Joint modelling of the bulk and tail of bivariate data

Lídia André

Jennifer Wadsworth and Adrian O'Hagan

23rd EYSM, 12 September 2023

Motivation

Interest not only in the extremes but also the bulk of the distribution - *e.g.* environmental applications

Univariate Framework

There have been proposed parametric, semi-parametric and non-parametric models

Figure 1: Taken from Scarrott and MacDonald (2012)

Copulas

In a multivariate setting we are also concerned about the dependence between variables.

A copula C is a joint distribution of a random vector (X_1, \ldots, X_d)

$$F(x_1,...,x_d) = C(F_{X_1}(x_1),...,F_{X_d}(x_d)), \quad d \ge 2$$

Multivariate Framework

Aulbach et al. (2012) model the full data set by fitting one copula to the body and another to the upper tail

- It sometimes doesn't offer a smooth transition between the two copulas
- It requires the choice of thresholds
- The likelihood of the model doesn't have a closed form so no inference was done

For $(u^*,v^*)\in [0,1]^2,$ we define the density c^* as

$$c^{*}(u^{*},v^{*};\gamma) = \frac{\pi(u^{*},v^{*};\theta)c_{t}(u^{*},v^{*};\alpha) + [1 - \pi(u^{*},v^{*};\theta)]c_{b}(u^{*},v^{*};\beta)}{K(\gamma)}$$

¹For more details see André et al. (2023)

For
$$(u^*,v^*)\in [0,1]^2,$$
 we define the density c^* as

$$c^{*}(u^{*},v^{*};\gamma) = \frac{\pi(u^{*},v^{*};\theta)c_{t}(u^{*},v^{*};\alpha) + [1 - \pi(u^{*},v^{*};\theta)]c_{b}(u^{*},v^{*};\beta)}{K(\gamma)}$$

• $c_t, c_b \rightarrow$ copula densities tailored to the tail and body, respectively.

¹For more details see André et al. (2023)

For
$$(u^*,v^*)\in [0,1]^2,$$
 we define the density c^* as

$$c^{*}(u^{*},v^{*};\gamma) = \frac{\pi(u^{*},v^{*};\theta)c_{t}(u^{*},v^{*};\alpha) + [1 - \pi(u^{*},v^{*};\theta)]c_{b}(u^{*},v^{*};\beta)}{K(\gamma)}$$

- $c_t, c_b \rightarrow$ copula densities tailored to the tail and body, respectively.
- $\pi(u^*, v^*; \theta) \rightarrow$ dynamic weighting function, defined in $[0, 1]^2$ and increasing in u^* and v^*

¹For more details see André et al. (2023)

For
$$(u^*,v^*)\in [0,1]^2$$
, we define the density c^* as

$$c^{*}(u^{*},v^{*};\gamma) = \frac{\pi(u^{*},v^{*};\theta)c_{t}(u^{*},v^{*};\alpha) + [1 - \pi(u^{*},v^{*};\theta)]c_{b}(u^{*},v^{*};\beta)}{K(\gamma)}$$

- $c_t, c_b \rightarrow$ copula densities tailored to the tail and body, respectively.
- $\pi(u^*, v^*; \theta) \rightarrow$ dynamic weighting function, defined in $[0, 1]^2$ and increasing in u^* and v^*
- $oldsymbol{\gamma} = (heta, oldsymbol{lpha}, oldsymbol{eta})
 ightarrow$ vector of model parameters

•
$${\cal K}({m \gamma}) o$$
 normalising constant 1

¹For more details see André et al. (2023)

- Doesn't require a choice of threshold
- Offers a smooth transition between the body and tail copulas
- However, it is also hard to perform inference on it

