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1 Introduction

The modelling of the extreme values is naturally motivated by a range of applications. Often, we are most

interested in the tail behaviour of a distribution when studying real world phenomena; take, for example,

rainfall. The most commonly occurring levels of rainfall do not pose any threat to people or infrastructure,

however, an unusually large observation can result in flooding. It is thus desirable to be able to accurately

predict the chance of an unusually large, or extreme, value occurring. Standard methods for estimation

of distributions are often not viable for this purpose, and can lead to inconsistent estimation. For this

reason, extreme value specific models are required.

Univariate study was first undertaken by the likes of Gumbel (1958), and remains an active field to this

day. The focus of this report, however, is of multivariate methodology. Extension to the multivariate

setting is greatly motivated by applications where there is belief of some interaction between variables in

extreme cases; for example, we could expect there to be an association between observing extreme levels

of rainfall and high wind speeds. The estimation of the joint distribution of environmental variables such

as these plays a large role in the design of ocean structures, see Ross et al. (2020). Another possibility

is extremal dependence within a single phenomenon across time, such as that considered by Winter and

Tawn (2016, 2017) in the modelling of extreme temperature to assess the risk of heatwaves. The study of

the dependence structure between variables in their extremes is thus a central question in this field.

Early work on multivariate extremes was conducted by the likes of Pickands (1981), this building on ideas

for the bivariate case given by those such as Tiago de Oliveira (1959) and Sibuya et al. (1960). Parametric

models, alongside a deeper analysis of dependence structures, were provided by Tawn (1988) and Coles and

Tawn (1991), both of which are discussed in §3. Theirs and comparable work prompted a more detailed

consideration of possible categories of dependence, addressed in §4 via the work of Ledford and Tawn

(1996) and Coles et al. (1999). These analyses, particularly that of Ledford and Tawn (1996), motivated

the development of methodology that can capture all levels of extremal dependence, e.g. Ledford and

Tawn (1997) and Bortot et al. (2000). A particularly influential response was developed Heffernan and

Tawn (2004), which is discussed in §5.1.

We also look to more recent takes on assessing dependence structures, such as Simpson et al. (2020) which

we discuss in §5.2. Theirs provides a methodology capable of reducing higher dimensional problems to

more simple cases. We conclude with a discussion of novel additions to the extremes literature such

1



Tendijck et al. (2019) and Engelke and Hitz (2020), and suggest possible directions in which these ideas

could be taken further.

2 Univariate Extremes

We begin with an overview of the main points of univariate extreme value theory. While the focus of this

report is on the multivariate literature, it is beneficial to ‘set the scene’ in this way since much of the

multivariate theory is motivated by univariate approaches. The distributions described in §2.1 and §2.2
are particularly crucial. The entirety of this section references Coles (2013).

2.1 Distribution of Maxima

In most settings, it is more important to consider the behaviour of the largest values of a process than the

smallest; flood defences are constructed to protect against the highest sea levels, or structures are designed

to resist the strongest winds. There are, of course, applications for which modelling unusually small values

is useful, such as when looking at the lifetime of components in a system, see Coles (2013). However,

most extreme value theory focuses on modelling unusually large values and so this is the approach taken

for the rest of this report.

Consider a random variable X with unknown probability distribution FX . We wish to gain information

about the largest values X can take and with what frequency they occur. A natural choice is to attempt

to find the distribution of Mn = max{Xi, . . . , Xn}, the maximum value of a block of n realisations of

X. Simple approaches such as taking P (Mn ≤ z) = {FX(z)}n are not useful, since small changes to the

estimation of FX results in large changes to Fn
X (Coles, 2013). To avoid this, FX itself is not estimated

and we instead focus on families of models for the distribution of Mn. Another issue described by Coles

(2013), is that the distribution of Mn degenerates to a point mass on the upper end point of FX as n → ∞.

The transformation M∗
n = (Mn − bn)/an solves this problem, as for appropriate choices of {an > 0} and

{bn} the distribution of M∗
n is non-degenerate. The following statements, both taken from Coles (2013),

describe the possible limit distributions for M∗
n.

Definition 2.1 (Generalised Extreme Value (GEV) Family of Distributions). A probability distribution

whose cumulative density function has the following general form

G(z) = P (Z ≤ z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
}
,

for −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞, is said to belong to the GEV family of probability

distributions. If ξ > 0, we have the Fréchet family, if ξ < 0 we have the Gumbel family, and in the

limiting case of ξ → 0 we have the Weibull family.
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Theorem 2.1 (Extremal Types Theorem). If there exist sequences of constants {an > 0} and {bn} such

that

P
(
Mn − bn

an
≤ z

)
→ G(z) as n → ∞,

where G is a non-degenerate distribution function, then G is a member of the GEV family. Here FX , the

distribution of X, is said to be in the domain of attraction of G.

Definition 2.1 defines the Generalised Extreme Value (GEV) family of distributions. It encompasses the

Fréchet, Gumbel and Weibull families. Theorem 2.1 states that, after transforming Mn into M∗
n, it follows

a GEV distribution in the limit. It may seem that this is not useful in practice, since the normalising

constants an, bn will not usually be known. However, as explained by Coles (2013), if the distribution of

M∗
n can be approximated by a member of the GEV family, so can the distribution of Mn. Using this, time

series data of length nm can be split into sequential block maxima {Mn,1,Mn,2, . . . ,Mn,m} which can be

assumed to come from a GEV distribution with parameter Θ = (µ, σ, ξ). Standard inference methods

such as maximum likelihood can be used to obtain an estimate Θ̂ (provided that ξ > −0.5, which is

usually the case in practice). The fitted model can then be used to estimate useful quantities, such as zp

for which P (Mn,j > zp) = p. As discussed by Coles (2013), this is known as the return level associated

with the return period 1/p, i.e. zp is expected to be exceeded once every 1/p block periods.

