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Abstract

This report aims to motivate the use of Bayesian optimisation for finding global optima. An
overview of the methodology is given, as well as a discussion of what different adaptions to this
methodology can provide. Finally, areas of further development in the field are discussed.

1 Introduction

Many optimisation problems require the global maximisation (minimisation) of expensive to evaluate
objective functions. Bayesian optimisation algorithms cope with this high computational cost by
using knowledge of all past evaluations of the objective function to intelligently select the next
evaluation point. This is done by constructing a model for the objective function dependent on this
past data, usually in the form of a Gaussian process (discussed in Sections 2.2 and 2.3). Bayesian
optimisation algorithms have been applied to a broad spectrum of industries, from pharmaceuticals
(Sano et al., 2020) to aerospace (Lam et al., 2018).

2 Bayesian Optimisation

2.1 The Problem

Consider a real-valued objective function f : X → R for X ⊂ RD. Often we wish to solve a problem
of the form;

x∗ = argmin
x∈X

f(x), (1)

i.e. we wish to find the global minimum of f . We assume f is a black-box function with no closed
form and that we can query it any arbitrary point x ∈ X . It is common to assume this query gives
an exact evaluation of the objective function, however, this is not realistic in many contexts. For
example, due to imprecise instruments or statistical approximation.

As such, we consider an evaluation y at a point x ∈ X to be a noisy observation of the true value of
the objective function, with E (y) = f(x). Mathematically, we have;

y = f(x) + ϵ, (2)

where ϵ is some error term. There are many such models with the form of Equation 2, perhaps the
most simple being described by Garnett (2022);

y|x, f(x), σ2 ∼ N(f(x), σ2), (3)
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where σ2 is referred to as the ‘observation noise scale’. This is an important example of an observation
model as its properties allow for nice Bayesian inference on the distribution of f , as is explained in
2.3. However, the choice of observation model does not impact the general Bayesian optimisation
framework and so we assume a generic model unless stated otherwise.

The objective of Bayesian optimisation is to devise a scheme that selects a new query point xn+1

given n previous query-evaluation tuples Dn = {(xi, yi)}ni=1. To do this, a model must be formed
that reflects our uncertainty regarding the objective function f . This is discussed in 2.2. The choice
of the next query point is then determined by maximising a function αn, known as the acquisition
function. This is discussed in 2.4. A summary of this process is given by Shahriari et al. (2015) in
Algorithm 1.

Algorithm 1 Bayesian Optimisation

1: for n = 1, 2, . . . do
2: select new xn+1 by optimising acquisition function α

xn+1 = argmax
x∈X

αn

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

2.2 Gaussian Process Model

We need to select a model for our uncertainty regarding the objective function f . A parametric
approach, whilst seemingly the most straightforward, is not suitable for many forms of objective
function (Garnett, 2022). Instead, we take a nonparametric route and model f as a Gaussian
process. We specify the process as;

f ∼ GP(µ,K), (4)

where µ : X → R is the mean function and K : X 2 → R is the positive semi-definite covariance
(kernel) function.

As an aside, it is worth noting that other models for f are available. For example, Shah et al. (2013)
argue that a Student-t process is preferable as it offers more flexibility over the Gaussian option (e.g.
the ability to learn heavy tailed function behaviour), whilst retaining many of the benefits (such as
having a closed form for many acquisition functions - see Section 2.4).

The model described by (4) can be thought of loosely as an infinite-dimensional multivariate normal
random variable in the sense that it exhibits much of the same behaviour. For example, for a finite
subset x ∈ X , we can calculate a marginal distribution of f(x) as;

f(x) ∼ MVN(µ(x),K), (5)

where;

K =


K(x1, x1) K(x1, x2) · · · K(x1, xn)
K(x2, x1) K(x2, x2) · · · K(x2, xn)

...
...

. . .
...

K(xn, x1) K(xn, x2) · · · K(xn, xn)

 ,
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i.e. the matrix formed by evaluating K at each pair of n points in x . For a single x ∈ X , Equation
5 reduces to f(x) ∼ N(µ(x), σ2(x)). The prior choices of µ and K are clearly important in reflecting
our belief about f . The function µ serves as a location parameter and shows the central tendency of
the function. The function K provides information as to how the function is structured; for example,
a kernel which falls off faster will result in a less smooth function than a kernel that maintains higher
correlation between x values further apart.

