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Overview

Patrolling problems present themselves in many situations, often within our daily lives. When visiting a shopping

centre you might see a security guard, or you could see a police patrol car on the motorway. In each case, somebody

has to make a decision as to how the patroller moves around their designated area. How this decision is made

often depends on the context. For example, a routine building inspection team could be assigned the schedule that

maximises area coverage in the smallest amount of time possible, whereas a military patrol may wish to focus on

areas that are most likely to be attacked. Even for the same applications, the scheduling method is often dependent

on the organisation, with historical schedules and worker preferences usually playing a role.

Methods have been developed to automate this scheduling process for arbitrary areas. By breaking down a patrol

area into its most crucial points and the connections between these points, a mathematical model can be constructed

using graph theory. Each patrol point is referred to as a node, and the connections between them as edges. Designing

the patrol schedule then becomes a question of how to move the patroller from node to node, along the edges. To

give the patroller something to do at each node, the idea of potential attacks is introduced. These could be anything

from an art thief trying to break into a museum or a cyber attacker attempting to breach a system. Sometimes

these attackers are assumed to have inside knowledge of the system they are trying to attack, and thus knowledge

of how the patroller is likely to move. Other times, they are assumed to have no knowledge and so just attack

randomly. The patrol designer’s objective is to move the patroller between the nodes in a way that maximises their

attack detection (and thus prevention) potential.

Mathematical assumptions about the problem can be made to quantify the patroller’s potential to detect attacks,

for example by looking at how many attacks are expected to be taking place at a given node. This is arguably

the simplest approach, with some approaches taking other factors into account such as how soon we can expect

the ongoing attacks at a node to be completed. There is also the question as to how effective the patroller is at

detecting attacks. A simple idea would be to assume they have a 100% successful detection rate, however, this may

not be realistic; perhaps a shoplifter knows how to act natural in a crowd of patrons. Some authors account for

this possibility by instead saying that we can only expect to detect a certain percentage of attacks.

Once all of these ideas have been combined into a mathematical model, we then need to be able to solve these

models. It is often the case in practice that, for a large enough patrol area, finding the exact solutions takes an

unrealistic amount of time and computing power. To overcome this, heuristic approaches have been developed that

result in solutions that are a good approximation of the true optimal patrol schedule. These heuristics are much

less costly to compute and so are much more suitable for use in real-world decision making, when time and cost are

often important factors.



1 Introduction

There are many real-world scenarios which involve defending against attacks which occur at unknown times and

locations. Take, as examples, a security guard roaming a shop floor to prevent theft or a military force protecting a

strategic location. In each of these situations, the patroller seeks to design their patrol pattern in order to maximise

the effectiveness of threat detection. This type of problem has links to the search problem described by Koopman

(1957), in which an object is hidden in an unknown location and a finite search resource must be allocated to

attempt to find it. More directly comparable developments include that of Chaiken and Dormont (1978), where

they design a computer program which determines an optimal patrol schedule for police cars by minimising metrics

such as total wait time and average response time. However, in this application, the attacks are assumed to be

fixed in location and time. Other authors consider the problem in reverse, such as Hohzaki et al. (2013) who take

the perspective of a thief trying to break into an art gallery.

There is interest in these problems from a broad range of agencies. Jiang et al. (2012) use optimal patrolling

methodology to manage fare inspection in public transport. Applications to military strategy are discussed by Lin

(2021), where the patroller aims to protect a perimeter against disguised and non-disguised attackers. In Haas and

Ferreira (2018), strategies are devised to attempt to intercept rhino poaching parties within wildlife reserves.

Here, the focus is primarily on the work of Lin et al. (2013), with a briefer discussion of Lin et al. (2014). The

former looks at the case of perfect attack detection and the latter at imperfect attack detection. In each paper they

consider two situations: one where the attacks made to the system are random and another where the attacks are

strategic. The authors use a graphical model of the system to represent possible attack locations and travel times

for the patroller and then formulate the problem as a Markov Decision Process (MDP). The objective is to find

an optimal patrol schedule around these attack locations. To do this, they develop index-based heuristics as the

associated linear programs become computationally infeasible for even moderately sized problems.