Clearly, there is a question as to how to split the nm observations into m blocks. The answer is sometimes

given by the context; it may seem natural to split the data by year for storm data going back decades.

However, the trade off between small or large block sizes also needs to be considered. For smaller block

sizes n, more observations {Mn,j : j = 1, . . . ,m} will be available, leading to smaller variance in Θ̂. The

downside is this may lead to violations in the assumptions that support theorem 2.1, for example due to

seasonality in X which has period longer than the block length. These ideas are discussed in more detail

by Coles (2013).

2.2 Threshold Models

A problem with the method described in §2.1 is one of wasted data. Say that we have a time series of

seasonal weather conditions, such as rainfall, which we segment into monthly blocks. A particularly wet

month may contain many extreme values, and so by only considering the maximum of these values we are

losing information about the others. Conversely, a dry month may not contain any extreme values but

we would be fitting our model to its maximum anyway, potentially distorting the model. We avoid this

problem by not segmenting the data into blocks, but by instead considering the behaviour of X when it

exceeds a threshold u. In other words, we seek to find the distribution of X − u given X > u. The next

theorem from Coles (2013) provides an approximation for this.

Theorem 2.2. Let X1, X2, . . . be a sequence of i.i.d. random variables who’s block maxima have limit

distribution in the GEV family with parameter Θ = (µ, σ, ξ) ∈ R× (0,∞)×R. Then, for large enough u,
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the distribution function of (X-u), conditional on X > u, is approximately

H(y) = 1−
(
1 +

ξy

σ̃

)−1/ξ

(1)

defined on {y : y > 0 and (1 + ξy/σ̃ > 0}, where σ̃ = σ + ξ(u− µ).

If a random variable has probability distribution H(y) as in equation 1, it is said to belong to the

Generalised Pareto family of distributions and have parameter Θ̃ = (σ̃, ξ). A clear question is how to

select a threshold u for the model to be valid, whilst allowing enough data to fit the model. There is a trade

off analogous to that for selecting block size in the block maxima case. Too low a threshold could invalidate

the assumptions of theorem 2.2, or one too high could leave not enough data to provide estimates with

reasonable certainty. Various methods to select an appropriate threshold exist, such as re-parameterising

σ̃ to be independent of u and then selecting the lowest threshold for which the parameter estimate appears

constant. This approach, along with some others, is detailed in Coles (2013). Once the threshold has been

selected using the chosen method, maximum likelihood techniques can be used to find an estimate for the

parameter Θ̃. Quantiles and return levels can then be estimated using P (X > u+ y) = {1− F̂X(u)}H(y),

where F̂X is some estimate for the distribution of X below u. Further discussion of these ideas, along

with outline justifications of the theorems in this section, are contained in Coles (2013).

This section contains an admittedly brief introduction to univariate extreme value theory. We reiterate

that its purpose is to serve as an introduction to the area, in preparation for a more in-depth consideration

of multivariate methods. There are many interesting challenges and considerations that can be made

when implementing these models in practice, such as the inclusion of covariates to better model real-

world systems, or the consideration that the behaviour of a phenomenon will change over time. Some of

these ideas are discussed in the multivariate setting in §6.

3 Fundamentals of Multivariate Extremes

For the remainder of the report we will consider cases where we have two or more variables, i.e. the mul-

tivariate setting. This section highlights some of the things we must consider when extending univariate

concepts to the multivariate setting, and introduces some fundamental multivariate methodology.

3.1 Multivariate Ordering

We begin by asking an important question: how do we decide what an extreme value looks like in a

multi-dimensional situation? Whilst this is trivial in the univariate setting, here there is no clear natural

solution. Four ways of ordering multivariate vectors were discussed by Barnett (1976). Perhaps the

simplest idea is to take an extreme of a set to be the vector consisting of the individual maxima of the
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variables, indicated by the first plot in figure 1. Or, we could take the extremes as the points for which

each variable is most extreme, as is shown in the third image. Other options include considering a convex

hull, and an approach based on structure variables of the specific system being considered, illustrated in

the second and fourth plots respectively. These are outlined in more detail by Barnett (1976). The most

popular interpretation is the first, where the maximum of a set is taken as the component-wise maxima.

This is despite it usually being the case that the jointly-extreme vector will not have actually occurred in

the set. Also, all of these orderings can possess the same downside as the univariate situation shown in

§2.1, where useful data can be discarded, leading to less precise results than those that could be obtained

if more data was used.

Figure 1: Illustration of various ways to order extremes (Presented by Tawn, 2022)

Models based on the first ordering are developed in detail by Tawn (1988), where data are divided into

blocks and the maxima of each block taken, as with §2.1. We give an overview of some of their findings

in §3.2, then move to a more detailed discussion of the work of Coles and Tawn (1991) in §3.3. The latter
includes a method of estimating model parameters that utilises the strategy discussed in §2.2, and so

avoids the problem of ordering altogether.

3.2 Distributions for Component-wise Maxima

We begin our review of the multivariate literature with a brief look at the work of Tawn (1988). Here, the

modelling of the dependence between variables in their extremes is the primary focus. In any multivariate

setting it is not enough to only determine how each variable behaves; we must also consider how the

variables interact with each other. In the case of extreme value theory, we focus on the interaction between

variables in extreme cases. To be specific: how does one variable being large affect other variables’ chances

to be large? Many applications motivate the modelling of these dependencies. Sea walls may be able

to withstand an unusually high sea level or wave height individually, but not simultaneously. Assuming

independence between these two phenomena would lead to an underestimation of the probability of them

being extreme together, and thus an underestimation of the risk of wall failure and subsequent flooding.

Studying the interaction between them from a statistical perspective allows for a better risk assessment.

