of (X,B) if and only if λ+ = λ.

Proof. For the forward direction, suppose (X+,B+) is an extension of (X,B), then
it follows that (X,B) is a contraction of (X+,B+) and so we have λ+ = λ.
For the converse, let λ+ = λ. Then, applying Theorem 4.3 to (X+,B+) we have:

r+ = λ+1 = λ+2 · ((v + 1)− 1)

(k + 1)− 1
...

= λ+t+1 ·
((v + 1)− 1) · · · ((v + 1)− t)

((k + 1)− 1) · · · ((k + 1)− t)

= λ+ · v(v − 1) · · · (v − t+ 1)

k(k − 1) · · · (k − t+ 1)
.

Then, applying Theorem 4.3 to (X,B) gives

r = λ · (v − 1) · · · (v − t+ 1)

(k − 1) · · · (k − t+ 1)
,

so that,

r+

r
=
λ+

λ
· v
k
.

Then, since λ+ = λ (and recalling equation (4.4)),we can rearrange this to give:

r+ =
vr

k
=
bk

k
= b.

Now, following the notation given in Definition 4.7, let z /∈ X, we have that z is
contained in r+ blocks of B+. Therefore, the contraction of (X+,B+) with respect
to z must have r+ = b blocks. We want to show that these are exactly the blocks
in B.
Suppose the basic block used in the construction of (X+,B+) is β = β0 ∪ {z}, for
some β0 ∈ B and let γ be any member of B. Since G is transitive on B, we can
find g ∈ G such that γ = g(β0). Thus γ ∪ {z} = g(β), and γ ∪ {z} is in B+, since
g ∈ G ≤ G+. Contracting B+ with respect to z gives the block γ.

5 The Mathieu groups

In this section, we will be constructing the large Mathieu groups,M22,M23 andM24,
using one-point extensions of permutation groups.
Throughout, we denote the points of PG(2, 4) by equivalence classes of coordinate
triples [u, v, w], with u, v, w ∈ GF (4). With this in mind, we recall from Example
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3.1 the following properties of GF (4), we have GF (4)∗ = {1, α, α2} so that for any
x ∈ GF (4)∗, we have x3 = 1, and x4 = x. Note that, from Example 3.1, we also
have that for x ∈ GF (4)∗, x2 + x+ 1 = 0.
We can then choose a primitive element t ∈ GF (4) and define three permutations
of PG(2, 4) as follows:

f1[u, v, w] = [u2 + vw, v2, w2],

f2[u, v, w] = [u2, v2, w2t],

f3[u, v, w] = [u2, v2, w2].

Since u, v, w ∈ GF (4), we have the permutation α : u 7→ u2 (which is the permuta-
tion (t t2)) satisfies:

α(x+ y) = (x+ y)2 = x2 + y2 = α(x) + α(y),

α(xy) = (xy)2 = α(x)α(y).

Hence, α is an automorphism and so the three permutations f1, f2, f3 above are
all permutations of elements of PG(2, 4). Further, each of the permutations are
invertible as:

(f1)
2[u, v, w] = f1[u

2 + vw, v2, w2] = [(u2 + vw)2 + v2w2, v4, w4]

= [u4 + 2u2vw + v2w2 + v2w2, v, w]

= [u, v, w],

(f2)
2[u, v, w] = f2[u

2, v2, w2t] = [u4, v4, w4t3]

= [u, v, w],

(f3)
2[u, v, w] = f3[u

2, v2, w2] = [u4, v4, w4]

= [u, v, w].

Hence, we have f−1
i = fi for each i = 1, 2, 3. These permutations will be used in

the construction of the large Mathieu groups M22,M23 and M24. We begin with the
construction of M22.

Theorem 5.1 ([2, Theorem 3.6.1]). The permutation group PSL(3, 4) acting on
PG(2, 4) has a one-point extension.