Inference

The inference on the model was achieved by fitting the copula of the density c^* via numerical integration as follows

$$c(u, v; \gamma) = \frac{c^* \left(F_{U^*}^{-1}(u), F_{V^*}^{-1}(v); \gamma\right)}{f_{U^*} \left(F_{U^*}^{-1}(u)\right) f_{V^*} \left(F_{V^*}^{-1}(v)\right)}$$

where

$$egin{aligned} & F_{U^*}(u^*) = P[U^* \leq u^*] = \int_0^{u^*} \int_0^1 c^*(u,v) \mathrm{d}v \mathrm{d}u \ & f_{U^*}(u^*) = \int_0^1 c^*(u^*,v) \, \mathrm{d}v, \ & v \in (0,1) \end{aligned}$$

It is important to know if extreme values of the variables are likely to occur together (**asymptotic dependence**) or not (**asymptotic independence**)

$$egin{aligned} &\chi = \lim_{r o 1} P\left[{F_Y (y) > r \mid F_X (x) > r}
ight], \ &P\left[{F_Y (y) > r \mid F_X (x) > r}
ight] \sim \mathcal{L} (1 - r) (1 - r)^{rac{1}{\eta} - 1} & ext{ as } r o 1 \end{aligned}$$

- Asymptotic Dependence (AD): $\chi > 0$ and $\eta = 1$
- Asymptotic Independence (AI): $\chi=0$ and $\eta\neq 1$

Depending on the weighting function used, c_b has an influence in χ in some cases:

- If $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$ and c_t is AD, χ is dominated by χ_t with an influence of χ_b
- If $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$ and c_t is AI, χ is that from c_t
- If $\pi(u^*, v^*; \theta) = \exp\{-\theta(1-u^*)(1-v^*)\}, \chi$ is that from c_t (independently of the nature of c_t)

When c_b is a Frank copula (AI) with parameter $\beta \in \mathbb{R}$, c_t is a Gumbel copula (AD) with parameter $\alpha > 1$, and $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}, \theta > 0$,

$$\chi = \frac{2 - 2^{1/\alpha}}{1 + \beta \left(1 - \exp\{-\beta\}\right)^{-1} \int_0^1 (1 - (v^*)^\theta) e^{-\beta (1 - v^*)} dv^*}$$

and $\eta = 1$

If
$$\pi(u^*,v^*; heta)=\exp\{- heta(1-u^*)(1-v^*)\},$$

 $\chi=2-2^{1/lpha} ext{ and } \eta=1$

$$(\chi_b = 0, \, \eta_b = 0.5, \, \chi_t = 2 - 2^{1/\alpha} \text{ and } \eta_t = 1)$$

Figure 2: Weight functions: $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$ (left) and $\pi(u^*, v^*; \theta) = \exp\{-\theta(1 - u^*)(1 - v^*)\}$ (right) with $\gamma = (1.5, 2, 3.488889)$

Case 2: Body Frank and Tail Gumbel

Figure 3: Weight function: $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$.

Case 2: Body Frank and Tail Gumbel

Figure 4: Weight function: $\pi(u^*, v^*; \theta) = \exp\{-\theta(1-u^*)(1-v^*)\}$.

Parameter Estimation

Simulation setup:

- c_t : Gaussian copula with $\rho = 0.6$
- c_b : Joe copula with $\alpha = 2$
- $\pi(u^*,v^*; heta)=(u^*v^*)^ heta$ with heta=1
- n = 500 and n = 1000
- 100 repetitions

Parameter Estimation

Simulation setup:

- True data from a Joe copula with $\alpha=2$
- c_t : Clayton copula
- *c_b* : Joe copula (true)
- $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$
- *n* = 1000
- 100 repetitions

Simulation setup:

- True data from a Gaussian copula with $\rho = 0.65$
- Models considered:
 - **1** c_t : Joe copula; c_b : Frank copula
 - **2** c_t : Hüsler-Reiss copula; c_b : Clayton copula
 - **3** c_t : Inverted Gumbel copula; c_b : Student t copula \rightarrow best average AIC