The general form of bivariate extreme value distributions were originally developed by the likes of Sibuya

et al. (1960), being generalised to multivariate cases later, see Pickands (1981). The extension of the

methods in §2.1 to a multivariate setting, as described by Tawn (1988), proceeds as follows. For a block

of n realisations of the p dimensional vector (X1, . . . , Xp) with unknown margins, define the maximum to

be the vector (M1n, . . . ,Mpn), where Mjn = maxi=1,...,nXji for j = 1, . . . , p. Analogous to the univariate
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case discussed in §2.1, normalising constants ajn > 0, bjn for j = 1, . . . , p can be selected such that

P
(
M1n − b1n

a1n
≤ z1, . . . ,

Mpn − bpn
apn

≤ zp

)
→ G(z1, . . . , zp),

as n → ∞. Here, G is known as a multivariate extreme value distribution and has GEV margins Tawn

(1988). A detailed analysis of the general form of the dependence function of G is provided by Tawn

(1988), including methods for both parametric and non-parametric estimation. We do not cover this

analysis here for the sake of brevity. Instead, we detail a particular dependence structure they define, the

multivariate logistic. The distribution function G for this model, as given in Ledford and Tawn (1996), is

G(z1, . . . , zp) = exp
{
−
(
z
−1/α
1 + . . .+ z−1/α

p

)α}
,

for unit Fréchet margins and dependence parameter 0 ≤ α ≤ 1. When α = 1, we have exact independence

of the variables. For the limiting case of α → 0, we have perfect dependence. We include this model

in particular as it is widely applicable model both in practice and in developing theoretical results, see

Ledford and Tawn (1996). Early applications of models such as the multivariate logistic, for example

the work of Smith et al. (1990), involved estimation of first the marginal parameters followed by the

dependence parameters. The following section details an approach which possesses the benefit of being

able to estimate both the marginal and dependence structure parameters simultaneously.

3.3 Point Process Model

We look at the methodology developed by Coles and Tawn (1991), based on the work of Haan (1985). The

approach taken by Joe et al. (1992) in modelling bivariate extremes also stems from this work, however,

we do not focus on it here. Rather than considering only block maxima, they utilise all data which are

extreme in at least one margin by approximating their distribution with that of a Poisson point process.

Their method bypasses the processes of segmenting into blocks and ordering values to select maxima,

and so avoids their related issues. They consider a sequence of i.i.d. vectors {X1, . . . ,Xn} on Rp
+, with

unit Fréchet margins. They note that the choice of marginal distribution is inconsequential, as a suitable

transformation can be applied to give any other distribution. Also, the distribution function FX of X is

assumed to be in the domain of attraction of some multivariate extreme value distribution G, see Tawn

(1988) or §3.2 for some examples of these in the bivariate case. First, they introduce pseudo-radial and

angular coordinates r and w, defined as

ri =

p∑
j=1

Xij

n
and wij =

Xij

nri
=

Xij∑p
j=1Xij

, (2)

for i = 1, . . . , n and j = 1, . . . , p. Here, ri can be interpreted as the overall ‘strength’ of the ith observation

Xi, and wij as how much of that strength is placed on the jth component of Xi. For example, if wi1 = 1

and wij = 0 for j ̸= 1, then Xi will be a sparse vector with Xij = 0 for j ̸= 1. Now take the point process
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Pn = {n−1Xi; i = 1, . . . n}. Then, as stated by Coles and Tawn (1991), Pn converges in distribution to a

non-homogeneous Poisson process P on Rp
+ \ {0} with intensity measure µ that satisfies

µ(dr × dw) =
dr

r2
H(w), (3)

where H is a positive finite measure. That is, for large enough n, the points in Pn = {n−1Xi; i = 1, . . . n}
that lie in a region A ⊂ Rp

+ \ {0} behave approximately as a Poisson process P , where the intensity of P

is given by equation 3. Importantly, the region A must be suitably far away from 0, with the necessary

distance being dependent on the rate of convergence of Pn to P (Coles and Tawn, 1991). In addition to

providing the intensity of the approximating Poisson process, equation 3 also shows that the measure µ

can be decomposed into a known function of r and a measure H on w, although this only holds for a

suitably large r. As stated by Coles and Tawn (1991) the measure H thus contains all information about

the extremal dependence of the components of Xi, meaning the dependence structure can be studied by

determining where H places mass on

Sp = {(w1, . . . , wp) :

p∑
j=1

wj = 1, wj ≥ 0 j = 1, . . . , p},

where Sp (sometimes denoted Sp−1) is known as the (p − 1)-dimensional unit-simplex. This fact has

proven crucial to the study of dependence in multivariate extremes, even being the foundation of very

recent developments by Simpson et al. (2020), which will be discussed in §5.2. As such, it is desirable

be able to model the measure H. This is not easy, as the only constraints placed on H are that it is a

positive finite measure which satisfies ∫
Sp

wj dH(w) = 1

for j = 1, . . . , p. The following process, developed by Coles and Tawn (1991), facilitates finding a para-

metric measure that satisfies the constraints, provided we already have a multivariate extreme value

distribution for (normalised) component-wise maxima (again, see Tawn (1988) or §3.1 for examples).

Take any limit distributionG of the normalised vector of component-wise maxima (n−1Mn,1, . . . , n
−1Mn,p),

where Mn,j is the maximum over n realisations of the jth component of a random vector with un-

known distribution. Let A = Rp
+ \ {(0, x1) × . . . × (0, xp)} and x = (x1, . . . , xp). Then, we have

G(x) = P
(
n−1Mn,j ≤ xj , j = 1, . . . , p

)
= P

(
n−1Xi /∈ A, i = 1, . . . n

)
. By the convergence to a Poisson

process, P
(
n−1Xi /∈ A, i = 1, . . . n

)
→ exp (−µ(A)) as n → ∞, giving G(x) = exp (−µ(A)), approxi-

mately. The authors show that µ(A) =
∫
Sp

max1≤j≤p(wj/xj) dH(w) in this case, and so we can write

G(x) = exp (−V (x)) where V (x) =

∫
Sp

max
1≤j≤p

wj

xj
dH(w). (4)

Using this result, Coles and Tawn (1991) prove the following theorem. Before stating the theorem, we

must first define some notation. Let c be a subset of the set {w1, . . . , wp} and Sc be the subspace of Sp

such that only the elements of c are extreme, i.e. Sc = {w ∈ Sp : wj = 0, wj /∈ c, j = 1, . . . , p}. We denote
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the density that H places on Sc as hc.