2 Perfect Detection

This section details the model described by Lin et al. (2013), where it is assumed that if a patrol occupies the same

area as an attack, the attack will always be detected. The potential attack area is separated into n locations, repre-

sented as the nodes in the graph. If it is possible for a patroller to travel between two locations, the corresponding

nodes are connected by an edge which we say takes 1 time unit for the patroller to traverse. For example, if the

patroller has access to only the perimeter of a compound we can reflect this by using a circular graph for the model.

Alternatively, a connected graph could represent the case of a satellite that can transition near-instantaneously

from viewing any location to another. There are many other possible graph structures (line, random tree, etc.)

that can be used to reflect a variety of real-world scenarios. Here, the majority of the analysis is done for the case

of the connected graph.

In the case of random attacks, Lin et al. (2013) assume the attackers arrive according to a Poisson process with rate

Λ. They let each attacker select node i to attack with probability pi, so the rate at which attacks arrive at node

i is λi = Λpi. This is the attack model used until we consider the strategic attacker case in §2.3. If the patroller

occupies the same node as an ongoing attack at the end of a time period, the attack is detected and prevented. The

patroller’s objective is to traverse this graph and minimise the total expected cost from attacks, where the cost of

a successful attack at node i is denoted ci.
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2.1 MDP Formulation

We now outline how Lin et al. (2013) formulate the patrol problem as a Markov Decision Process. Since all attacks

are detected upon a visit to a node, the state of the system can be described completely by information about the

visits. We thus write s = (s1, . . . , sn) for the state of the system, where si is the time since the last visit to node i.

Traversal of an edge takes 1 time unit, so the state space is equal to Ω = {(s1, . . . , sn) : si ∈ Z+ for i = 1, . . . , n}. The
action taken by the patroller is the decision of which adjacent node to move to after detection at the current node.

They also have the option to remain at the current node. For the connected graph case, which we are considering

here, the action space is therefore A = {i : i = 1, . . . , n}. Any patrol policy π : Ω → A is a mapping from the state

space to the action space. If the patroller selects node i as an action, the state transitions deterministically with

si 7→ 1 and sj 7→ sj + 1 for j ̸= i. Denote this new state ϕ(s, i), the result of taking action i in state s.

Any attacks that complete in the next time period cannot be prevented, as the patroller only detects attacks at the

end of the time period. Therefore, the expected total cost in the next time period is equal to the sum over each

node j of the expected number of completed attacks at j within this time period multiplied by the respective cost cj .

For a random attack time Xj , Lin et al. (2013) show that the expected number of attacks that occur at j in the

next time period is λj
∫ sj
sj−1

P (Xj ≤ t) dt. Multiplying this by cj gives the expected cost incurred at j in the next

time period, Cj(s, i). The total expected cost incurred in the next time period is therefore

C(s, i) =

n∑
j=1

(
cjλj

∫ sj

sj−1

P (Xj ≤ t) dt

)
=

n∑
j=1

Cj(s, i). (1)

Note that the cost incurred in the next time period does not depend on the action taken. The action i is specified

in (1) because it determines the state transition and so costs incurred in future time periods.

The integral in (1) is the same for any sj ≥ B + 1, where B is an integer upper bound for Xt. The infinite state

space Ω can thus be restricted to the finite Ω′ = {(s1, . . . , sn) : si ∈ Z+; si ≤ B + 1 for i = 1, . . . , n}, where
sj 7→ min(sj +1, B+1) for j ̸= i when transitioning. Lin et al. (2013) note that, because the action space A is also

finite, we only need to consider deterministic, stationary policies (Puterman, 1994).

