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Abstract
To capture the extremal behaviour of complex environmental phenomena in prac-
tice, flexible techniques for modelling tail behaviour are required. In this paper, we
introduce a variety of such methods, which were used by the Lancopula Utopiversity
team to tackle the EVA (2023) Conference Data Challenge. This data challenge was
split into four challenges, labelled C1-C4. Challenges C1 and C2 comprise univariate
problems, where the goal is to estimate extreme quantiles for a non-stationary time
series exhibiting several complex features. For these, we propose a flexible modelling
technique, based on generalised additivemodels, with diagnostics indicating generally
good performance for the observed data. Challenges C3 and C4 concern multivariate
problems where the focus is on estimating joint probabilities. For challenge C3, we
propose an extension of available models in the multivariate literature and use this
framework to estimate joint probabilities in the presence of non-stationary depen-
dence. Finally, for challenge C4, which concerns a 50-dimensional random vector, we
employ a clustering technique to achieve dimension reduction and use a conditional
modelling approach to estimate extremal probabilities across independent groups of
variables.
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1 Introduction

This paper details an approach to the data challenge organised for the Extreme Value
Analysis (EVA) 2023 Conference. The objective of the challenge was to estimate
extremal probabilities, or their associated quantiles, for simulated environmental data
sets for various locations in a fictitious country called Utopia. The data challenge is
split into 4 challenges; challenges C1 and C2 focus on a setting where data is obtained
from a single location while challenges C3 and C4 concern multivariate data sets,
where data is obtained simultaneously from multiple locations.

Challenge C1 requires estimation of the 0.9999-quantile of the distribution of the
environmental response variable Y conditional on a covariate vector X , for 100 real-
isations of covariates. To do so, we model the tail of Y | X = x using a generalised
Pareto distribution (GPD; Pickands 1975) and employ the extreme value generalised
additive modelling (EVGAM) framework, first introduced by Youngman (2019), to
account for the non-stationary data structure. We consider a variety of model formu-
lations and select our final model using cross-validation. Furthermore, central 50%
confidence intervals are estimated via a non-stationary bootstrapping technique, and
the final model performance is assessed using the number of times the true conditional
quantile lies in the confidence intervals (Rohrbeck et al. 2023). For Challenge C2, we
are interested in estimating the value of q that satisfies Pr(Y > q) = 1/(300T ), where
T = 200.

Challenges C3 and C4 concern the estimation of probabilities for extreme multi-
variate regions, subsets ofRd , where some or all of the components are so large that we
seldom observe any data in them. Such estimates require techniques for modelling and
extrapolating within the joint tail. For challenge C3, we want to estimate two joint tail
probabilities for three unknown non-stationary environmental variables. To achieve
this, we propose a non-stationary extension of the model introduced by Wadsworth
and Tawn (2013). Lastly, for challenge C4, we wish to estimate the probability that
50 variables (locations) jointly exceed prespecified extreme thresholds. Based on an
initial analysis, we separate the variables into five independent groups, and obtain
distinct probability estimates for each group using the conditional extremes approach
of Heffernan and Tawn (2004).

The remainder of the paper is structured as follows.A suitable background toEVA is
provided in Section 2, introducing concepts required throughout our work. Section 3
covers our approach to the univariate challenges C1 and C2, and the multivariate
challenges C3 and C4 are considered in Sections 4 and 5, respectively. The paper ends
with a discussion of the results of all challenges in Section 6.
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2 EVA background

2.1 Univariate modelling

Univariate EVA methods are concerned with capturing the behaviour of the tail of a
distribution which allows for extreme quantities to be estimated. A common univariate
approach is the peaks-over-threshold framework. Consider a continuous, independent
and identically distributed (IID) random variable Y with distribution function F and
upper endpoint yF := sup{y : F(y) < 1}. Pickands (1975) shows that, for some high
threshold v < yF , the excesses (Y − v) | Y > v, after suitable rescaling, converge
in distribution to a GPD as v → yF . Davison and Smith (1990) provide an overview
of the properties of the GPD, and also propose an extension of this framework to the
non-stationary setting: given a non-stationary process Y with associated covariate(s)
X , the authors propose the following model

Pr(Y > y + v | Y > v, X = x) =
(
1 + yξ(x)

σ (x)

)−1/ξ(x)

+
, (2.1)

for y > 0, where σ(·), ξ(·) are the covariate-dependent scale and shape parame-
ters, respectively. Recent extensions of the Davison and Smith (1990) framework
include allowing the threshold to be covariate-dependent, i.e., v(x) (Kyselý et al.
2010; Northrop and Jonathan 2011), and using generalised additive models (GAMs;
Chavez-Demoulin and Davison 2005, Youngman 2019) to capture the functions σ(·)
and ξ(·) in a flexible manner.

2.2 Extremal dependencemeasures

In addition to analysing marginal tail behaviours, multivariate EVA methods are
concerned with quantifying the dependence between extremes of the individual com-
ponents. An important classification of this dependence is obtained through the
measure χ (Joe 1997): given a d-dimensional random vector Z, with d ≥ 2 and
Zi ∼ F for all i ∈ {1, . . . , d},

χ(u) :=
(

1

1 − u

)
Pr(F(Z1) > u, . . . , F(Zd) > u), (2.2)

with u ∈ [0, 1). Where the limit exists, we set χ := limu→1 χ(u) ∈ [0, 1]. When
χ > 0, we say that the variables in Z exhibit asymptotic dependence, i.e., can take
their largest values simultaneously, with the strength of dependence increasing as χ

approaches 1. If χ = 0, the variables cannot all take their largest values together. In
particular, for d = 2, we refer to the case χ = 0 as asymptotic independence.

We also consider the coefficient of tail dependence proposed by Ledford and Tawn
(1996). Using the formulation given in Resnick (2002), let

η(u) := log (1 − u)

log Pr (F(Z1) > u, . . . , F(Zd) > u)
,
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with u ∈ [0, 1). When the limit exists, we set η := limu→1 η(u) ∈ (0, 1]. The cases
η = 1 and η < 1, correspond to χ > 0 and χ = 0, respectively. For η < 1, this
coefficient quantifies the form of dependence for random vectors that do not take their
largest values simultaneously.

Sinceχ and η are limiting values, they are unknown in practice andmust be approxi-
mated using numerical techniques. Therefore, when quantifying extremal dependence,
we approximate χ (η) using empirical estimates of χ(u)

(
η(u)

)
for some high thresh-

old u.