Theorem 3.1. Let V and H be the measures related by equation 4. Let hc be the density defined above

on Sc. Then for cx = {xc,1, . . . , xc,m}, the set of xj corresponding to the elements of c, we have

∂V

∂xc,1 . . . ∂xc,m
=

 m∑
j=1

xc,j

−(m+1)

hc

(
xc,1∑
j xc,j

, . . . ,
xc,m∑
j xc,j

)
.

Using theorem 3.1, we can go from the distribution function G(x) = exp (−V (x)) of the component-wise

maxima of X, to the density placed on an a subspace of Sc of Sp by the measure H associated with

V . This is beneficial because, as stated previously, the extremal dependence structure of X is described

entirely by where H places mass on the unit simplex. For example, if hc = 0 for all c such that |c| > 1,

we know that no components of X can be extreme together (i.e. complete independence) and that H

places all mass at the vertices of Sp. Alternatively, we could have hc > 0 for |c| = p and hc = 0 otherwise,

meaning all mass it places in the interior of Sp and all the components of X must be extreme together (all

components dependent). Figures 2 and 3 give simple illustrations of these two scenarios in the trivariate

case of X = (X1, X2, X3). Of course, in the latter scenario, the density need not be circular and uniform.

W2

W1

Figure 2: Mass placed on vertices

W2

W1

Figure 3: Mass placed on interior

There is, of course, a broad spectrum of possibilities between these two cases which reflect more nuanced

dependence structures. Simply put, if H places mass on a region of Sp for which wc,1, . . . , wc,m > 0,

then there is some dependence between the components Xc,1, . . . , Xc,m of X. This idea is explored more

formally, and related to the dependence measures discussed in §4, by Simpson et al. (2020). This work

will be covered in §5.2.

A clear issue with using theorem 3.1 to model H, is that is that it requires a multivariate extreme value

distribution G, such as the logistic extreme value distribution introduced in §3.2. The authors thus

propose another technique to generate parametric models for a density h on the interior of Sp, by relating

the representation for G given by equation 4 to the one of Pickands (1981). The technique is summarised

in the following theorem, stated in Coles and Tawn (1991). By using theorem 3.2 new valid measures and

associated multivariate extreme value distributions can be obtained, the bivariate Dirichlet model given

by Coles and Tawn (1991) serving as an example.
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Theorem 3.2. If h∗ is any positive function on Sp, with finite first moments, then

h(w) = ⟨m,w⟩(−p+1)
p∏

j=1

mjh
∗
(

m1w1

⟨m,w⟩
, . . . ,

mpwp

⟨m,w⟩

)
,

where

mj =

∫
Sp

ujh
∗(u)du, j = 1, . . . , p,

satisfies the constraints given by equation 3.3. Therefore, h is the density of a valid measure H.

Having generated the density of a valid measure H on some subsets of Sp with parameter Ψ, maximum

likelihood techniques can be used to provide an estimate for Ψ. The authors do this by calculating the

likelihood over the region A = Rp
+\{(0, v1)×. . .×(0, vp)} for the limiting Poisson process where the values

vj , j = 1, . . . , p are suitably chosen thresholds so that A is the region which contains all observations which

are large in at least one margin. Presume that we have a realisation of the sequence of i.i.d. random

vectors {Y i, i = 1, . . . , n}, with unknown marginal distributions. To be able to utilise the Poisson process

approximation described above, we require random vectors with unit Fréchet margins. The marginal

components Yij are thus transformed to unit Fréchet random variables Xij = g(Yij) via the probability

integral transform. Of course, the distribution function of Yij is unknown and so must be estimated.

For Yij values above a high threshold uj , selected using the methods briefly introduced in §2.2, the GPD

distribution from theorem 1 is used alongside an estimate for P (Yij > uj). The parameter Θ̃ of the GPD

is then estimated alongside Ψ. For Yij values below the threshold uj , the realisations are dense, and so

the empirical distribution function is a suitable estimate for the distribution.

Also, by considering the threshold uj , which acts as the boundary over which Yij is classified as large, we

can determine the values of vj necessary to give us the desired region A. A component Yij is considered

large if Yij > uj . Applying the transformation g and normalising as is required for the Poisson process

approximation gives (Yij > uj) =⇒ (Xij > n−1g(uj)), hence we have vj = n−1g(uj). It also must

be checked that these vj values give a region A which contains values with large enough r to satisfy

equation 3. Given all this, and the set {n−1xa,1, . . . , n
−1xa,m} of transformed observations that lie in A,

the likelihood over A for the Poisson process approximation with dependence measure h can be calculated.

The formulation of this likelihood has been omitted here in an attempt to remain as concise as possible,

so we refer to Coles and Tawn (1991) for the detail. Crucially, this method offers a way of estimating

the marginal parameter Θ̃ and the dependence parameter Ψ simultaneously, which as noted by Coles and

Tawn (1991), allows for improved precision over sequential estimation.

4 Models for Dependence

A crucial question when modelling the extremes of a variable is the level of dependence between its

components. The section motivates the need to quantify this dependence, and details approaches that
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have been developed to do so.

4.1 The η parameter

Whilst a seemingly useful approach, the Poisson process representation developed by Coles and Tawn

(1991) possesses problems when applied under certain conditions. To explain when these occur, we must

first introduce the concept of asymptotic independence, defined here for the bivariate case. The ideas

in this section can be extended to the multivariate case, see Heffernan and Tawn (2004). The following

definition is based on that of Coles et al. (1999).