Another reason to restrict the state space is to allow us to obtain an expression for the long-run cost rate. Denote

the resultant state of applying deterministic policy π to state s as ψπ(s). The sequence of states resulting from

applying policy π to initial state s0 can thus be written as S(s0, π) = {ψk
π(s0), k = 0, 1, . . .}. There are a finite

number of possible states, so eventually one must be revisited in S(s0, π). Meaning, after some initial steps through

transient states, S(s0, π) consists of a repeated cycle of states. Lin et al. (2013) therefore write the long-run cost

rate at node i when policy π is applied to initial state s0 as

Vi(π, s0) = lim
N→∞

1

N

N−1∑
k=0

Ci

(
ψk
π(s0), π(ψ

k
π(s0))

)
, (2)

where π(s) is the node selected by π at s. The patroller’s objective is to minimise (2) and so the optimal value is

COPT(s0) = min
π∈Π

n∑
i=1

Vi(π, s0), (3)

where Π is the class of deterministic, stationary policies. The optimal value COPT does in fact not depend on

s0 for the connected graph case. As is explained by Lin et al. (2013), this is because any patrol sequence can be

constructed by selecting an appropriate π, regardless of the initial state.
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2.2 Heuristic Policies

As mentioned in §1, it is not feasible to solve the MDP using linear programming or other standard techniques for

relatively large n. The heuristic polices Lin et al. (2013) devise as an alternative are discussed here. They begin by

breaking the problem into n single node problems to be solved alongside each other. To do this, the policy space

Π is extended to ΠMN, the set of deterministic, stationary policies that can allow visits to multiple nodes within

the same time period. Importantly, the constraint
∑n

i=1 µi(π, s0) ≤ 1, where µi(π, s0) is the rate at which node i

is visited given s0 and π, must be satisfied. This is called the total-rate constraint and is satisfied by all policies in

Π. The new objective function for the individual problem for node i is thus

min
π∈ΠMN

Vi(π) + wiµi(π), (4)

where the second term comes from the Lagrangian relaxation of the total-rate constraint. In this context, wi can

be thought of as the service cost for visiting node i. We can again drop the dependency on s0 due to the arguments

made regarding (3). Since there is only 1 node to visit in this case, all the policies that need to be considered can

be represented by how often they visit this single node, say every k time periods. Since all attacks are detected

upon a visit, each visit constitutes a renewal of the process and so every k time units is a cycle. By calculating

the expected number of attacks within a cycle, Lin et al. (2013) show that solving (4) is equivalent to solving

mink∈Z+ f(k) = ciλi
∫ k

0
P (Xi ≤ t) dt/k, as f(k) is the long-run cost rate at i for a policy that visits every k time

periods. Using this, they define the cost wi required for visiting i every k or k + 1 time periods to incur the same

cost rate as

Wi(k) = ciλi

(
k

∫ k+1

k

P (Xi ≤ t) dt−
∫ k

0

P (Xi ≤ t) dt

)
. (5)

They interpret this as “the maximum per visit cost for the policy that visits the node in state k (once every k

time periods) to be optimal” (Lin et al., 2013). For a given state s = (s1, . . . , sn) a heuristic based on (5) can be

implemented by selecting action i such that i ∈ {j : Wj(sj) = maxk=1,...,nWk(sk), j = 1, . . . , n}, i.e. by moving to

a node i that has the highest index. Lin et al. (2013) show the IH based on (5) to be optimal for n = 2 and close

to optimality for cases of n ≥ 3.

The first heuristic policy devised by Lin et al. (2013) is called the index reward heuristic (IRH), where the index

Wi(si) of the chosen action is viewed as a reward. The patroller will calculate the sum of the indices along each

possible path of length l from the current state. They then select the path with the highest aggregate and move to

the node that is the first step in this path. The choice of l can change the patrol path selected, however, larger values

of l do not necessarily give better selections. Therefore, it is valuable to consider the paths of lengths 1, . . . , l − 1,

as well as length l. To this end, Lin et al. (2013) define IRH(d) to be when the patroller calculates the d paths

of lengths 1, . . . , d with the highest aggregated IRH and selects the one which gives the patrol pattern with lowest

long-run cost rate. Since more paths are being considered when d is increased, the performance of the IRH(d)

improves with d. Unfortunately, the IRH(d) can perform poorly in certain situations by waiting for the IH of a

node to increase so that it can collect a higher reward in the future. This can result in the patroller missing attacks

they otherwise wouldn’t, as is explained by Lin et al. (2013).