Proof. Following the notation of Theorem 2.8, let G = PSL(3, 4) andX = PG(2, 4),
and ∗ = ∞. Define h as the permutation which switches [1, 0, 0] and ∞, and acts
as f1 on the rest of X. Let g be the permutation defined by g[u, v, w] = [v, u, w],
which written in matrix form is:

g =

0 1 0
1 0 0
0 0 1

 ,

which has determinant −1 = 1 ∈ GF (4), so that g ∈ G. The elements x and y
considered in Theorem 2.8 are taken as [1, 0, 0] and [0, 1, 0]. We have defined h and
g to satisfy conditions (i) and (ii) of the theorem, so it only remains to show that
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conditions (iii) and (iv) hold.
To check condition (iii), we have that h2 fixes [1, 0, 0] and ∞, and f−1

1 = f1, hence
h2 = 1 ∈ G, as required. To check that (gh)3 ∈ G, we can calculate, for [u, v, w] ̸=
[1, 0, 0], [0, 1, 0]:

(gh)[u, v, w] = g[u2 + vw, v2, w2]

= [v2, u2 + vw,w2],

(gh)2[u, v, w] = (gh)[v2, u2 + vw,w2]

= [u+ v2w2, v + (u2 + vw)w2, w],

(gh)3[u, v, w] = (gh)[u+ v2w2, v + (u2 + vw)w2, w]

= [v2 + (u+ v2w2)w, u2 + vw + u2w3, w2]

= [uw + v2(1 + w3), vw + u2(1 + w3), w2].

If w ̸= 0, then w3 = 1 (again, since we are working with elements of GF (4)), so
that (gh)3[u, v, w] = [uw, vw,w2] = [u, v, w]. If w = 0 and uv ̸= 0, then we have
(gh)3[u, v, w] = [v2, u2, 0] = [u, v, 0], and so we have that (gh)3 = 1. From the
remark given after Theorem 2.8, we have that (gh)3 fixes x, y and ∞. Hence we
have (gh)3 = 1 ∈ G, and so condition (iii) is satisfied.
For condition (iv), let p ∈ Gx, so that p is an element of G fixing [1, 0, 0], which will
have representative matrix:

P =

1 a l
0 b m
0 c n

 , detP = bn− cm = 1.

So we have p([x, y, z]) = [x + ay + lz, by +mz, cy + nz]. We are interested in hph,
we have that:

hph([x, y, z]) = hp([x2 + yz, y2, z2])

= h([x2 + yz + ay2 + lz2, by2 +mz2, cy2 + nz2])

= [x4 + y2z2 + a2y4 + l2z4 + (by2 +mz2)(cy2 + nz2), b2y4 +m2z4, c2y4 + n2z4]

= [x+ y2z2 + a2y + l2z + bcy4 +mcy2z2 +mnz4 + bny2z2, b2y +mz2, c2y + n2z]

= [x+ (a2 + bc)y + (l2 +mn)z + (1 + bn+mc)z2y2, b2y +m2z, c2y + n2z]

= [x+ (a2 + bc)y + (l2 +mn)z, b2y +m2z, c2y + n2z].

Hence, hph can be represented by the matrix:1 a2 + bc l2 +mn
0 b2 m2

0 c2 n2

 ,

which fixes [1, 0, 0] and belongs to PSL(3, 4) since b2n2 − c2m2 = (bn − cm)2 = 1.
Hence, hph ∈ Gx, since this holds for any element of Gx, we have hGxh ≤ Gx. Then,
since both hGxh and Gx are finite sets with the same order we have Gx = hGxh,
so condition (iv) is satisfied. Hence, all the conditions of Theorem 2.8 are satisfied
and ⟨G, h⟩ is a one-point extension of G = PSL(3, 4).
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From Theorem 3.19, we know that PSL(2, 4) is 2-transitive on the 21 points of
PG(2, 4), so it follows that the one-point extension is 3-transitive on 22 points, and
this group is called the Mathieu group M22. The order of M22 is 22 · |PSL(3, 4)| =
443, 520.
We can now look at the design associated with M22, following the method given in
Chapter 4, beginning with the 2 − (21, 5, 1) design PG(2, 4), which has the group
PSL(3, 4) acting 2-transitively on its points. Since M22 is a one-point extension
of PSL(3, 4), we can use the procedure given in the flow diagram to construct the
following design.