4 c_t : Coles-Tawn copula; c_b : Galambos copula

•
$$\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$$

• *n* = 1000

• Each model was fitted 50 times

- Temperature may influence the levels of Ozone concentration in the air
- The legal thresholds for O₃ levels in the UK might then be found in the body and not just in the tails of the data

UK legal thresholds:

 Levels
 Low
 Moderate
 High
 Very High

 $O_3 (\mu g/m^3)$ [0, 100]
 [101, 160]
 [161, 240]
 > 240

We applied our model to the summers between 2011 and 2019 of Blackpool, UK $\,$

Apart from the upper tail, the variables seem to be negative correlated

Fitting a single copula

None of the single copulas showed negative correlation

Fitting the weighted copula model with

$$\pi(u^*,v^*;\theta)=(u^*v^*)^{\theta}$$

Model		Parameters			AIC
Cb	Ct	β	\hat{lpha}	$\hat{\theta}$	AIC
Gaussian	Hüsler-Reiss	-0.40	1.24	0.35	-176.1
Gaussian	Galambos	-0.41	0.79	0.34	-172.1
Gaussian	Coles-Tawn	-0.33	0.35, 2.86	0.43	-158.4
Frank	Coles-Tawn	-2.52	0.33, 4.80	0.37	-163.2
Frank	Joe	-4.11	1.61	0.18	-184.9

The models with the best AIC all show negative correlation in the copulas tailored to the body

Fitting the weighted copula model with

$$\pi(u^*, v^*; \theta) = \exp\{-\theta(1-u^*)(1-v^*)\}$$

Model		Parameters			AIC
Cb	Ct	β	\hat{lpha}	$\hat{\theta}$	
Gaussian	Hüsler-Reiss	-0.74	1.33	3.32	-240.1
Gaussian	Galambos	-0.72	0.90	3.55	-237.2
Gaussian	Coles-Tawn	-0.74	0.85, 0.79	3.25	-234.8
Frank	Coles-Tawn	-4.51	0.87, 1.02	4.33	-235.7
Frank	Joe	-6.49	1.72	2.45	-232.9

Other diagnostics

Models	Kendall's $ au$	$P[T \geq 24, O_3 \geq 100]$	$P[O_3 \ge 100 \mid 22 \le T \le 23]$
Empirical	0.0812	0.0302	0.1330
(95% CI)	(0.0173, 0.1867)	(0.0147 , 0.0544)	(0.0227, 0.1944)
Model 1	0.0690	0.0246	0.1441
Model 2	0.0663	0.0250	0.1412
Model 3	0.0770	0.0251	0.1429
Model 4	0.0779	0.0262	0.1392
Model 5	0.0718	0.0267	0.1366

Conclusions

- Our model provides a better fit than just fitting a single copula to the data
- It is flexible it is able to capture different structures within the same data set
- However, it is computationally expensive
- Further Steps:
 - Account for non-stationarity incorporate covariates

Questions?

Thank you all for listening!

References I

- André, L. M., Wadsworth, J. L., and O'Hagan, A. (2023). Joint modelling of the body and tail of bivariate data. *Computational Statistics & Data Analysis*.
- Aulbach, S., Bayer, V., and Falk, M. (2012). A Multivariate Piecing-Together Approach with an Application to Operational Loss Data. *Bernoulli*, 18:455–475.
- Scarrott, C. and MacDonald, A. (2012). A Review of Extreme Value Threshold Estimation and Uncertainty Quantification. *Revstat Statistical Journal*, 10:33–60.