They introduce another heuristic, the index penalty heuristic (IPH), which does not encounter this problem. Rather

than see the index of the chosen node as a reward, it considers the sum of the indices for the unselected nodes as a

penalty. So, for each of the l steps in a potential path, the patroller calculates
∑

i ̸=j Wj(sj), where i is the node in

step i. This is then aggregated across each path and the chosen node is the first step in the path with the smallest

aggregate. It is again not guaranteed that the selection made is better for larger l. The IPH(d) heuristic is thus

3



defined similarly to the IRH(d), where the d paths with the lowest IPH are compared and the one with the lowest

long-run cost rate selected. The next action is then the first step in this path. Again, the performance of IPH(d)

increases with d.

For the sake of their numerical study, Lin et al. (2013) also define a myopic heuristic (MH) which selects the node

which results in the highest expected number of detected attacks upon a visit. They show this to be R(s, i) =

ciλi
∫ si
0

P (Xi > t) dt, where R(s, i) is referred to as the reward gained by visiting node i in state s. This can be

extended to MH(d) in a similar fashion to the above. The authors also formulate a linear program to calculate a

lower bound for COPT to aid their numerical evaluation.

Lin et al. (2013) conduct numerical experiments to compare the heuristics discussed above. Both IRH and IPH

outperform MH, with the IPH showing a larger improvement. The authors argue this is due to the potential issue

regarding IRH waiting for a higher index before visiting a node. They then assess the performance of IPH for varying

d and different graph types and note that increasing d increases both the performance and computational cost.

Interestingly, the relative performance increase with d is dependent on the graph structure, with the improvement

being more noticeable for less connected graphs (e.g. line). They thus propose the modified index penalty heuristic

(MIPH) which is IPH(d) with d = 1+ ⌈average distance between all pairs of nodes⌉. This approach gives d = 2 for

complete graphs and larger d for less connected graphs, providing a balance between keeping computational cost

low and increasing d when it is most beneficial. They then compare the solutions found by MIPH to the optimal

solution found via a linear program and show it to perform well, with the MIPH solutions exceeding the linear

program based lower bound by an average of 2%.

2.3 Strategic Attacks

A scenario where the attacker has knowledge of the system and selects an attack node to maximise cost is also

discussed by Lin et al. (2013). This turns the problem into a two-person zero-sum game and therefore has links to

game theoretic approaches, for example those used by Auger (1991) and Alpern and Gal (2002). The patroller’s

objective becomes

min
π∈ΠR

max
i=1,...,n

Vi(π)

λi
, (6)

i.e. minimise the maximum long-run cost rate, or minimise the cost of the action taken by the attacker. Here ΠR

is the set of randomised policies. Again, this can be solved by a linear program which becomes computationally

intractable for reasonably large n. To overcome this, Lin et al. (2013) suggest formulating a different two-person

zero-sum game in which the attacker chooses a node i to attack and the patroller takes up a mixed strategy from

m patrol patterns given in S = {ξ1, . . . , ξm}. They note that it is straightforward to set up a linear program to

solve this problem, as is done in Washburn (2003). Importantly, this linear program is much easier to solve than

the one that computes the true optimal solution. The challenge comes from choosing this set S . Lin et al. (2013)

devise an iterative algorithm which uses IPH(d) to select patrol patterns to add to S and is motivated by the work

of Robinson (1951). This algorithm is performed r ·n times, with the details being omitted here. They then add to

S the set of n patrol patterns that only visit a single node, in order to ensure all nodes are visited by at least one

pattern in S . Finally, they use IPH(d) to add up to n · d patrol patterns which each include, but are not confined

to, a given node. The two-person zero-sum game is then solved to find the heuristic policy, which is in fact optimal

for a special case of n = 2 (Lin et al., 2013).