Theorem 5.2 ([2, Theorem 3.6.4] ). PG(2, 4) is extendable, giving a 3 − (22, 6, 1)
design, on which M22 acts as a group of automorphisms.

Proof. Following the notation of Theorem 4.5, let β be the union of ∞ with the line
ℓ in PG(2, 4) whose equation is w = 0. Let B+ denote the set of blocks generated
by the action of M22 on β and let b+ = |B+|.
The set-wise stabiliser of β inM22 is transitive on the six points of β, since it contains
h (as in the proof of Theorem 5.1) and the set-wise stabiliser of ℓ in PSL(3, 4) (which
is transitive on the five points of ℓ). Thus we may calculate, using the abbreviations
H =M22, G = PSL(3, 4):

b+ = |H : H(β)|

=
|H : G(ℓ)|
|H(β) : G(ℓ)|

=
|H : G| · |G : G(ℓ)|

|H(β)(∞)|

=
22 · 21

6
= 77.

So we have, using equation (4.4), r+ = 21. We can then use equation (4.1) to find
λ+2 = 5, λ+ = 1 and, by Theorem 4.10, the new design is an extension of the original
one.

We can now show that it is possible to extend M22.

Theorem 5.3. The Mathieu group M22 has a one point extension M23.

Proof. We proceed in the same manner as in Theorem 5.1, except now we denote
our added element as ∞′, then define h′ to switch ∞ and ∞′ and act as f2 on the
rest of the set (which in this case is PG(2, 4)), and let g′ = h (as in the proof of
Theorem 5.1). In this case we are taking the element x = ∞ and y = [1, 0, 0]. We
need to check that the conditions of Theorem 2.8 are satisfied. Again, conditions (i)
and (ii) are satisfied by how we have defined h′ and g′.
We now check condition (iii); first we check (h′)2; clearly (h′)2(∞) = ∞ and
(h′)2(∞′) = ∞′. Then for any other element [u, v, w] we have,

(h′)2[u, v, w] = [u, v, wt3] = [u, v, w].
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So (h′)2 is the identity map. We now check (g′h′)3, as above, we need only verify
the result for [u, v, w] ∈ PG(2, 4) with [u, v, w] ̸= [1, 0, 0], so we have:

(g′h′)[u, v, w] = g′[u2, v2, w2t]

= [u+ v2w2t, v, wt2],

(g′h′)2[u, v, w] = (g′h′)[u+ v2w2t, v, wt2]

= [u+ v2w2t+ v2w2t2, v, wt],

(g′h′)3[u, v, w] = (g′h′)[u+ v2w2t+ v2w2t2, v, wt]

= [u+ v2w2(t2 + t+ 1), v, w]

= [u, v, w].

Hence, (g′h′)3 acts as the identity on every element as required.
We now check condition (iv), let p′ ∈ (M22)∞ = PSL(3, 4). We want to show that
h′p′h′ ∈ (M22)∞. We first have that:

h′p′h′(∞) = h′p′(∞′) = h′(∞′) = ∞,

h′p′h′(∞′) = h′p′(∞) = h′(∞) = ∞′.

For the remaining elements, we again look at the representative matrix for p′:

P ′ =

a d g
b e h
c f j

 , detP ′ = a(ej − hf)− d(bj − hc) + d(bf − ce) = 1.

