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1. Motivation

• Various models in the multivariate extremes literature allow for interpolation between two dependence classes, when the variables are extreme together (asymptotic
dependence), or not (asymptotic independence)

• Such flexible models often rely on numerical integration and inversion of functions, which makes the evaluation of their likelihood computationally costly. This
might limit the use of these models in practice as performing inference is not computationally efficient

• Likelihood-free approaches, such as neural Bayes estimators [2], are appealing to perform inference on the vector of parameters of expensive models

Goal: toolbox for simple fitting and comparison of complex dependence models

2. Modelling setup

• U t = (Ut,1,Ut,2) ∼ Cθ where Cθ is a copula model with parameters θ, and
Ut,j ∼ Unif(0, 1) for j = 1, 2

• Since the interest is in the extremal dependence, non-extreme values should be
censored

Example of a censoring scheme [1]:
• Given a censoring level τ ∈ (0, 1), set U t = 0
if max{Ut,1,Ut,2} ≤ τ (t ∈ {1, . . . ,m},
j = {1, 2})

• Indicator variables:
It,j = I{max{Ut,1,Ut,2} > τ} showing which
variables are censored (j = {1, 2})
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Neural Bayes estimators (NBEs):
• Point estimators which minimise the Bayes risk, rΩ(θ̂(·)), during the training
step of the Neural Network (NN)

• The Bayes risk is approximated by

rΩ(θ̂(·)) ≈
1
KJ

∑
m∈M

∑
θ∈V

∑
U (m)∈Uθ

Pr(M = m)L(θ, θ̂(U (m)))

- V is a set of K samples from the prior θ ∼ Ω(·)
- Uθ is a set of J samples u(m) | θ,m ∼ c(u(m) | θ), where m is a random
sample size sampled from M ∼ Unif(m1,m2) (M ∈ Z)

- L(·, ·) is the loss function (here the mean absolute error)

3. Architecture of the Neural Network
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Figure 1: DeepSets framework [4]

• ψ : Rn → Rq and ϕ : Rq → Rp are deep neural networks parameterised by
γψ and γϕ,

• a : (Rq)m → Rq is a permutation-invariant set function (here the
elementwise average)

• This framework ensures the NBEs are invariant to permutations of replicates
of the data

4. Example

• The model of Wadsworth et al. (2017) [3] is able to capture both asymptotic
dependence (AD) and asymptotic independence (AI) through parameter λ.
AD if λ > 0 and AI if λ ≤ 0

• It exploits the copula of the model constructed as
S ∼ GP(1, λ)
V ∼ Beta(α, α)

(V1,V2) =
(V , 1− V )

∥V , 1− V ∥∞
(X1,X2) = S(V1,V2)

• (U1,U2) is obtained through rank transformation of (X1,X2)

5. Assessment of the NBE

To train the NN:
• Priors: α ∼ Unif(0.2, 15), λ ∼ Unif(−2, 1)
• Hyperparameters: J = 5, K = 100 000, M ∼ Unif(100, 1500)
• Censoring level: 0.8
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Figure 2: Assessment of the NBE with 1000 samples from the prior and sample size m = 1000

Comparison with censored maximum likelihood estimation:
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Figure 3: NBE compared with the censored maximum likelihood estimator (CMLE), for 100 samples
of sample size 1000.

Average time to get an estimate:
• NBE: 0.5845 seconds and CMLE: 44.9979 seconds (77 times faster)
• In some experiments, it was ∼ 182 000 times faster to get the NBE than
the MLE, while in others, the NBE was ∼ 45 times faster than the CMLE

6 - Further work: Model selection

• Use the NN as a classifier: have a prior on the model δ
- 2 models: binary classification problem with δ ∼ Bernoulli(0.5)
- n models: multiclass classification problem with δ ∼ Unif(1, n), δ ∈ Z
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Figure 4: Correctly identified models from a trained NN.
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