Numerical experiments conducted by Lin et al. (2013) show increasing r to be a better use of computing power

than increasing d. They therefore define the heuristic d = 1+ ⌈(average distance between all pairs of nodes− 1)/2⌉
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which sets d smaller than in the random attacker case. By comparing to the optimal solution (for small n) and a

lower bound based on a linear program (for larger n), they show this heuristic performs well, with averages of 0.5%

over the optimum and up to 3% over the lower bound.

3 Imperfect Detection

The model used by Lin et al. (2014) is largely the same as the same as the one described in §2, with the crucial

difference being that the patroller is no longer guaranteed to detect all ongoing attacks when visiting a node. The

probability of detecting an individual attack at node i is denoted αi and the attack time at node i is said to have

cumulative density function Fi(·), bounded by B for all i.

3.1 Formulation as an MDP

Under the assumptions above, the time for an attack to complete can be no longer than B. For this reason, it is

sufficient to describe the state of the problem at time 0 with only what has happened in the time interval [−B, 0).
Hence, Lin et al. (2014) define the state of the system as s = (s1, s2, . . . , sB−1) where sk is the node visited at time

−k. This gives a state space of Ω = {(s1, . . . , sB−1) : sk = 1, . . . , n, for k = 1, . . . , B − 1} and deterministic state

transition upon a visit to i of s1 = i and sk−1 7→ sk for k > 1. The action space is A = {i : i = 1, . . . , n} as in §2.1.
Both the action and state space are finite, so we only need to consider deterministic, stationary policies π : Ω → A

(Puterman, 1994). Define vjk to be the indicator that the patroller visited node j at time k.

The objective function for this MDP is defined by Lin et al. (2014) the same manner as (3), with the only difference

being that here the expected cost due to attacks at j in the next time period, given a visit to i, is equal to

Cj(s, i) = cjλj

(∫ 1

0

Fj(1− t)dt+

B−1∑
m=0

(1− αj)
∑m

k=1 vjk

∫ m+1

m

(Fj(t+ 1)− Fj(t))dt

)
for j ̸= i,

Ci(s, i) = ciλi

(∫ 1

0

Fi(1− t)dt+

B−1∑
m=0

(1− αi)
1+

∑m
k=1 vik

∫ m+1

m

(Fi(t+ 1)− Fi(t))dt

)
.

Again, this MDP can be solved by a linear program which becomes computationally intractable for moderately

sized n.

3.2 Heuristic Policies for Random Attackers

Lin et al. (2014) develop several heuristics which attempt to solve this MDP. Some are derived from the Lagrangian

relaxation (LR) of a multi-node version of the problem, similar to what is discussed in §2.2. Others are based on

approximate dynamic programming (APD). Due to the limited scope of this report, we will only discuss the latter.

First assume that, irrespective of the decision made at the current time point, future visits to each node i follow

a Poisson process with rate νi. Lin et al. (2014) consider a single node and node state v = (v1, . . . , vB−1), where

vk = 1 if the node was visited at time −k. They calculate the benefit of taking an action i at time 0 by comparing

the expected reward if i is visited to the expected reward if i isn’t visited. The action taken at time 0 only affects

attackers that arrive in the interval (−B, 0], as any other attacks will either have been completed or will be yet to
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begin. These attacks can only be detected by patrols in (−B,B], however, the decisions about patrols in (−B, 0)
have already been made and so we only need to consider patrol decisions in [0, B]. Lin et al. (2014) show that the

expected number of these attacks that are ongoing at time 0, but have not been completed by time s ∈ [0, B], is