3 Challenges C1 and C2

Both challenges concern 70 years of daily data for the capital city of Amaurot. Each
year has 12 months of 25 days and two seasons (season 1 for months 1-6, and season 2
for months 7-12). Suppose Y is an unknown response variable, and X = (V1, . . . , V8)
is a vector of covariates, (V1, V2, V3, V4) denoting unknown environmental variables
and (V5, V6, V7, V8) denoting season, wind direction (radians), wind speed (unknown
scale), and atmosphere (recorded monthly), respectively.

For C1, we build a model for Y | X and estimate the 0.9999-quantile, with asso-
ciated 50% confidence intervals, for 100 different covariate combinations denoted x̃i
for i ∈ {1, . . . , 100}. Note x̃i are not covariates observed within the data set, but new
observations provided by the challenge organisers.

For C2, we estimate the marginal quantile q such that Pr(Y > q) = (6 × 10)−4,
which corresponds to a once in 200-year event in the IID setting; in particular, q
is obtained subject to a predefined loss function. We first estimate the marginal dis-
tribution FY (y) using Monte-Carlo techniques; see for instance, Eastoe and Tawn
(2009). Since we have a large sample size, n = 21, 000, it is reasonable to assume
that the observed covariate sample is representative of X . Thus, we can approximate
the marginal distribution FY (y) as follows,

F̂Y (y) =
∫
X
FY |X (y | x) fX (x)dx ≈ 1

n

n∑
t=1

FYt |Xt (yt | xt ). (3.1)

where FY |X (·) is the conditional distribution function of Y | X and fX (·) denotes the
joint probability density of the covariates X .

We incorporate the following loss function provided by the challenge organisers,

L (q, q̂) =

⎧⎪⎨
⎪⎩
0.9(0.99q − q̂) if 0.99q > q̂,

0 if
∣∣q − q̂

∣∣ ≤ 0.01q,

0.1(q̂ − 1.01q) if 1.01q < q̂,

(3.2)

where q and q̂ are the true and estimated marginal quantiles, respectively. This loss
function penalises under-estimation more heavily than an over-estimation.

We conduct the same exploratory data analysis for both challenges given the same
covariates are used; this is outlined in Section 3.1. In Section 3.2 we introduce our
techniques for modelling Y | X , which is then used for modelling Y via (3.1). Our
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approach for uncertainty quantification is outlined in Section 3.3, and we give our
results for both challenges in Section 3.4.

3.1 Exploratory data analysis

Given the covariate vector Xt = {V1,t , . . . , V8,t }, the environmental response variable
Yt , t ∈ {1, . . . , n}, is temporally independent (Rohrbeck et al. 2023). However,
it is not clear which covariates affect Y , and what form these covariate-response
relationships take. In what follows, we aim to explore these relationships so we can
account for them in our modelling framework.

To begin, we explore the dependence between all variables to understand the rela-
tionships between covariates, aswell as the relationships between individual covariates
and the response variable. We investigate dependence in the main body of the data
using Kendall’s τ measure, while for the joint tails, we use the pairwise extremal
dependence coefficients χ and η defined in Section 2; values for all pairs are shown in
Fig. 1, with the threshold u set at the empirical 0.95-quantile for the extremalmeasures.

The response variable Y has the strongest dependence with V3 in the body of the
distribution (see τ̂ in Fig. 1), followed by V6 (wind speed) then V7 (wind direction). For
the tail of the distribution, Y has strongest dependence with V2, V3 and V6 (see χ̂ and η̂

in Fig. 1).We also find strong dependence between V6 and V7 in the body, but evidence
of weak dependence in the tail (dark blue for χ̂ and η̂). There is also strong dependence
between V1 and V2 in both the body and tail (see dark red for η̂). We find very similar
dependence relationships when the data are split into seasons. In the Supplementary
Material, we show scatter plots of each covariate against the response variable; these
demonstrate a highly non-linear relationship for each explanatory variable with Y .

Next, we explore temporal relationships for the response variable Y . We first find
temporal non-stationarity as the distribution of Y varies significantly with V5 (season);
see the Supplementary Material for more detail. The mean and range of Y is higher in
season 1 than season 2, with greater extreme values observed in season 1. However,
within each season, acrossmonths, there is little temporal variation in the distributionof
Y .We also find that Y exhibits temporal independence at all lags, with auto-correlation
function (acf) values close to zero; see the Supplementary Material.

As noted in Rohrbeck et al. (2023), 11.7% of the observations have at least one
value missing completely at random (MCAR). A detailed breakdown of the pattern
of missing predictor observations is provided in the Supplementary Material. Since

Fig. 1 Heat maps for dependence measures for each pair of variables: Kendall’s τ (left), χ (middle) and η

(right). Note the scale in each plot varies, depending on the support of the measure, and the diagonals are
left blank, where each variable is compared against itself
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we can assume the data are MCAR, ignoring the observations that have a missing
predictor covariate will not bias our inference, however, a complete case analysis is
undesirable due to the amount of data loss. To mitigate against this, we attempted to
impute the observations where predictors are missing but ultimately could not find
an imputation method that satisfactorily retained the dependence structure between
the response and covariates, particularly in the tails of the distribution. Therefore, we
use a case analysis approach, whereby an observation is only removed if a predictor
covariate of interest is missing. This results in only 4% of observations being removed
for our final model.

3.2 Methods

Due to the complex nature of the data,we consider various non-stationaryGPDmodels,
as in Eq. 2.1, that are formulated as GAMs to fit Y | X . For threshold selection, we
extend the method proposed by Murphy et al. (2024) to select a threshold for non-
stationary, covariate-dependent GPDmodels; the details are provided in Section 3.2.1.
Our inference and model selection procedures are then provided in Sections 3.2.2
and 3.2.3, respectively. We note that the same model formulation is used for both
C1 and C2 with a small adjustment to the parameter estimation procedure for C2 to
incorporate the provided loss function given in Eq. 3.2. We utilise (3.1) to obtain the
marginal distribution of Y .

3.2.1 General model formulation

Let X̃t denote the set of predictor covariates with t ∈ {1, . . . , n}. Then yt and x̃t denote
the observations of the response variable and predictive covariates, respectively. We
consider models with the following form,

FYt |X̃t
(yt |X̃t = x̃t ) = 1 − ζ(x̃t )

[
1 + ξ(x̃t )

(
yt − v(x̃t )

σ (x̃t )

)]−1/ξ(x̃t )

+
, (3.3)

where v(x̃t ) and ζ(x̃t ) are a covariate-dependent threshold and rate parameter, respec-
tively, such that the rate parameter corresponds to the probability of exceeding the
threshold.

Our analysis in Section 3.1 indicates that V3, V5 (season), and V6 (wind speed)
exhibit non-trivial dependence relationships with the response variable. Therefore we
assume these variables can be used as predictor variables for modelling Y , and set
x̃ := (V j ) j∈{3,5,6}. Although V7 (wind direction) also exhibits strong dependence
with Y , we do not consider it here since it is highly correlated with wind speed so
would involve adding complex interaction terms to the model formulation, and V6 has
a stronger relationship with Y compared to V7 (see Fig. 1).