 χ when $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$

$$\begin{split} c_1 &= 2 - 2^{1/\alpha} = \chi_{Gumbel}, \\ c_2 &= (2^{1/\alpha} - 1 - C_\alpha)(\theta - 1), \\ c_3 &= \beta \theta \left(1 - \exp\{-\beta\}\right)^{-1}, \\ c_4 &= 1, \\ c_5 &= -\theta/2 + o\left((1 - r)^2\right), \quad \text{as } r \to 1 \\ c_6 &= \beta \left(1 - \exp\{-\beta\}\right)^{-1} \int_0^1 (1 - (v^*)^\theta) e^{-\beta(1 - v^*)} dv^*, \\ c_7 &= -\frac{1}{2} \int_0^1 B_{v^*, \beta, \theta} dv^* \end{split}$$

with

$$B_{v^*,\beta,\theta} = \frac{2\beta^2 (1 - (v^*)^{\theta})(1 - \exp\{-\beta v^*\}) \exp\{-2\beta(1 - v^*)\}}{(1 - \exp\{-\beta\})^2} \\ - \frac{\beta\theta(v^*)^{\theta} \exp\{-\beta(1 - v^*)\}}{1 - \exp\{-\beta\}} - \frac{\beta^2 (1 - (v^*)^{\theta}) \exp\{-\beta(1 - v^*)\}}{1 - \exp\{-\beta\}}$$

$$\chi$$
 when $\pi(u^*, v^*; \theta) = (u^*v^*)^{ heta}$

$$\begin{split} \chi &= \lim_{r \to 1} P\left[F_Y(y) > r \mid F_X(x) > r\right] \\ &= \lim_{r \to 1} \frac{c_1(1-r) + c_2(1-r)^2 + c_3(1-r)^3 + o\left((1-r)^3\right)}{c_4(1-r) + c_5(1-r)^2 + c_6(1-r) + c_7(1-r)^2 + o\left((1-r)^2\right)} \\ &= \lim_{r \to 1} \left(\frac{c_1}{c_4 + c_6} + \left[\frac{c_2 - c_1(c_5 + c_7)}{(c_4 + c_6)^2}\right](1-r) + \mathcal{O}\left((1-r)^2\right)\right) \\ &= \frac{c_1}{c_4 + c_6} = \frac{2 - 2^{1/\alpha}}{1 + \beta \left(1 - \exp\{-\beta\}\right)^{-1} \int_0^1 (1-(v^*)^\theta) e^{-\beta(1-v^*)} dv^*} \end{split}$$

 χ when $\pi(u^*, v^*; \theta) = \exp\{-\theta(1-u^*)(1-v^*)\}$

$$c_1 = 2 - 2^{1/\alpha} = \chi_{Gumbel},$$

$$c_2 = 1,$$

$$c_3 = \frac{1}{\alpha},$$

$$c_4 = -\frac{1}{2} \int_0^1 A_{v^*,\beta,\theta} dv^*$$

with

$$\begin{split} \mathcal{A}_{\mathsf{v}^*,\beta,\theta} &= - \; \frac{2\beta^2(1-\exp\{-\beta\})\exp\{-2\beta(1-\mathsf{v}^*)\}}{(1-\exp\{-\beta\})^2} - \frac{\beta\theta(1-\mathsf{v}^*)\exp\{-\beta(1-\mathsf{v}^*)\}}{1-\exp\{-\beta\}} \\ &+ \frac{\beta^2\exp\{-\beta(1-\mathsf{v}^*)\}}{1-\exp\{-\beta\}} \end{split}$$

$$\chi$$
 when $\pi(u^*, \mathbf{v}^*; heta) = \exp\{- heta(1-u^*)(1-\mathbf{v}^*)\}$

$$\begin{split} \chi &= \lim_{r \to 1} P\left[F_Y(y) > r \mid F_X(x) > r\right] \\ &= \lim_{r \to 1} \frac{c_1(1-r) + o\left((1-r)^2\right)}{c_2(1-r) + c_3(1-r)^2 + c_4(1-r)^2 + o\left((1-r)^2\right)} \\ &= \lim_{r \to 1} \left(\frac{c_1}{c_2} - \frac{c_3 + c_4}{c_2^2}(1-r) + \mathcal{O}\left((1-r)^2\right)\right) = \frac{c_1}{c_2} = 2 - 2^{1/\alpha} \end{split}$$