Definition 4.1 (Bivariate Asymptotic Independence). Consider a bivariate random variable (X1, X2)

where each element has identical marginal distributions. We say X1 and X2 are asymptotically indepen-

dent if

lim
x→xu

P (X2 > x|X1 > x) = 0, (5)

where xu is the upper limit of the distributions of X1 and X2. Otherwise, we say they are asymptotically

dependent. In a sense, equation 5 is the probability of one variable being extreme, given that the other

is extreme.

The model discussed in §3.3, along with the comparable method of Joe et al. (1992) referenced above,

performs poorly when variables are exactly independent or asymptotically independent, i.e. satisfy equa-

tion 5. The Poisson process method will model any variables that occur sufficiently large together as

asymptotically dependent (Ledford and Tawn, 1996), and so can overestimate the probability of them

being large together. To circumvent this issue, a more nuanced categorisation of dependence between

variables is needed. This necessity is emphasised by Ledford and Tawn (1996), who demonstrate that

their own methodology falsely identifies a bivariate normal variable with 0 < ρ < 1 as asymptotically

dependent. They identify as the problem the fact that their model assumes either asymptotic dependence

or exact independence, and so is incapable of coping with structures that lie between these two cases.

Motivated by this, they develop the following approach that allows the classification of additional levels

of dependence. Consider a bivariate random variable (X1, X2) with unit Fréchet margins. They show

that, for large x,

P (X1 > x,X2 > x) ∼

x−1 for perfect dependence,

x−2 for exact independence.
(6)

where an ∼ bn indicates that an/bn → 1 as n → ∞. Equation 6 represents the two possible end cases,

which Ledford and Tawn (1996) link via

P (X1 > x,X2 > x) ∼ L(x)x−
1
η (7)

as x → ∞, where 1/2 ≤ η ≤ 1 is a constant, and L(x) is a slowly varying function. Here, η is known

as the coefficient of tail dependence. Equation 7 offers a smooth link between the two bounding cases in
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equation 6, with η = 1,L(x) = 1 giving perfect dependence, and η = 1/2,L(x) = 1 exact independence.

Additionally, the interval 0 ≤ η < 1/2 corresponds to negative dependence, though this case is rarely

applicable to extremes and so we do not consider this here. Values of η that correspond to asymptotic

dependence or independence can also be obtained, by noting that the conditional probability in equation

5 can be written as approximately P (X2 > x|X1 > x) ∼ L(x)x1−
1
η , given that x is large. The variables

X1 and X2 are asymptotically independent if the right hand side approaches 0 as x gets larger, which

corresponds to η < 1. Similarly, they are asymptotically dependent if the right hand side approaches a

non-zero constant as x gets larger, which occurs when η = 1 and L(x) ↛ 0 as x → ∞. The authors break

down the case of positive tail dependence into three, more descriptive, sub-cases. These cases and their

corresponding values of η are summarised as follows.

Two variables exhibit asymptotic dependence if η = 1 and L(x) ↛ 0 as x → ∞; they exhibit positive

association if 1/2 < η < 1, and they exhibit near independence if η = 1/2 and L(x) ≥ 1. Under

the assumptions of previous models, had two variables shown positive dependence, they would have

been assumed to be asymptotically dependent and thus classified under the first case. As Ledford and

Tawn (1996) point out, however, this can lead to variables which are positively, but not asymptotically,

dependent being incorrectly classified into the first case. The inclusion of the second and third categories

solves this problem, as they can now be classified into either of them. For example, the bivariate normal

distribution with 0 < ρ < 1 that they use as an illustration is now classified into the second case, with

η = (1 + ρ)/2. Of course, in order to determine which of these categories the dependence between two

variables falls into, we require a way of estimating η.

This is achieved by Ledford and Tawn (1996) through considering T = min(X1, X2), the so-called structure

variable. We have P (T > x) = P (X1 > x,X2 > x) ∼ L(x)x−1/η as the survivor function of T . It can be

shown that, for a high threshold u, we have P (T > u+ x|T > u) ∼ (1 + x/u)−1/η for variables with this

survivor function. Comparing this to the GPD approximation for exceedances above a high threshold in

theorem 2.2, we obtain ξ = η and σ̃ = ηu. Therefore, η for a bivariate random variable (Y1, Y2) can be

estimated from a sample {(Y1i, Y2i); i = 1, . . . , n} in the following manner. First transform the marginal

distributions of each variable to unit Fréchet, using probability integral techniques akin to those discussed

in §3.3, to obtain a sample {(X1i, X2i); i = 1, . . . , n} with unit Fréchet margins. Next, construct a sample

of the structure variable T as {Ti = min(X1i, X2i); i = 1, . . . , n}. A suitable threshold u can then be

determined and a maximum likelihood estimate found for Θ̃ = (σ̃, ξ), as described in §2.2. The parameter

η is then estimated via η̂ = ξ̂, where ξ̂ is the MLE for ξ.

The ability to provide an estimate of η and thus categorise the dependence of two (or more) extremes is

useful as a way to determine if models such as those of Coles and Tawn (1991) and Joe et al. (1992) can be

applied. As mentioned above, these are only suitable when η = 1. The existence of the classes for which

η ≤ 1 thus motivates the development of extreme value models which allow for asymptotic independence.

Examples of these include the bivariate joint tail model developed by Ledford and Tawn (1997), and the

multivariate Gaussian tail model subsequently proposed by Bortot et al. (2000).
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4.2 The χ and χ̄ Measures

Motivated by similar reasons to Ledford and Tawn (1996), Coles et al. (1999) developed alternative, but

comparable, measures of extremal dependence within the class of asymptotically independent variables.