Owing to the complex covariate structure observed in the data, as described in
Section3.1,we employ theflexibleEVGAMframeworkproposed inYoungman (2019)
for modelling tail behaviour. Under this framework, GAM formulations are used to
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capture non-stationarity in the threshold, scale and shape functions given in Eq. 3.3.
Without loss of generality, consider the scale function σ(·). We assume that

h(σ (x̃)) = ψσ (x̃), with ψσ (x̃) = β0 +
K∑

κ=1

Pκ∑
p=1

βκ pbκ p(x̃), (3.4)

where h(x) := log(x) denotes the link functionwhich ensures the correct support, with
coefficientsβ0, βκ p ∈ R and basis functions bκ p for p ∈ {1, . . . , Pκ }, κ ∈ {1, . . . , K },
where K is the number of splines in theGAMformulation and Pκ is the basis dimension
relating to spline κ . The basis functions can be in terms of individual covariates, i.e.,
bκ p : R �→ R, or multiple covariates, i.e., bκ p : Rm �→ R, 1 < m ≤ 8. Analogous
forms can be taken for v(·) and ξ(·), adjusting the link function h(·) as appropriate,
although these are not considered here for reasons detailed below.

To select an appropriate threshold, we employ the threshold selection method of
Murphy et al. (2024) and extend this approach to select a threshold for non-stationary,
covariate-dependent GPD models. The method selects a threshold based on minimis-
ing the expected quantile discrepancy (EQD) between the sample quantiles and fitted
GPD model quantiles. When fitting a non-stationary model, the excesses will not be
identically distributed across covariates. Thus, to utilise the EQD method in this case,
we use the fitted non-stationary GPD parameter estimates to transform the excesses
to common standard exponential margins and compare sample quantiles against the-
oretical quantiles from the standard exponential distribution. This transformation is a
common approach for checking the model fit of a non-stationary GPD (Coles 2001).

We use a stepped-threshold according to season as there is clear variation in the
distribution, and thereby the extremes, of Y between seasons; see the Supplementary
Material formore details. Specifically, we set v(x̃t ) := 1(x̃2,t = 1)v1+1(x̃2,t = 2)v2,
v1, v2 ∈ R, with corresponding rate parameter ζ(x̃t ) := 1(x̃2,t = 1)ζ1 + 1(x̃2,t =
2)ζ2, where ζ1, ζ2 ∈ [0, 1] denote the probabilities of exceeding the threshold for
seasons 1 and 2, respectively, and x̃r ,t are realisations of the r th component of x̃
for r ∈ {1, 2, 3}. This seasonal threshold significantly improves model fits; see the
Supplementary Material for further details. GAM forms for the threshold were also
explored, but did not offer significant improvement. Furthermore, the smooth GAM
formulation of the GPD scale parameter adequately captures any residual variation in
the response arising due to covariate dependence.

3.2.2 Inference

For all GAM formulations, we only consider basis functions of singular covariates,
since specifying basis functions ofmultiple variables requires a detailed understanding
of covariate interactions and can significantly increase the computational complexity
of the modelling procedure (Wood 2017). We keep the shape function ξ(x) := ξ ∈
R constant across covariates; this is common in non-stationary analyses, since this
parameter is difficult to estimate (Chavez-Demoulin and Davison 2005). Within the
GAM formulation, we consider several parametric forms to account for the predictive
covariates in the scale parameter using linear models, indicator functions and splines.
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When using splines, we are required to select a basis dimension Pκ ∈ N; this
determines the number of coefficients to be estimated. Basis dimension is the most
important choice within spline modelling procedures and directly corresponds with
the flexibility of the framework (Wood 2017). We only consider splines for V3 and V6.
For each X̃r , r ∈ {1, 3}, we determine the basis dimension P1 and P2, respectively, by
first building amodel for Yt | X̃r ,t , to allow us to consider the effect of this predictor on
the response directly. We vary the basis dimension and compare the resulting models
using cross validation (CV), detailed in the following section. We set P1 = 4 and
P2 = 3 for V3 and V6, respectively.

ForC2,we incorporate the loss function ofEq. 3.2 into the estimation procedure. Let
Iv := {t ∈ {1, . . . , n} | yt > v(x̃t )} denote the set of temporal indices corresponding
to threshold exceedances and nv := |Iv|. We consider the objective function

S(θ) := −lR(θ) +
∑
i∈Iv

L (q∗
i , q̂i )/nv, (3.5)

where lR(θ) denotes the penalised log-likelihood function of the restricted maximum
likelihood estimation (REML) approach (Wood 2017), θ denotes the parameter vector
associated with the GPD formulation of Eq. 3.4, and

∑
i∈Iv

L (q∗
i , q̂i )/nv denotes

the average loss between the sample quantiles of the transformed excesses and the
theoretical standard exponential quantiles. Specifically, we transform the excesses,
(yt −v(x̃t ))t∈Iv

, to standard exponential margins using the fitted non-stationary GPD
parameter estimates and compare the ordered excesses, q∗, to the theoretical quantiles,
q̂, from a standard exponential distribution evaluated at probabilities {pi = i/(nv +
1), i = 1, . . . , nv}. Minimising the objective function S(θ) ensures that the parameter
estimates also account for and minimise the loss function,L . We use this formulation
to adjust the GPD parameters for challenge C2 once a threshold is selected.

3.2.3 Model selection

To determine the best-fitting model, we use a forward selection process and aim to
minimise the model’s CV score. For each model, we apply k-fold CV (Hastie et al.
2001, Ch 7.) utilising the continuous ranked probability score (CRPS, Gneiting and
Katzfuss 2014) as our goodness-of-fitmetric. CRPSdescribes the discrepancy between
the predicted distribution function and observed values without the specification of
empirical quantiles. We explore model ranking by taking both k = 10 and 50, and find
that both give an equivalent ranking; we present results for the latter. We also provide
the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
values to aid in model selection. A subset of models used in the forward selection
process are detailed in Table 1 where, for each model, we provide the change in the
CRPS, AIC and BIC relative to model 1. The parameterisation of model 7 achieves
the largest reduction for all three metrics relative to the baseline model.