This ability of the kernel to capture different behaviours allows us to model many forms of objective
function and thus is another reason the Gaussian process model is desirable. Two examples of
kernel functions, the automatic relevance determination (ARD) squared exponential kernel and the
ARD Matérn 5/2 kernel, are described by Snoek et al. (2012). Formulations for these are given in
Equations 6 and 7 respectively;

KSE(x, x
′) = θ0exp

(
−1

2
r2(x, x′)

)
r2(x, x′) =

D∑
d=1

(xd − x′
d)

2/θ2d, (6)

KM52(x, x
′) = θ0

(
1 +

√
5r2(x, x′) +

5

3
r2(x, x′)

)
exp

(
−
√
5r2(x, x′)

)
. (7)

The KSE kernel is a common choice for this problem. It does, however, result in unrealistically
smooth sample functions for many applications (Snoek et al., 2012). Therefore, KM52 is often
chosen as a more realistic alternative. Of course, these are just two illustrative examples amongst
an infinite number of kernel choices.

The selection of the kernel is a nuanced problem, largely dependent on the specific problem being
solved. For example, BOCK (Bayesian Optimisation with Cylindrical Kernels) has been developed
for when it is desirable to prevent the search spending too much time near the boundaries of its
search space (Oh et al., 2018). The process of kernel selection has become somewhat mystified, and
attempts have been made to undo this. A kernel ‘grammar’ and method of searching over an infinite
kernel space has been developed by Duvenaud et al. (2013). This has been built upon by the likes
of Malkomes et al. (2016) who uses Bayesian optimisation to provide a completely automated kernel
selection process.

2.3 Bayesian Model Updates

Next we discuss how to form our model for f |Dn by updating our prior Gaussian process model for
f given observations Dn = (x,y). Assume our observations come from the distribution described
by Equation 3, so y = f(x) + ϵ where ϵ ∼ MVN(0, σ2In).

Crucially, our observations y share a joint distribution with f , meaning we can write;

f,y ∼ GP
([

f
y

]
;

[
µ

µ(x)

]
,

[
K κ⊤

κ K+ σ2In

])
, (8)

where κ(x) is the cross-covariance function between f and y so that κ(i)(x) = cov (f(x), yi) =
k(x, xi). This assumption holds for any affine transformation of function values, as well as any
limits of such quantities (Garnett, 2022). Conditioning on Dn gives the posterior µn and Kn as;

µn(x) = µ(x) + κ(x)⊤(K+ σ2In)
−1(y −m), (9)

Kn(x, x
′) = K(x, x′)− κ(x)⊤(K+ σ2In)

−1κ(x′), (10)
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via Bayes’ rule. Our posterior model is thus f |Dn ∼ GP(µn,Kn), or, for finite x ∈ X ;

f(x)|Dn ∼ MVN(µn(x),Kn), (11)

where Kn is defined similarly to K in Equation 4. We refer to this conditional model throughout
Section 2.4.

2.4 Acquisition Functions

As described in Section 2.1, we require an acquisition function αn in order to select the next query
point xn+1 at each stage of Algorithm 1. This function takes the form;

αn(x) = E (u(x)|Dn) , (12)

where u(x) is the utility function, a measure of goodness for a point x ∈ X . Different utility functions
ask different things of the search process and so result in a different choice for xn+1. Consequently,
the selection of this function requires some consideration.

Perhaps the simplest choice for utility function is u(x) = If(x)<f∗ , where f∗ = f(x∗) is the current
optimal value. Here, Equation 12 becomes;

αn(x) = E
(
If(x)<f∗ |Dn

)
, (13)

being equal to the probability that a query point x ∈ X will result in an evaluation smaller than
the current global minimum. In other words, Equation 13 is equivalent to P (f(x) < f∗), i.e. the
probability of improvement. Under the Gaussian process model described in (4), we can find a
closed-form expression for αn(x) to be;

αn(x) = Φ

(
f∗ − µn(x)

σn(x)

)
, (14)

where Φ is the standard normal cdf. Here, the subscripts in the terms µn(x) and σn(x) distinguish
these terms as the posterior values discussed in Section 2.3, different from the µ(x) and σ(x) assigned
a priori as in Equation 4. Equation 14 can then be maximised as in step 2 of Algorithm 1 to locate
the next query point xn+1.