So that p′([x, y, z]) = [ax+ dy+ gz, bx+ ey+ hz, cx+ fy+ jz. We are interested in
h′p′h′, which gives:

h′p′h′([x, y, z]) = h′p′([x2, y2, z2t])

= h′([ax2 + dy2 + gz2t, bx2 + ey2 + hz2t, cx2 + fy2 + jz2t])

= [a2x4 + d2y4 + gz4t2, b2x4 + e2y4 + h2z4t2, t(c2x4 + f 2y4 + j2z4t2)]

= [a2x+ d2y + g2t2z, b2x+ e2y + h2t2z, c2tx+ f 2ty + j2z].

So we have that h′p′h′ has representative matrix:

M =

a2 d2 g2t2

b2 e2 h2t2

c2t f 2t j2

 .

This matrix has determinant:

detM = a2(e2j2 − h2f 2)− d2(b2j2 − h2c2) + g2t2(b2f 2t− e2c2t)

= (a(ej − hf)− d(bj − hc) + d(bf − ce))2

= 1.

So that h′p′h′ ∈ (M22)∞. Since this holds for any element of (M22)∞, condition (iv) is
satisfied. Hence, all the conditions of Theorem 2.8 are satisfied and M23 = ⟨M22, h

′⟩
is a one point extension of M22.
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Since M22 is 3-transitive on 22 points, the Mathieu group M23 is 4-transitive on
23 points. The order of M23 is then 23 · |M22| = 10, 200, 960. Again, we can now
consider the design associated with M23.

Theorem 5.4. The 3− (22, 6, 1) design is extendable, giving a 4− (23, 7, 1) design
on which M23 acts as a group of automorphisms.

Proof. We proceed in the same way as above, this time taking β′ = β ∪ {∞′} =
ℓ ∪ {∞,∞′}. Let (B′)+ denote the set of blocks generated by the action of M23 on
β′, and label (b′)+ = |(B′+)|. The set-wise stabiliser of β′ in M23 is transitive on
the 7 points of β′, since it contains h′ (which switches ∞ and ∞′) and the set-wise
stabiliser of β in M22 (which is transitive on the six points of β).
Again, we can calculate as follows, with the abbreviations K =M23, H =M22:

(b′)+ = |K : K(β′)|

=
|K|

|K(β′)|

=
( |K|
|H|)(

|H|
|G| )(

|G|
|G(ℓ)|

)

(
|K(β′)|
|H(β′)|

)(
|H(β′)|
|G(ℓ)|

)

=
23 · 22 · 21

6 · 7
= 253.

From this we can then calculate r+ = 77, λ+2 = 21, λ+3 = 5, λ+4 = λ = 1.

We now look at a one-point extension of M23.

Theorem 5.5. The Mathieu group M23 has a one point extension M24

Proof. We follow the same process as above, this time letting ∗ = ∞′′
. We now take

h′′ to be the permutation which switches ∞′ and ∞′′, fixes ∞ and acts as f3 on
the rest of the set (in this case PG(2, 4)). We also take g′′ = h′ (from the proof of
Theorem 5.3). Following the notation of Theorem 2.8, our x in this case is ∞′ and
y is ∞.
To verify the conditions of Theorem 2.8, we see that (i) and (ii) are satisfied by how
we have defined g′′ and h′′. To check (iii), we first consider (h′′)2, it is clear that
(h′′)2 acts as the identity on ∞,∞′ and ∞′′, and for [u, v, w] ∈ PG(2, 4) we have:

(h′′)2[u, v, w] = [u4, v4, w4] = [u, v, w]

so (h′′)2 is the identity, as required. We now consider (g′′h′′)3, again, this acts as the
identity for ∞,∞′ and ∞′′. For [u, v, w] ∈ PG(2, 4) we have:

(g′′h′′)[u, v, w] = g′′[u2, v2, w2] = [u, v, wt],

(g′′h′′)2[u, v, w] = (g′′h′′)[u, v, wt] = [u, v, wt2],

(g′′h′′)3[u, v, w] = [u, v, wt3] = [u, v, w].
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Hence, both (h′′)2 and (g′′h′′)3 act as the identity on every element in the new group,
so (iii) is satisfied.
To verify (iv), let p′′ ∈ (M23)∞′ = M22 (the stabiliser of ∞′ in M23). We want to
show that h′′p′′h′′ ∈ (M23)∞′ . Since p′′ ∈ M22, we can write p′′ = p1p2 · · · pm, where
each pi is either equal to p

′ : [u, v, w] 7→ [au+ dv + gw, bu+ ev + hw, cu+ fv + jw]
(as in the proof of theorem 5.3) or h = (∞ [1, 0, 0])f1 (as in the proof of Theorem
5.1). We then have, in the case that pi = h:

h′′hh′′(∞) = h′′h(∞) = h′′([1, 0, 0])

= [1, 0, 0],

h′′hh′′([1, 0, 0]) = h′′h([1, 0, 0]) = h′′(∞)

= ∞,

then, for [u, v, w] ̸= [1, 0, 0] we have:

h′′hh′′([u, v, w]) = f3f1f3([u, v, w]) = f3f1([u
2, v2, w2])

= f3([u+ v2w2, v, w])

= [u2 + vw, v2, w2] = h([u, v, w]).

Hence h′′hh′′ = h. For the other case (pi = p′), we have:

h′′p′h′′([u, v, w]) = h′′p′([u2, v2, w2])

= h′′([au2 + dv2 + gw2, bu2 + ev2 + hw2, cu2 + fv2 + jw2])

= [a2u+ d2v + g2w, b2u+ e2v + h2z, c2u+ f 2v + j2w].

Which is associated to the matrix:

M =

a2 d2 g2

b2 e2 h2

c2 f 2 j2

 .

The determinant of this matrix is then

detM = a2(e2j2 − f 2h2)− d2(b2j2 − c2h2) + g2b2f 2 − c2e2)

= (a(ej − hf)− d(bj − hc) + d(bf − ce))2

= 1.

So that h′′p′h′′ ∈ PSL(3, 4) ⊆ (M23)∞′ . Overall, this gives h′′p′′h′′ = h′′p1p2 · · · pmh′′ =
h′′p1h

′′h′′p2h
′′ · · ·h′′pmh′′, where each h′′pih

′′ either lies in PSL(3, 4) or equals h, so
h′′p′′h′′ ∈ ⟨PSL(3, 4), h⟩ = (M23)∞′ . Hence condition (iv) is satisfied, and so all of
the conditions in Theorem 2.8 are met, so M24 = ⟨M23, h

′′⟩ is a one-point extension
of M23.

Since M23 is 4-transitive on 23 points, we have M24 is a 5-transitive group acting
on 24 points. The order of M24 = 24 · |M23| = 244, 823, 040, and we again can
consider the design associated to M24.
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Theorem 5.6. The 4− (23, 7, 1) design is extendable, giving a 5− (24, 8, 1) design
on which M24 acts as a group of automorphisms.

Proof. We again proceed in the same manner as before, this time taking β′′ to be
the union of ∞′′ and β′ (where β′ is taken as in the proof of Theorem 5.4). Let
(B′′)+ denote the set of blocks generated by the action of M24 on β′′, and label
(b′′)+ = |(B′′)+|.
The set-wise stabiliser of β′′ in M24 is transitive on the 8 points of β′′, since it
contains h′′ (which switches ∞′′ and ∞′) and the set-wise stabiliser of β′ in M23

(which is transitive on the seven points of β′).
We can then calculate as follows, using the abbreviations I =M23, K =M24:

(b′′)+ = |I : I(β′′)|

=
|I|

|I(β′′)|

=
( |I|
|H|)(

|K|
|H|)(

|H|
|G| )(

|G|
|G(ℓ)|

)

(
|I(β′′)|
|K(β′)|

)(
|K(β′)|
|H(β′)|

)(
|H(β′)|
|G(ℓ)|

)

=
24 · 23 · 22 · 21

6 · 7 · 8
= 759.