3.3 Uncertainty

For each of the 100 different covariate combinations, x̃i for i ∈ {1, . . . , 100}, we need
to construct central 50% confidence intervals. We use a bootstrapping procedure to
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Table 1 Table of selected models considered for challenge C1

Model σ(x̃t ) �CRPS �AIC �BIC

1 β0 0 0 0

2 β0 + β11(x̃2,t = 1) −0.5 −33.4 −26.1

3 β0 + s1(x̃1,t ) −0.9 −408.5 −379.2

4 β0 + s2(x̃3,t ) −0.5 −284.3 −276.8

5 β0 + β11(x̃2,t = 1) + s1(x̃1,t ) −0.9 −425.8 −388.1

6 β0 + s1(x̃1,t ) + s2(x̃3,t ) −1.0 −752.7 −717.2

7 β0 + β11(x̃2,t = 1) + s1(x̃1,t ) + s2(x̃3,t ) −1.1 −780.0 −735.3

1(·) denotes an indicator function, si (·) for i ∈ {1, 2} denote thin-plate regression splines, β0, β1 are
coefficients to be estimated, and x̃r ,t is defined as in the text. All values have been given to one decimal
place
Numbers in bold highlight the smallest values in each case and indicate the largest change compared to the
baseline model for each of the model selection metrics

avoid making potentially inaccurate assumptions such as the asymptotic normality
approximation of maximum likelihood estimates, for example. Traditional bootstrap
approaches are non-parametric and randomly resample the data with replacement.
However, in Section 3.1 we find that the response variable is dependent on covariates,
and these covariates exhibit temporal dependence. A standard bootstrap procedure
would therefore not retain this dependence. Instead, we preserve the temporal depen-
dence structure of covariates and their relationship with the response variable by
approximating our confidence intervals using the stationary, semi-parametric boot-
strapping procedure adopted by D’Arcy et al. (2023).

First, the response variable Yt is transformed to Uniform(0,1) margins to preserve
its non-stationary behaviour; denote this sequence UY

t = FYt |X̃t
(Yt |X̃t = x̃t ) where

FYt |X̃t
is the estimated model given in Eq. 3.3. We then adopt the stationary boot-

strap procedure of Politis and Romano (1994) to retain the temporal dependence in
the response and explanatory variables by sampling blocks of consecutive observa-
tions. The block length L is random and simulated from aGeometric(1/l) distribution,
where the mean block length l ∈ N is carefully selected based on the autocorrelation
function. This was selected at 50 days, the maximum lag for which the autocorrelation
was significant across all variables; see the SupplementaryMaterial. Denote this boot-
strapped sequence on Uniform margins byUB

t . We transformUB
t back to the original

scale using our fitted model, preserving the original structure of Yt ; we denote this
series Y B

t . Then we fit our model to Y B
t to re-estimate all of the parameters and thus

the quantile of interest. We repeat this procedure to obtain 200 bootstrap samples.

3.4 Results

For C1, we use our final model of Section 3.2.3 to estimate the 0.9999-quantile of
Y | X̃ = x̃i , i ∈ {1, . . . , 100}, for the set of 100 covariate combinations. The left
panel of Fig. 2 shows the quantile-quantile (QQ) plot for our model. There is general
alignment between the model and empirical quantiles; however, there is some over-
estimation in the upper tail, and our 95% tolerance bounds do not contain some of the
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Fig. 2 QQ plot for our final model (model 7 in Table 1) on standard exponential margins. The y = x line
is given in red and the grey region represents the 95% tolerance bounds (left). Predicted 0.9999−quantiles
against true quantiles for the 100 covariate combinations. The points are the median predicted quantile over
200 bootstrapped samples and the vertical error bars are the corresponding 50% confidence intervals. The
y = x line is also shown (right)

most extreme response values. The right panel of Fig. 2 shows our predicted quantiles,
and their associated confidence intervals, compared to their true quantiles.As expected,
our predictions tend to over-estimate the true quantiles. We note this figure is different
from the one presented by Rohrbeck et al. (2023) due to an error in our code being
fixed after submission. In this scenario, our estimated confidence intervals lead to a
14% coverage of the true quantiles, which does not alter our ranking for this challenge.
Our performance and model improvements are discussed in Section 6.

For challenge C2, we estimate the quantile of interest as q̂ = 213.1 (209.3, 242.1).
A 95% confidence interval for the estimate is given in parentheses based on the boot-
strapping procedure outlined in Section 3.2.1. Due to a coding error, this value differs
from the original estimate submitted for the EVA (2023) Conference Data Challenge.
The updated value over-estimates compared to the truth (q = 196.6).

4 Challenge C3

4.1 Exploratory data analysis

For challenge C3, we are provided with 70 years of daily data of an environmental
variable for three towns on the island of Coputopia. These data are denoted by Yi,t ,
i ∈ {1, 2, 3}, t ∈ {1, . . . , n}, where i is the index of each town and t is the point in
time. Each year consists of 12 months, each lasting 25 days, resulting in n = 21, 000
observations for each location.

We are also provided with daily covariate observations Xt = (St , At ), where St
and At denote seasonal and atmospheric conditions, respectively. Season is a binary
variable, taking values in the set {1, 2}, with each year of observations exhibiting
both seasons for exactly 150 consecutive days. Atmospheric conditions are piecewise
constant over months, with large variation in the observed values between months. A
descriptive figure of both covariates is given in the Supplementary Material.
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In Rohrbeck et al. (2023), we are informed that Yi,t are distributed identically
across all sites and over time, with standard Gumbel margins. However, it is not known
whether the covariates Xt influence thedependence structure ofYt := (Y1,t ,Y2,t ,Y3,t ).
We are also informed that, conditioned on covariates, the process is independent over
time, i.e., (Yt | Xt ) ⊥⊥ (Yt ′ | Xt ′) for any t �= t ′. In this section, we examine what
influence, if any, the covariate process Xt may have on the dependence structure of
Yt .

We begin by transforming the time series Yi,t to standard exponential margins,
denoted by Zi,t , via the probability integral transform. This transformation is com-
mon in the study of multivariate extremes and can simplify the description of extremal
dependence (Keef et al. 2013a). To explore the extremal dependence in the Cop-
utopia time series, we consider all 2- and 3-dimensional subvectors of the process,
i.e., {Zi,t , i ∈ I , t ∈ {1, . . . , n}}, I ∈ I := {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. This
separation is important to ensure the overall dependence structure is fully understood,
since intermediate scenarios can exist where a random vector exhibits χ = 0, but
χ > 0 for some 2-dimensional subvector(s) (Simpson et al. 2020).