While this is a seemingly reasonable choice of utility function, the resulting acquisition function has
its drawbacks. The function does not seek query points which promise a large potential improvement
over the current optimal solution, so can waste time by selecting query points very near to previously
queried points which will only give small improvements at best.

We can overcome this issue by instead using utility function u(x) = max(0, f∗ − f(x)). Equation 12
now becomes;

αn(x) = E (max(0, f∗ − f(x))|Dn) , (15)

i.e the expected size of improvement over the current optimum f∗. We thus call Equation 15 the
expected improvement acquisition function. Again, under the model described by (4) we can find a
closed-form expression for αn. This has the form;

αn(x) = (f∗ − µn(x))Φ

(
f∗ − µn(x)

σn(x)

)
+ σn(x)ϕ

(
f∗ − µn(x)

σn(x)

)
, (16)

where ϕ is the standard normal pdf. This has been shown to converge near-optimally (Bull, 2011),
however, this convergence is only achieved with intelligent implementation. As stated by Diaconis
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and Freedman (1986), whether or not Bayesian methods will find the correct solution is reliant on
careful consideration of the problem. This acquisition function has the added benefit of innately
balancing exploration and exploitation. The first term in Equation 16 increases for query points
which provide a low mean, thus encouraging exploitation; the second term increases for points which
provide a high variance, encouraging exploration.

The above method, however, does not allow for control over the balance of emphasis between explo-
ration versus exploitation. An alternative acquisition function that does facilitate this is known as
GP-UCB or UCB (Upper Confidence Bound), proposed by Srinivas et al. (2009). The acquisition
function has form;

αn(x;β) = −µn(x) + βσn(x), (17)

where β is a trade-off parameter. An increase in β prioritises exploration, while a decrease favours
exploitation. Notably, Equation 17 is not the expectation of a utility function as is in the case for
other methods. The authors Srinivas et al. (2009) calculate regret bounds for this method and show
it to perform similarly to EI.

Another method of searching, proposed by Hennig and Schuler (2012), is entropy search. Here, we
consider the distribution on the optimal value x∗ induced by our distribution for f(x∗). The idea
behind entropy search is to prioritise new query points that give a large reduction in entropy of this
induced distribution. The utility function has the form;

u(x) = H(x∗|Dn)−H(x∗|Dn, x, f(x)), (18)

i.e. the reduction in entropy of x∗|Dn+1 over x∗|Dn. Combining Equations 12 and 18, we obtain an
acquisition function of;

αn(x) = H(x∗|Dn)− E [H(x∗|Dn, x, f(x))] , (19)

where expectation is taken w.r.t. f(x)|Dn. It is argued by Hennig and Schuler (2012) that this
approach is more closely aligned with a practitioner’s philosophy than alternative methods. They
also demonstrate that, within a set number of iterations, it achieves the smallest distance between the
best estimate and true global minimum of all the searches mentioned here. These benefits come with
caveat that the approximations required to handle Equation 19 result in increased computational
cost (a constant multiple of more traditional searches). It could therefore been argued that entropy
search is only beneficial when it is particularly computationally expensive to evaluate f , in which
case the added complexity is less relevant. As this is the case within many Bayesian optimisation
settings, entropy search is often the most suitable method of those discussed here.

3 Conclusion

Bayesian optimisation offers a flexible framework for solving global optimisation problems and, with
intelligent application, convergence to an optima is often provable. However, outstanding problems
remain. The selection of hyperparameters for the Gaussian process model is an underdeveloped and
often challenging endeavour, see Wang and de Freitas (2014). The scaling of Bayesian optimisation
algorithms to higher dimensions has also proven difficult, although attempts have been made to
expand high-dimensional methods to less restrictive settings (Kandasamy et al., 2015). Finally, the
high computational cost of evaluating some objective functions is an issue, with efforts being made
to reduce this including those suggested by Kandasamy et al. (2018).
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