From this, we can then calculate (using the same equations as before): r+ =
253, λ2 = 77, λ3 = 21, λ4 = 5, λ = 1.

Theorem 5.7 ([2, Theorem 3.6.3]). The large Mathieu groups are simple.

Proof. First looking at M22, we have that the stabiliser of any point in M22 is the
simple group PSL(3, 4). Since M22 is 3-transitive on 22 points, we have that it is
also 2-transitive, and so Theorem 2.11 tells us that M22 is primitive. We can then
apply Theorem 2.19(ii) to see that M22 can have no regular normal subgroup, and
so Theorem 2.15 gives that M22 is simple.
For M23, we use the same argument, this time with the fact that the stabiliser of a
point inM23 is the simple groupM22. In this case we apply Theorem 2.19(iii) (since
M23 is 4-transitive) to see that M23 has no regular normal subgroups, and then we
again conclude from Theorem 2.15 that M23 is simple.
Since M24 is 5-transitive, Theorem 2.18 tells us that it has no regular normal sub-
groups, and hence (as above), M24 is simple.

Now that we have constructed the large Mathieu groups, a natural question to
ask is whether we can extend M24 to give another Mathieu group. We first need to
establish some more notation and results.
Let (G,X) be a permutation group with U ≤ G, then we set [4, p.296]:

F(U) = {x ∈ X : gx = x ∀g ∈ U}.

Using this notation we have the following lemma.
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Lemma 5.8 ([4, Lemma 9.65]). For a permutation group (G,X), with U ≤ G,

F(gUg−1) = gF(U) for all g ∈ G.

Proof. Let x ∈ X and g ∈ G, if x ∈ F(gUg−1), then gug−1(x) = x for all u ∈ U , so
ug−1(x) = g−1(x), hence (g−1(x)) ∈ F(U). It follows that x ∈ gF(U), so the result
holds.

Theorem 5.9 ([4, Theorem 9.66]). Let (G,X) be t-transitive, with t ≥ 2, H be the
stabiliser of t points (say x1 · · · , xt) in X and U be a Sylow p-subgroup of H for
some prime p, then:

(i) NG(U) acts t-transitively on F(U),

(ii) If k = |F(U)| > t and U is a non-trivial normal subgroup of H, then (X,B)
is a Steiner system of type S(t, k, v), where |X| = v and

B = {gF(U) : g ∈ G}.

Proof. (i) Firstly, note that if g ∈ Ng(U), then U = gUg−1, and F(U) = F(gUg−1) =
gF(U). Now {x1, · · · , xt} ⊆ F(U) since U ≤ H, which fixes x1, · · ·xt, hence
k = |F(U)| ≥ t. If y1, · · · , yt are distinct elements of F(U), then since G is
t-transitive, we can find some g ∈ G with gyi = xi for all i = 1, · · · , t. If u ∈ U ,
then gug−1xi = guyi = gyi = xi, hence gUg

−1 ≤ H. We then have that there
is some h ∈ H which satisfies gUg−1 = hUh−1, so that h−1g ∈ NG(U) and
h−1gxi = h−1xi = xi for all i.

(ii) The hypothesis gives 1 < t < k ≤ v. If k = v, then F(U) = X, and since
we always assume that G acts faithfully on X, we have a contradiction, since
U ̸= 1, so k ̸= v. We also have that for any g ∈ G, k = |F(U)| = |F(gUg−1)|.
If y1, · · · , yt are distinct elements of X, then there is some g ∈ G with gxi = yi
for all i, so {y1, · · · , yt} ⊂ gF(U). It remains to show that gF(U) is the unique
block containing {y1, · · · , yt}. Suppose {y1, · · · , yt} ⊂ hF(U), then there are
z1, · · · , zt ∈ F(U) such that yi = hzi for each i. By (i), there is σ ∈ NG(U)
with zi = σxi, for all i = 1, · · · , t, hence gxi = yi = hσxi. We then have that
g−1hσ fixes xi for all i, and so g−1hσ ∈ H. Then, since U ◁H, H ≤ NG(U),
so g−1hσ ∈ NG(U) and g−1h ∈ NG(U). Hence, gUg−1 = hUh−1, and so
gF(U) = F(gUg−1) = F(hUh−1) = hF(U) as required.