Furthermore, to explore the impact of covariates on the dependence structure, we
partition the time series into subsets using the covariates. For the seasonal covariate,
let GS

I , j := {Zi,t , i ∈ I , St = j} for j = 1, 2, and for the atmospheric covariate,
let π : {1, . . . , n} → {1, . . . , n} denote the permutation associated with the order
statistics of At , defined so that ties in the data are accounted for. We then split the data
into 10 equally sized subsets corresponding to the atmospheric order statistics, i.e.,
GA

I ,k := {
Zi,t , i ∈ I , t ∈ k

}
for k = 1, 2, . . . , 10, where k := {t | (k − 1)n/10 +

1 ≤ π(t) ≤ kn/10}. Thus, the atmospheric values associated with each subset GA
I ,k

will increase over k.
The idea behind these subsets is to examine whether altering the values of either

covariate impacts the extremal dependence structure. Consequently, we set u = 0.9
and estimate χ(u) using the techniques outlined in Section 2, with uncertainty quanti-
fied through bootstrapping with 200 samples. The bootstrapped χ estimates for GA

I ,k
with I = {1, 2, 3} are given in Fig. 3. The plots for the remaining index sets inI , along
with the subsets associated with the seasonal covariate, are given in the Supplementary
Material. The estimates of χ appear to vary, in themajority of cases, across both subset
types (seasonal and atmospheric), suggesting both covariates have an impact on the
dependence structure. For the atmospheric process in particular, the values of χ tend
to decrease for higher atmospheric values, suggesting a negative association between
the strength of positive extremal dependence and the atmospheric covariate. We also
observe that across all subsets, χ appears consistently low in magnitude, suggesting
the extremes of some, if not all, of the sub-vectors are unlikely to occur simultane-
ously. As such, for modelling the Coputopia time series, we require a framework that
can capture such forms of dependence. We also consider pointwise estimates of the
function λ(·), as defined later in Eq. 4.1, over GS

I , j and GA
I ,k for fixed simplex points;

these results are given in the Supplementary Material. Similar to χ , estimates of λ(·)
vary significantly across subsets, providing additional evidence of non-stationarity
within extremal dependence structure.
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Fig. 3 Boxplots of empirical χ estimates obtained for the subsets GA
I ,k , with k = 1, . . . , 10 and I =

{1, 2, 3}. The colour transition (from blue to orange) over k illustrates the trend in χ estimates as the
atmospheric values are increased

4.2 Modelling of joint tail probabilities under asymptotic independence

For challengeC3,weare required to estimate probabilities p1 := Pr (Y1 > y,Y2 > y,
Y3 > y) and p2 := Pr (Y1 > v,Y2 > v,Y3 < m), with y = 6, v = 7 and
m = − log(log(2)). Note that p1 and p2 are independent of the covariate pro-
cess and correspond to different extremal regions in R

3; we refer to p1 and p2
as parts 1 and 2 of the challenge, respectively. For the remainder of this section
we will consider the transformed exponential variables (Z1, Z2, Z3), omitting the
subscript t for ease of notation. Observe that F(−Z3)(z) = ez, for z < 0; setting
Z̃3 := − log (1 − exp(−Z3)) , we have

p2 = Pr (Z1 > ṽ, Z2 > ṽ, Z3 < m̃) = Pr
(
Z1 > ṽ, Z2 > ṽ, Z̃3 > m̃

)
,

where ṽ and m̃ denote the values v and m transformed to the standard expo-
nential scale, e.g., ṽ := − log (1 − exp(− exp(−v))). Similarly, we have p1 =
Pr (Z1 > ỹ, Z2 > ỹ, Z3 > ỹ). Consequently, both p1 and p2 can be considered as
joint survivor probabilities.

Since not all extremes of Z1, Z2 and Z3 are observed simultaneously, we employ the
framework byWadsworth and Tawn (2013), which is a generalisation of the approach
proposed in Ledford and Tawn (1996). The model of Wadsworth and Tawn (2013)
assumes that for any ray ω ∈ S2 := {

(ω1, ω2, ω3) ∈ [0, 1]3 : ω1 + ω2 + ω3 = 1
}
,

where S2 denotes the standard 2-dimensional simplex,

Pr (Z1 > ω1r , Z2 > ω2r , Z3 > ω3r) = Pr (min{Z1/ω1, Z2/ω2, Z3/ω3} > r)
= L (er ;ω)e−rλ(ω),

(4.1)
as r → ∞, where λ(ω) ≥ max(ω) is known as the angular dependence function
(ADF). Asymptotic dependence occurs at the lower bound, i.e., λ(ω) = max(ω)
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for all ω ∈ S2, and the coefficient of tail dependence is related to the ADF via
η = 1/{3λ(1/3, 1/3, 1/3)}. In practice, Eq. 4.1 can be used to evaluate extreme joint
survivor probabilities; in particular, probabilities p1 and p2 can be identified with
the rays ω(1) := (ỹ, ỹ, ỹ)/r (1) and ω(2) := (ṽ, ṽ, m̃)/r (2) in S2, respectively, where
r (1) := ỹ + ỹ + ỹ and r (2) := ṽ + ṽ + m̃. See Section 4.4 for further details.

4.3 Accounting for non-stationary dependence

In the stationary setting, pointwise estimates of λ(·) can be obtained via the Hill
estimator (Hill 1975), from which tail probabilities can be approximated. However,
alternative procedures are required for data exhibiting trends in dependence, such as
the Coputopia data set. Existing approaches for capturing non-stationary dependence
structures are sparse in the extremes literature, and most approaches are limited to
asymptotically dependent data structures. For the case when data are not asymptot-
ically dependent, Mhalla et al. (2019) and Murphy-Barltrop and Wadsworth (2024)
propose non-stationary extensions of the Wadsworth and Tawn (2013) framework,
while Jonathan et al. (2014) and Guerrero et al. (2023) propose non-stationary exten-
sions of the Heffernan and Tawn (2004) model (see Murphy-Barltrop and Wadsworth
2024 for a detailed review).

To account for non-stationary dependence in C3, we propose an extension
of the Wadsworth and Tawn (2013) framework. With Zt = (Z1,t , Z2,t , Z3,t )

and Xt , defined as in Section 4.1, we define the structure variable Tω,t :=
min{Z1,t/ω1, Z2,t/ω2, Z3,t/ω3}, for anyω ∈ S2;we refer toTω,t as themin-projection
variable at time t . From Section 4.1, we know that the joint distribution of Zt is not
identically distributed over t ; which implies non-stationarity in the distribution of Tω,t .
To account for this, Mhalla et al. (2019) and Murphy-Barltrop and Wadsworth (2024)
assume the following model given the vector of covariates xt :

Pr
(
Tω,t > u | Xt = xt

) = L
(
eu | ω, xt

)
e−λ(ω;xt )u as u → ∞, (4.2)

for all t , where λ (·; xt ) denotes the non-stationary ADF. Note that this assumption is
very similar in form to Eq. 4.1, with the primary difference being the function λ(·; xt )
is non-stationary over t . From Eq. 4.2, we have