They consider equation 5 for a bivariate (X1, X2) which has been transformed to (U1, U2) with Uniform

margins. Letting χ = limu→1 P (U2 > u|U1 > u) , they then define

χ(u) = 2− logP (U1 < u,U2 < u)

logP (U1 < u)
for 0 ≤ u ≤ 1,

and show that χ = limu→1 χ(u). This is a useful measure as is it constant in u when the variables exhibit

asymptotic or complete independence, and so can be used to verify if models which only account for these

cases can be used. This can be done by simply calculating χ(u) for various thresholds u and determining

graphically if the values appear constant. The authors also develop formal inference procedures for χ,

however, we omit the detail of these here. Unfortunately, the convergence of χ(u) to 0 as u → ∞ can be

very slow for intermediate values of u, meaning χ(u) can misleadingly appear constant when estimating

from asymptotically independent data. This can lead to the incorrect classification of asymptotically

independent variables as asymptotically dependent, presenting the same issues discussed in relation to

previous methods. Also, χ provides no detail of the dependence of asymptotically independent variables,

merely serving to determine that they fall into this class. For these reasons, Coles et al. (1999) introduce

the next measure which provides easier interpretation and, similarly to η, a measure of dependence within

the asymptotically independent class. They define

χ̄(u) =
2 logP (U1 > u)

logP (U1 > u,U2 > 2)
− 1 for 0 ≤ u ≤ 1,

and

χ̄ = lim
u→1

χ̄(u),

which give −1 ≤ χ̄ ≤ 1. For asymptotically dependent variables, χ̄ = 1, and conversely χ̄ ≤ 1 for

asymptotically independent variables. In the latter case, χ̄ provides a useful measure of the strength of

dependence, in a sense determining how close to asymptotic dependence the variables are. For example,

for the bivariate normal case previously discussed in relation to η, we have χ̄ = ρ. This aligns with the

findings of Ledford and Tawn (1996) which yielded η = (1+ ρ)/2 in this case, showing that we only have

asymptotic dependence (η = 1) in the case of perfect dependence (ρ = 1). In fact, Coles et al. (1999)

show that, under certain conditions, χ̄ = 2η − 1. The bivariate normal case illustrates this nicely with

χ̄ = 2η − 1 = 2((1 + ρ)/2)− 1 = ρ.

We can examine the behaviour of χ̄ via the same process as χ, by plotting χ̄(u) for varying values of u.

The convergence of χ̄, in particular its bounding below 1 in the asymptotically independent case, is much

easier to observe graphically than that of χ (Coles et al., 1999). Therefore, χ̄ lends itself to more reliable

interpretation of the dependence structure between U1 and U2 (and thus X1 and X2).
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5 Improving Extrapolation

Given this more nuanced idea of categorising dependence between variables, methodology is needed which

incorporates it to improve modelling. This section details some examples which aim to provide this.

5.1 A Conditional Approach

The η parameter introduced in §4.1 provides an additional use to that of categorising dependence; it can

also be used in the estimation of extremal probabilities. As stated by Heffernan and Tawn (2004), all

of the models previously discussed operate under the assumption of multivariate regular variation, see

Basrak et al. (2002) for a detailed discussion of this concept. Define t+A to be the set consisting of the

elements of A after a component-wise translation by t > 0. Then, under the assumption of multivariate

regular variation, we have

P (Y ∈ t+A) = exp (−t/η)P (Y ∈ A) , (8)

for a p-dimensional variable Y with Gumbel margins (Heffernan and Tawn, 2004). Here, η is the multi-

variate extension of the coefficient of tail dependence for Y . For 0 < η < 1, we require A to contain only

observations which are extreme in all margins. In the case of η = 1, however, this requirement can be

relaxed to observations which are large in at least one margin, this being the choice of set in §3.3 when we

were operating under the assumption of asymptotic dependence. Equation 8 provides the basis on which

many multivariate extreme value methods function, including those of Ledford and Tawn (1997) and

Bortot et al. (2000) developed in response to the need for asymptotically independent models highlighted

by Ledford and Tawn (1996). Unfortunately, due to the restrictions imposed on A when η ̸= 1, we can

only use equation 8 and its associated methods to estimate the probability of sets for which all variables

are large at the same time. Figure 4 gives an illustration of why this is the case. In essence, translation

of a set of values which are equally extreme in each component will yield a set of values with the same

property. Thus, we cannot select a set A and a scalar t > 0 so that A+ t = B, where B is a set of values

which are extreme in only one margin.

A

A+t

B

Figure 4: A cannot be diagonally translated onto B

Having identified this issue, Heffernan and Tawn (2004) proposed an alternative method that allows for
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estimation of the probability of observing values which are extreme in only one dimension, for any value

of η. Consider a p-dimensional random vector X with unknown margins. We seek to find the probability

P (X ∈ C) where C is a set for which all elements are large in at least one margin. The authors’ approach

calculating P (X ∈ C) by partitioning C = ∪p
i=1Ci, where Ci is the part of C for which element Xi is the

largest. Formally, Cj = C ∩ {x ∈ Rp : Fi(xi) > Fj(xj); j = 1, . . . , p; j ̸= i}, for i = 1, . . . , p, where Fj is

the marginal distribution function of Xj . Of course, estimating these summed probabilities is essentially

the same problem as estimating P (X ∈ C), so it is required to decompose this probability further. This

is done by Heffernan and Tawn (2004) in the following manner. Take, for non-empty Ci, vi = infx∈Ci(xi)

to be the smallest value of Xi over all elements in Ci. The probability that X lies in C can then be

written as

P (X ∈ C) =

p∑
i=1

P (X ∈ Ci) =

p∑
i=1

P (X ∈ Ci|Xi > vi)P (Xi > vi) . (9)

Estimation of P (X ∈ C) thus becomes equivalent to estimating the two summed probabilities in equation

9. The value vi must be extreme, asXi is the largest element ofX in this case and so otherwise there would

be no extreme elements of X and thus it would not lie in the extreme set C. For this reason, P (Xi > vi)

cannot be reliably estimated via the empirical distribution function. The authors thus adopt the approach

taken by Coles and Tawn (1991) discussed in §3.3, where instead a GPD with parameter Θ̃i = (σ̃i, ξi) is

used to model Fi above a high threshold ui. We denote the estimated distribution function for Xi as F̂i.