Φ(s,v) = λ

(
B−1∑
k=0

(1− α)
∑k

i=1 vi

∫ k+1+s

k+s

F̄ (t)dt

)
, (7)

where we drop the i subscripts since only one node is being considered here. Using (7), and by conditioning on

there being ℓ patrols to the node in [0, B], they show that the expected number of these attackers detected in [0, B]

is

Ψ(v,v) =

∞∑
ℓ=1

(
(vB)ℓ

ℓ!
exp(−vB)

ℓ∑
m=1

α(1− α)m−1

∫ B

0

Φ(t,v)
ℓ!tm−1(B − t)ℓ−m

(ℓ− 1)!m!Bℓ
dt

)
, (8)

given the node isn’t visited at time 0. Therefore, if the patroller doesn’t visit any node at time 0, the total expected

reward accrued in [0, B] from detecting these attackers is
∑n

i=1 ciΨi(vi,vi). If, however, the patroller does visit

a node i at time 0, the expected accrued reward at this becomes ci(αiΦ(0,vi) + (1 − αi)Ψ(vi,vi)), giving a total

expected accrued reward of ci(αiΦ(0,vi) + (1 − αi)Ψ(vi,vi)) +
∑

j ̸=i cjΨj(vj ,vj). The benefit (or increase in

expected reward) when node i is visited at time 0 is thus

ciαi(Φi(0,vi)−Ψi(vi,vi)).

The patroller then moves to the node for which this quantity is maximised. Lin et al. (2014) develop another

heuristic based on the assumption that the future arrivals arrive in fixed intervals rather than according to a

Poisson process, the details of which are omitted here.

Similar to the work in Lin et al. (2013), the heuristics in Lin et al. (2014) are improved by looking ahead by

multiple time steps. Numerical experiments are conducted from which it is deemed best to run a version of both

the LR and ADP heuristics, then select the pattern which gives the lowest long-run cost rate. Again, increasing

the depth d of this heuristic proves more beneficial for less connected graphs. The authors thus set d = 1 +

⌊average distance between all pairs of nodes⌋ to reflect this. They compare this refined heuristic to the optimal

solution and a linear program-based lower bound. The heuristic performs well, exceeding the lower bound by at

worst an average of 3.82% with a much smaller computational cost than is required for the optimal solution.

3.3 Modification of Approach for Strategic Attacks

Lin et al. (2014) consider the strategic attacker case in a manner similar to §2.3. The problem becomes a two-person

zero-sum game where the attacker selects an action i for i = 1, . . . , n and the patroller selects pure strategies from

a patrol pattern set S . Here, the authors use a similar method to that used in Lin et al. (2013) to generate S ,

this time using the heuristics discussed in §3.2. They generate S in four groups: n patterns that cover just a

single node, 1 pattern that covers all nodes well, n patterns that cover a single node well, and additional patterns

generated by an iterative algorithm. The details of this process are omitted here, although we mention that this new

iterative algorithm attempts to improve upon the one used in Lin et al. (2014) by reducing the number of replicate

patrol patterns. Once this set S is generated, the patroller’s heuristic policy is obtained by solving the two-person

zero-sum game. Numerical experiments in Lin et al. (2014) show this heuristic to be within 1% of optimally on

average, with significant reductions in computation time.
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4 Conclusion

In Lin et al. (2013), the authors use heuristic policies to design patrol schedules when attack detection is perfect

They go on to extend this to imperfect detection in Lin et al. (2014). They develop heuristics for both cases, since

solving the problems via linear programming is infeasible, and use numerical experiments to show their heuristics

perform well. The success of these approaches helps to justify the use of their methodology in real-life applications.

Considerations can be made as to how to extend their model. For example, what if the attacker’s behaviour changes

over the course of the day? This question motivates modelling the random attacker case with a time-inhomogeneous

Poisson process, rather than a homogeneous one. All of the analysis discussed here assumes one lone patroller; how

large must a protection area be before it becomes beneficial to introduce another? The potential to design an area

to aid patrolling also comes into question. There may be some trade off between connecting as many target areas as

possible and ensuring a building design is realistic. Perhaps, by applying the methodology discussed here, it could

be determined how to best balance these factors.
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