Pr
(
Tω,t − u > z | Tω,t > u, Xt = xt

) = e−λ(ω;xt )z as u → ∞, (4.3)

for z > 0. Consequently, Eq. 4.2 is equivalent to assuming (Tω,t − u) | {Tω,t >

u, Xt = xt } ∼ Exp(λ (ω; xt )) as u → ∞.
We found that (4.2) was not flexible enough to capture the tail of Tω,t for the Cop-

utopia data; see Section 4.3.2 for further discussion. Thus, we propose the following
model: given any z > 0 and a fixed ω ∈ S2, we assume

Pr
(
Tω,t − u > z | Tω,t > u, Xt = xt

) =
(
1 + ξ (ω; xt ) z

σ (ω; xt )
)−1/ξ(ω;xt )

as u → ∞,

(4.4)
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whereσ(·; xt ), ξ(·; xt ) are non-stationary scale and shape parameter functions, respec-
tively. This is equivalent to assuming (Tω,t − u) | {Tω,t > u, Xt = xt } ∼
GPD(σ (ω; xt ) , ξ (ω; xt )) as u → ∞, and Eq. 4.3 is recovered by taking the limit as
ξ (ω; xt ) → 0 for all t .

Our proposed formulation in Eq. 4.4 allows for additional flexibility within the
modelling framework by including a GPD shape parameter ξ (ω; xt ), which quantifies
the tail behaviour of Tω,t . Given the wide range of distributions in the domain of
attraction of a GPD (Pickands 1975), it is reasonable to assume that the tail of Tω,t can
be approximated by Eq. 4.4. For the Coputopia time series, this assumption appears
valid, as demonstrated by the diagnostics in Section 4.3.2.

4.3.1 Model fitting

To apply (4.4),wefirst fixω ∈ S2 and assume that the formulation holds approximately
for some sufficiently high threshold level from the distribution of Tω,t ; we denote the
corresponding quantile level by τ ∈ (0, 1). For simplicity, the same quantile level
is considered across all t . Further, let vτ (ω, xt ) denote the corresponding threshold
function, i.e., Pr(Tω,t ≤ vτ (ω, xt ) | Xt = xt ) = τ for all t . Under our assumption, we
have (Tω,t − vτ (ω, xt )) | {Tω,t > vτ (ω, xt ), Xt = xt } ∼ GPD(σ (ω; xt ) , ξ (ω; xt )).
We emphasise that vτ (ω, xt ) is not constant in t , and we would generally expect
vτ (ω, xt ) �= vτ (ω, xt ′) for t �= t ′.

As detailed in Section 4.2, both p1 and p2 can be associated with points on the
simplex S2, denoted by ω(1) and ω(2), respectively. Letting ω ∈ {ω(1),ω(2)}, our
estimation procedure consists of two stages: estimation of the threshold function
vτ (ω, zt ) for a fixed τ ∈ (0, 1), followed by estimation of GPD parameter func-
tions σ (ω; xt ) , ξ (ω; xt ). For both steps, we take a similar approach to Section 3.2
and use GAMs to capture these covariate relationships. To simplify our approach, we
falsely assume that the atmospheric covariate At is continuous over t ; this step allows
us to utilise GAM formulations containing smooth basis functions. Given the signifi-
cant variability in At between months, discrete formulations for this covariate would
significantly increase the number of model parameters and result in higher variability.

Let log(vτ (ω, xt )) = ψv(xt ), log(σ (ω; xt )) = ψσ (xt ) and ξ (ω; xt ) = ψξ (xt )
denote the GAM formulations of each function, where ψ− denotes the basis represen-
tation of Eq. 3.4. Exact forms of basis functions are specified in Section 4.3.2. As in
Section 3.2, model fitting is carried out using the evgam software package (Young-
man 2022). For the first stage, vτ (ω, xt ) is estimated by exploiting a link between
the loss function typically used for quantile regression and the asymmetric Laplace
distribution (Yu and Moyeed 2001). The spline coefficients associated with ψσ and
ψξ are estimated subsequently using the obtained threshold exceedances.

4.3.2 Selection of GAM formulations and diagnostics

Prior to estimation of the threshold and parameter functions, we specify a quantile
level τ and formulations for each of the GAMs. To begin, we fix τ = 0.9 and consider
a variety of formulations for each ψv,ψσ and ψξ . By comparing metrics for model
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selection, namely AIC, BIC and CRPS, we found the following formulations to be
sufficient

ψv(xt ) = βu + sv(at ) + βs1(st = 2), ψσ (xt ) = βσ + sσ (at ) and ψξ (xt ) = βξ ,

(4.5)
for parts 1 and 2, where βu, βσ , βξ ∈ R denote constant intercept terms, 1 denotes
the indicator function with corresponding coefficient βs ∈ R, and su, sσ denote cubic
regression splines of dimension 10. The shape parameter is set to constant for the
reasons outlined in Section 3.2.3. Cubic basis functions are used for ψv and ψσ since
they have several desirable properties, including continuity and smoothness (Wood
2017). A dimension of size 10 appears more than sufficient to capture the trends
relating to the atmosphere variable. Alternative formulations were tested for both
parts, but this made little difference to the resulting model fits.

We remark that the seasonal covariate is only present with the formulation for ψv .
Once accounted for in the non-stationary threshold, the seasonal covariate appeared
to have little influence on the fitted GPD parameters. More complex GAM formula-
tions were tested involving interaction terms between the seasonal and atmospheric
covariates, which showed little to no improvement in model fits. Thus, we prefer the
simpler formulations on the basis of parsimony.

With GAM formulations selected, we now consider the quantile level τ ∈ (0, 1).
To assess sensitivity in our formulation, we set T := {0.8, 0.81, . . . , 0.99} and
fit the GAMs outlined in Eq. 4.5 for each τ ∈ T. Letting δω,t and Tτ :=
{t ∈ {1, . . . , n} | δω,t > vτ (ω, xt )} denote the min-projection observations and
indices of threshold-exceeding observations, respectively, we expect the set E :=
{− log

{
1 − FGPD(δω,t − vτ (ω, xt )) | σ (ω; xt ) , ξ (ω; xt )

} | t ∈ Tτ } to follow a
standard exponential distribution.

With all exceedances transformed to a unified scale, we compare the empirical
and model exponential quantiles using QQ plots, through which we assess the rela-
tive performance of each τ ∈ T. We selected τ values for which the empirical and
theoretical quantiles appeared most similar in magnitude. From this analysis, we set
τ = 0.83 and τ = 0.85 for parts 1 and 2, respectively. The corresponding QQ plots
are given in Fig. 4, where we observe reasonable agreement between the empirical
and theoretical quantiles. However, whilst these values appeared optimal within T, we
stress that adequate model fits were also obtained for other quantile levels, suggesting
our modelling procedure is not particularly sensitive to the exact choice of quantile.
Furthermore, we also tested a range of quantile levels below the 0.8-level, but were
unable to improve the quality of model fits.