The estimation of P (X ∈ Ci|Xi > vi) is more involved, since the dependence structures between variables

must be modelled in some way. The authors conduct this estimation via the decomposition

P (X ∈ Ci|Xi > vi) =

∫ xu(i)

vi

P (X ∈ C|Xi = x) dF̂i(x)/{1− F̂i(vi)},

where xu(i) is the upper end point of F̂i. The main undertaking here becomes the modelling of the

conditional probability P (X ∈ C|Xi = x), which they examine in the limiting case as x becomes large

and thus develop a model for the asymptotic form of the conditional distribution. They consider the

case of a p-dimensional random vector Y with Gumbel margins. Let h be the transformation to Gumbel

margins via the probability integral transform, using the estimate for the distribution of X given by Coles

and Tawn (1991). Also, let Y −i be the random vector Y with component Yi removed. Then, Heffernan

and Tawn (2004) assume that, for a high threshold u′i, there are vector normalising functions a|i(yi) and

b|i(yi) on R → Rp−1 such that

P
(
Y −i < a|i(yi) + b|i(yi)z|i|Yi = yi

)
= G|i(z|i),

for yi > u′i. Here, z|i is the standardised vector resulting from the component-wise translation

z|i =
y−i − a|i(yi)

b|i(yi)
.

It can be shown that the transformed random vector Z|i is independent of Yi. This independence motivates
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the sampling procedure devised by Heffernan and Tawn (2004), described in algorithm 1. However, before

we can perform the sampling algorithm, we require estimates for marginal parameters Θ̃i, the normalising

values a|i, b|i, and the distribution function G|i of Z|i. The approach taken by Heffernan and Tawn (2004)

to find these estimates is as follows. Estimation of the marginal parameters Θ̃i is done via maximum

likelihood based methods, similar to that of Coles and Tawn (1991). The normalising constants a|i and

b|i are taken to be members of the parametric family

a|i(y) = a|i + I{a|i=0,b|i<0}{c|i − d|i log(y)},

b|i(y) = yb|i ,

meaning it is also required to estimate c|i,d|i on R → Rp−1 in the case of â|i = 0, b̂|i < 0. The

distribution G|i is assumed to have independent normal margins with means given by the vector µ|i

and standard deviations by σ|i. The authors note this parametric model is likely to be misspecified,

however, it is assumed here for simplicity. Due to this assumption, Gaussian estimation can be used

as a basis of inference, see Hand and Crowder (2017) for details of this theory. The parameter θ|i =

(a|i,b|i, c|i,d|i,µ|i,λ|i) is then estimated by jointly maximising over the objective function which arises

from the ideas of Hand and Crowder (2017), which is not included here for the sake of brevity.

Algorithm 1 Conditional Sampling Algorithm

1: Simulate Yi from a Gumbel distribution conditional on its exceeding h(vi).
2: Sample Z|i from Ĝ|i independently of Yi.

3: Obtain Y −i = â|i(Yi) + b̂|i(Yi)Z|i.

4: Transform Y = (Y −i, Y − i) to original margins via probability integral transform using F̂i

The resulting vector is a sample from X|xi > ui.

Having obtained an estimate θ̂|i, algorithm 1 can be followed to obtain a Monte-Carlo estimate for

P (X ∈ Ci|Xi > vi), by finding the proportions of observations obtained from sampling that lie in Ci.

With this, the probability of a realisation X occurring in C can by found via the decomposition in

equation 9. This approach of Heffernan and Tawn (2004) is capable of calculating probabilities when

not all margins are extreme in the asymptotically independent case, unlike other methods which are only

applicable when the elements are asymptotically dependent (Coles and Tawn, 1991; Joe et al., 1992), or

when they are all extreme together (Ledford and Tawn, 1997; Bortot et al., 2000).

5.2 Subset Specific Levels of Dependence

Whilst the method of Heffernan and Tawn (2004) nicely overcomes the issues present in previous ap-

proaches, there remains a strong and potentially unrealistic assumption being made. To discuss this

assumption, we must first extend formally the idea of asymptotic dependence to the multivariate case.

We do this via the formulation given by Simpson et al. (2020), which they present as in definition 5.1.

Definition 5.1 (Multivariate Asymptotic Independence). Consider a p-dimensional random vector X.
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Take c to be a non-trivial subset of the components {X1, . . . , Xp}. Define the measure

χc = lim
u→1

P (Fi(Xi) > u : i ∈ C) /(1− u).

We say that the components contained in c are asymptotically independent if χc = 0. Otherwise, we say

they are asymptotically dependent.

The value χc is essentially the probability that, given a component Xj ∈ c is large, all other components

of X that are in c are large. This quantity χc can be linked nicely to the measure H discussed throughout

§3.3. If χc > 0, thenH places mass on the region of the unit simplex Sp given by {w ∈ S c̄
p :
∑

wj∈c̄′ wj = 1},
where c̄′ is the set of the angular representations of the elements of some set c̄ ⊃ c. That is, S c̄

p is the

region for which only the marginal components of X that are in c̄ have weight placed on them. For a

p-dimensional random vector, there are 2p − 1 of these subspaces, each corresponding to a vertex, edge,

or the interior of Sp. Figure 5 provides a simple illustration of these subspaces in the trivariate case.

Figure 5: Illustration of Subspaces of S3

The drawback of method discussed in §5.1 is that it can only be applied to cases for which χc is constant

over all sets c. Therefore, if certain subsets of {X1, . . . , Xp} are asymptotically dependent, but not all,

we cannot utilise this approach. It is also noted by Simpson et al. (2020) that the measures χc do

not fully describe the extremal dependence structure; for example, knowing χ{X1,X2} > 0 tells us mass

is placed on at least one of the two subspaces for which these variables are both large simultaneously,

but not which. The work of Simpson et al. (2020) aims to provide a way to obtain a more detailed

estimation of extremal dependence. In short, they exploit the often satisfied assumption of multivariate

regular variation to develop parameters which determine which subspaces of Sp have mass placed on them

by H. Their method also possesses the desirable characteristic of being able to capture sub-asymptotic

dependence structures, as well as those that are asymptotically dependent. In practice, their methodology

often detects several likely dependence structures, rather than just one. Of course, this is still useful as it

greatly reduces the problem from the situation where all combinations of subspaces are possible.
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6 Contemporary and Open Problems

We now look to examples of work developed more recently than the majority of those discussed so far in

this report. They have been selected to facilitate the discussion of open problems which are of particular

interest.