The final result we need in order to show that M24 can not be extended is the
following lemma taken from Rotman, we omit the proof, as it uses particular quotient
groups not previously discussed in this dissertation. We first need the following
definition.

Definition 5.10 (Elementary abelian p-group [4, p.42]). If p is a prime, then an
elementary abelian p group is a finite group G isomorphic to Zp × · · · × Zp.
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Lemma 5.11 ([4, Lemma 9.67]). Let H ≤M24 be the stabiliser of the five points:

∞,∞′,∞′′, [1, 0, 0] and [0, 1, 0]

(i) H is a group of order 48 with a normal elementary abelian Sylow 2-subgroup
U of order 16.

(ii) F(U) = ℓ ∪ {∞,∞′,∞′′}, and so |F(U)| = 8.

(iii) Only the identity of M24 fixes more than 8 points.

We can now give our final result, that M24 does not have an extension.

Theorem 5.12 ([4, Theorem 9.68]). The Mathieu Group M24 does not have a tran-
sitive extension.

Proof. We proceed by contradiction. Suppose that there is a transitive extension
of M24, which we label M25, and label the added element ∞′′′. By construction,
we would have M24 ⊂ M25, and hence M25 also contains the set-wise stabiliser of
β′′ = ℓ∪{∞}∪{∞′}∪{∞′′}. When considered as a subgroup ofM25, this stabiliser
must also fix ∞′′′, so G1 = (M24)β′′ stabilises β′′′ = β′′ ∪ {∞′′′}, and hence we have
G1 ⊆ G2 = (M25)β′′′ .
We now have two cases to consider. For the first case, suppose that G2 contains
an element which does not fix ∞′′′. Here, we have that ∞′′′ must be sent to some
other element of β′′′ (which must also be an element of β′′), and since we know that
elements of G1 (contained in G2) can map anything in β′′ to any other element in
β′′, G2 is transitive on β

′′′. Then, let B′′′ be the set of blocks generated by the action
ofM25 on β

′′′, following the same process as in the proof of Theorem 5.6, and letting
M25 = J we then have:

|B′′′| = |J |
|J(β′′′)|

=
( |J ||I| )(

|I|
|K|)(

|K|
|H|)(

|H|
|G| )(

|G|
|G(ℓ)|

)

(
|J(β′′′)|
|I(β′′)|

)(
|I(β′′)|
|K(β′)|

)(
|K(β′)|
|H(β)|

)(
|H(β)|
|G(ℓ)|

)

=
25 · 24 · 23 · 22 · 21

9 · 8 · 7 · 6
=

6325

3
/∈ Z.

Hence M25 does not exist.
For the second case, suppose that every element of G2 fixes ∞′′′, so that G2 = G1.
We can then apply Lemma 5.11, noting that G1 = H, to see that G2 = G1 has a
normal subgroup (which stabilises β′′′ = ℓ ∪ {∞,∞′,∞′′,∞′′′}) with order 16 = 24.
Hence we can apply Theorem 5.9, taking X = PG(2, 4) ∪ {∞,∞′,∞′′,∞′′′}, G =
M25, H = G2, t = 6 and U to be the Sylow 2-subgroup of G2, which is the pointwise
stabiliser of β′′′. By (ii) of the theorem we can construct a S(t, k, v) Steiner system,
with v = |X| = 25, t = 6, and k = |F(U)| = |β′′′| = 9. As we have already seen in
the first case, no such design exists, and therefore there is no extension of M24.
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