Plots illustrating the estimated GPD scale parameter functions are given in the
Supplementary Material, with the resulting dependence trends in agreement with the
observed trends fromSection 4.1.We also remark that the estimatedGPDshape param-
eters obtained for parts 1 and 2 were 0.042 (0.01, 0.075) and 0.094 (0.059, 0.128),
respectively, where the brackets denote 95% confidence intervals obtained using pos-
terior sampling (Wood 2017). These estimates, which indicate slightly heavy-tailed
behaviour within the min-projection variable, provide insight into why the original
exponential modelling framework is not appropriate for C3.
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Fig. 4 Final QQ plots for parts 1 (left) and 2 (right) of C3, with the y = x line given in red. In both cases,
the grey regions represent the 95% bootstrapped tolerance bounds

Overall, these results suggest different extremal dependence trends exist for the two
simplex pointsω(1) andω(2), illustrating the importance of the flexibility in our model.
These findings are also in agreement with empirical trends observed in Section 4.1,
suggesting ourmodelling framework is successfully capturing the underlying extremal
dependence structures.

4.4 Results

Given estimates of threshold and parameter functions, probability estimates can be
obtained via Monte Carlo techniques. Taking p1, for instance, we have

p1 = Pr(Z1 > ỹ, Z2 > ỹ, Z3 > ỹ)

= Pr
(
min

(
Z1/ω

(1)
1 , Z2/ω

(1)
2 , Z3/ω

(1)
3

)
> r (1)

)

=
∫
Xt

Pr
(
Tω(1), t > r (1) | Xt = xt

)
fXt (xt )dxt

= (1 − τ)

∫
Xt

Pr(Tω(1), t > r (1) | Tω(1), t > vτ (ω
(1), xt ), Xt = xt ) fXt (xt )dxt

≈ 1 − τ

n

n∑
t=1

(
1 + ξ(ω(1); xt )

(
r (1) − vτ (ω

(1), xt )
)

σ
(
ω(1); xt

)
)−1/ξ

(
ω(1);xt

)
,

assuming {xt : t ∈ {1, . . . , n}} is a representative sample from Xt . The procedure
for p2 is analogous. We note that this estimation procedure is only valid when r (1) >

vτ (ω
(1), xt ), or r (2) > vτ (ω

(2), xt ), for all t : however, for each τ ∈ T, this inequality
is always satisfied, owing to the very extreme nature of the probabilities in question.
Through this approximation, we obtain p̂1 = 1.480 × 10−5 and p̂2 = 2.461 × 10−5.
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5 Challenge C4

5.1 Exploratory data analysis

Challenge C4 entails estimating survival probabilities across 50 locations on the island
ofUtopula.As stated inRohrbeck et al. (2023), theUtopula island is split in two admin-
istrative areas, for which the respective regional governments 1 and 2 have collected
data concerning the variables Yi,t , i ∈ I = {1, . . . , 50}, t ∈ {1, . . . , 10, 000}. Index i
denotes the i th location, with locations i ∈ {1, . . . , 25} and i ∈ {26, . . . , 50} belonging
to the administrative areas of governments 1 and 2, respectively. Index t denotes the
time point in days; however, since Yi,t are IID for all i , we drop the subscript t for the
remainder of this section.

Since many multivariate extreme value models are only applicable in low-to-
moderate dimensions, we consider dimension reduction based on an exploration of the
extremal dependence structure of the data. In particular, we analyse pairwise estimates
of the extremal dependence coefficient χ(u), introduced in Eq. 2.2, for all possible
pairwise combinations of sites; the resulting estimates, using u = 0.95, are pre-
sented in the heat map of Fig. 5. Identification of any dependence clusters is achieved
through visual investigation, which seems appropriate for this data. We note, however,
that should visual considerations not suffice, alternative more sophisticated clustering
methods are available and can be applied; see for example Bernard et al. (2013).

Figure 5 suggests the existence of 5 distinct subgroups where all variables within
each subgroup have similar extremal dependence characteristics, while variables
in different subgroups appear to be approximately independent of each other in
the extremes. It is worth mentioning that the same clusters are identified when
we analyse pairwise estimates of the extremal dependence coefficient η(u); the
resulting estimates can be found in the Supplementary Material. Moreover, exam-
ining the magnitudes of χ(·) and η(·) estimates, it does not appear reasonable to
assume asymptotic dependence between variables in the same group. We there-
fore consider models that can be applied to data structures that do not take
their extreme values simultaneously. The indices of the five aforementioned sub-
groups are G1 = {4, 14, 19, 28, 30, 38, 43, 44}, G2 = {3, 10, 15, 18, 22, 29, 45, 47},
G3 = {8, 21, 25, 26, 32, 33, 34, 40, 41, 42, 48, 49, 50}, G4 = {1, 2, 5, 7, 9, 17, 20,
31, 46} and G5 = {6, 11, 12, 13, 16, 23, 24, 27, 35, 36, 37, 39}. Groups G1 and G2
include the most strongly dependent variables (shown by the darkest color blocks in
Fig. 5), followed by groupG3,while groupsG4 andG5 contain themostweakly depen-
dent variables.Wehenceforth assume independence between these groups of variables,
i.e., Pr((Yi )i∈Gk ∈ Ak, (Yi )i∈Gk′ ∈ Ak′) = Pr((Yi )i∈Gk ∈ Ak)Pr((Yi )i∈Gk′ ∈ Ak′),
Ak ⊂ R

|Gk |, Ak′ ⊂ R
|Gk′ |, for any k �= k′ ∈ {1, . . . , 5}.

Challenge C4 requires us to estimate the probabilities p1 = Pr (Yi > si ; i ∈ I )
and p2 = Pr(Yi > s1; i ∈ I ), where si := 1(i ∈ {1, 2, . . . , 25})s1 + 1(i ∈
{26, 27, . . . , 50})s2 and s1 (s2) denotes the marginal level exceeded once every year
(month) on average. Under the assumption of independence between groups, the
challenge can be broken down to 5 lower-dimensional challenges involving the esti-
mation of joint tail probabilities for each Gk, k ∈ {1, . . . , 5}. These can then be
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Fig. 5 Heat map of estimated empirical pairwise χ(u) extremal dependence coefficients with u = 0.95

multiplied together to obtain the required overall probabilities due to (assumed)
between-group independence; specifically, we have p1 = ∏5

k=1 Pr (Yi > si ; i ∈ Gk)

and p2 = ∏5
k=1 Pr (Yi > s1; i ∈ Gk).