6.1 Markov Chain Models

The modelling of time series of extreme events via Markov Chains has been receiving increased interest.

The behaviour of heatwaves in France was modelled by Winter and Tawn (2016) using first order Markov

Chains and building from the work of Heffernan and Tawn (2004). They devised joint models for the

values of temperature following an observation deemed extreme by exceedance of a suitable threshold. As

their methodology incorporates the ideas of Heffernan and Tawn (2004), it possesses the desirable quality

of being applicable to cases of both asymptotic dependence or asymptotic independence. Comparison

between the predicted and observed behaviour of clusters of extreme temperatures suggest theirs is a

suitable approach. This work was then improved upon by Winter and Tawn (2017), who note the model

of Winter and Tawn (2016) presents an oversimplification of the physical mechanisms behind heatwaves.

Also building upon the work of Heffernan and Tawn (2004), they instead apply a kth-order Markov Chain

model to values of a time series that are within k lags of a suitably high temperature. They develop

novel diagnostics to determine the most appropriate choice of k, since standard tools such as the partial

auto-correlation function (PACF) depend mostly on the main body of the distribution, and so may not

reflect the extremal dependence structure if it differs from that of non-extreme data. The ideas of Winter

and Tawn (2016, 2017), are utilised and extended by Tendijck et al. (2019) for the modelling of sea storms.

They model a sea-state variable Hs, which summarises several physical features, via a 2nd-order Markov

Chain, alongside a storm direction covariate, which is modelled as an autoregressive time series. Their

work aims to facilitate accurate simulation of storm development given information about its peak at a

single site.

The works discussed above present a rich foundation for a plethora of possible extensions to the literature.

The ideas of Tendijck et al. (2019) could be extended to incorporate peak data across multiple sites,

exploiting the natural spatial dependence of the phenomena to provide more powerful inference. As they

themselves note, the number of covariates could be increased in an effort to capture a more realistic model

of the ecosystem and thus storm evolution. Of course, these ideas would generalise suitably to be useful

in other applications, such as in the modelling of heatwaves. In fact, the non-stationarity introduced

through covariates could provide a nice way of accounting for trends in temperature resulting from global

warming, something not achieved by Winter and Tawn (2016, 2017). Also, while Tendijck et al. (2019)

identify the 2nd-order Markov Chain model as most fitting for their application, other settings may require

development of higher order equivalents.
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6.2 Environmental Contours and Sample Clouds

Environmental contours have been used extensively in the design of ocean structures such as ships, oil

rigs and sea walls. They utilise multivariate extreme value techniques to capture regions of most likely

observations of environmental variables, such as wind speed and wave height. Figure 6 provides a simple

illustration of this idea in the bivariate case. Here, the majority of values fall into the solid contour

which could, for example, represent the 100th return level of the variables. That is, we would expect

a combination of variables outside the inner contour, coloured in red, to occur every 100th observation.

The points marked in yellow thus represent the most extreme events that would be taken into design

consideration, were we to only consider events that occur, on average, every 100 observations or less. The

dashed contours encompass more combinations of variables, representing higher order return levels.

Figure 6: Illustration of Environmental Contours

There is contemporary interest in developing methodology to model environmental contours. A popular

approach to contour estimation is the Inverse First Order Reliability Method (IFORM), first developed

by Winterstein et al. (1993). Recently, alternatives have been suggested such as the Monte-Carlo based

techniques of Bang Huseby et al. (2013) and Huseby et al. (2021), or the adaption of Qiao and Myers

(2021) to the IFORM framework. A review of various other contour estimation methods is provided by

Ross et al. (2020). We highlight in particular the work of Vanem et al. (2020), who describe a method for

incorporating dependence on covariates into contour modelling via division of the sample into covariate

‘bins’. This approach is applied to a biviariate case, leaving the extension to the multivariate case as

an open problem. This would be a desirable direction to work in, as it could result in a framework for

estimating contours in the multivariate setting, whilst also considering covariates.

6.3 Graphical Structure Models

Given the multivariate regular variation assumption mentioned in §5.2, we can study the distribution of

the angular variables defined in equation 2 to determine the extremal dependence structure of a random

vector. Interest in this approach has been shown by likes of Simpson et al. (2020) and Engelke and Hitz

(2020). The latter of these employs a graphical model of threshold exceedances by exploiting the notion

of conditional dependence, something not considered in other literature. This work was applied, with

success, to river flow data. However, the framework developed by Engelke and Hitz (2020) does not allow
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for the possibility of asymptotic independence, which was identified by Heffernan and Tawn (2004) as an

important feature of extreme value models. A natural next step is thus the linking of the graphical ideas

introduced by Engelke and Hitz (2020) to the concept of sub-asymptotic dependence structures that often

arise when modelling extremes. Both of these approaches also perform poorly in higher dimensions due to

the curse of dimensionality, and so require adapting to circumvent this issue. Alternatively, an altogether

new approach that has been suggested is to combine the ideas of Engelke and Hitz (2020) with that of

Haff et al. (2016). They present a learning algorithm for the structure of Bayesian networks, which have

been used extensively to represent the dependence between variables.

7 Conclusion

We have attempted to provide an overview of the multivariate extremes literature via discussion of key

works and their motivation. The works discussed are largely applicable, both theoretically and practically,

motivating further development of related ideas and methodology. For this reason, multivariate extreme

value theory remains an open and interesting area of research.
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