5.2 Conditional extremes

The conditional multivariate extreme value model (CMEVM) of Heffernan and Tawn
(2004) provides a flexible multivariate extreme value framework capable of captur-
ing a range of extremal dependence forms without making assumptions about the
specific form of joint dependence structure. Consider a d-dimensional random vari-
able W = (W1, . . . ,Wd) on standard Laplace margins. For i ∈ {1, . . . , d}, the
CMEVM approach assumes the existence of parameter vectors α−|i ∈ [−1, 1]d−1

and β−|i ∈ (−∞, 1]d−1 such that

lim
ui→∞ Pr

{
W−i ≤ α−|iWi + W

β−|i
i z|i ,Wi − ui > w | Wi > ui

}
= e−wH|i

(
z|i

)
, w > 0,

with non-degenerate distribution function H|i (·), vector operations being applied
componentwise, and conditional threshold ui . The vector W−i denotes W excluding
its i th component and z|i is within the support of the residual random vector Z|i =
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(W−i − α−|iwi )/w
β−|i
i ∼ H|i (·). We apply this model to data where Wi > ui , for

some finite conditioning threshold ui , to estimate the probabilities p1 and p2 defined
in Section 5.1, using the inference procedure of Keef et al. (2013a).

5.3 Results

Let W := (W1, . . . ,W50) denote the random vector after transformation to stan-
dard Laplace margins. This vector is divided into the five subgroups identified in
Section 5.1, and the subgroup probabilities are estimated using predictions obtained
from the sampling method of Heffernan and Tawn (2004). We condition on the first
variable of each subgroup being extreme, and simulate 108 predictions from each of
the resulting fitted conditional extremes models. To account for uncertainty in the
estimates, we perform a parametric bootstrapping procedure with 100 samples.

Sensitivity analyses of the estimated probabilities to the choice of conditioning
variable suggest no significant effect. Furthermore, we consider a range of condi-
tioning thresholds; the corresponding estimates of subgroup probabilities defined in
Section 5.1 appear relatively stable with respect to the conditioning threshold quantile.
We ultimately select 0.85-quantiles for the conditioning thresholds of our final prob-
ability estimates. These are given by p̂1 = 1.094 × 10−26 (2.150 × 10−36, 1.359 ×
10−24) and p̂2 = 1.076×10−31 (1.596×10−46, 1.850×10−29), with 95% confidence
intervals obtained from parametric bootstrapping given in parentheses.

6 Discussion

In this paper, we have proposed a range of statistical methods for estimating extreme
quantities for challenges C1-C4. For the univariate challenge C1, we estimated the
0.9999-quantile, and the associated 50% confidence intervals, of Y | X = xi , i ∈
{1, . . . , n}. For challenge C2, we estimated a quantile, corresponding to a once in
200 year level, of the marginal distribution Y whilst incorporating the loss function in
Eq. 3.2. Overall we ranked 6th and and 4th for challenges C1 and C2, respectively.

For challenge C1, our final model (model 7 in Table 1) was chosen to minimise
the model selection criteria; however, QQ plots showed over-estimation of the most
extreme values of the response (see Fig. 2). As a result, the conditional quantiles
calculated for C1 are generally over-estimated when compared with the true quantiles.
If we ignored the model selection criteria and chose the model based on a visual
assessment of QQ plots, we would have chosen model 5 in Table 1 and this would
have covered the true quantile on fewer occasions than our chosen model. Therefore,
the main issue with our results concerns the width of the confidence intervals.

Narrow confidence intervals are an indication of over-fitting and this could have
arisen in several places. For instance, Rohrbeck et al. (2023) suggested all the sea-
sonality is captured in the threshold, while our model includes a seasonal threshold
and a covariate for seasonality in the scale parameter of the GPD model. As well as
over-fitting, the model may not have been flexible enough; this could be, in part, due to
our model missing covariates. For instance, the true model contained V2 as a covariate
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(Rohrbeck et al. 2023) whilst our model did not. In addition, the basis dimensions for
our splines are low. In practice, a higher dimension than we would expect should be
considered and, although we chose the dimension using a model-based approach, it
may have resulted in the splines not being flexible enough to capture all of the trends
in the data.

Narrow confidence intervals may have also resulted from the choice of uncertainty
quantification procedure. Changing the average block length l in our stationary boot-
strap procedure would alter the confidence interval widths, although this was carefully
chosen to reflect the temporal dependence in the data. Alternative methods, such as
the standard bootstrap procedure or the delta method, could be implemented to inves-
tigate how this affects the confidence interval widths. We expect that such confidence
intervals will be wider than those presented here since the dependence in the data is
not accounted for, but assuming temporal independence would be inaccurate. There-
fore, whilst adopting an alternative procedure may widen confidence intervals, thus
improving our performance, such intervals may not be well calibrated for this data set.

The over-fitting and over-estimation issues encountered in C1 are carried through
to C2 since the same model is used for both challenges. However, one aspect specific
to C2 is the choice of quantile evaluation within the loss function. Many methods exist
for evaluating the non-stationary quantiles which feed into the loss function term of
the objective function S(θ) in Eq. 3.5. As the loss function will be dominated by the
log-likelihood in S(θ), we choose to transform to standard exponential margins when
evaluating the quantiles in order to givemore importance to the loss function. Since the
data is light tailed (ξ < 0) this transformation elongates the tail and therefore inflates
any deviations between the model and theoretical quantiles which in turn, inflates the
contribution of the average loss function to S(θ). However, this approach means that
the objective function will have a preference to minimise the deviations in the upper-
tail of the distribution, leading to potential over-fitting to the upper-tail and possibly,
a poor fit in the rest of the tail. This may not necessarily be undesirable since the
loss function penalises under-estimation more than over-estimation, however, since
the model in C1 already over-fits, this method may only exacerbate the problem for
C2.

For the first multivariate challenge C3, we employed an extension of the method
proposed by Wadsworth and Tawn (2013) to estimate probabilities of three variables
lying in extremal sets. Our extension accounts for non-stationarity in the extremal
dependence structure, with GAMs used to represent covariate relationships. The QQ
plots for the resulting model suggested reasonable fits. For this challenge, we ranked
5th and our estimates are on the same order of magnitude as the truth (Rohrbeck et al.
2023).

We note similarities in the methodologies presented for the challenges C1, C2,
and C3. Specifically, each of the proposed methods used the EVGAM framework
for capturing non-stationary tail behaviour via a generalised Pareto distribution. We
acknowledge that the model selection tool proposed for C1 and C2 could also be
applied for C3. However, we opted not to use this tool for several reasons. Firstly,
unlike the univariate setting, there is no guarantee of convergence to a GPD in the
limit, and theGPD tail assumption thereby needs to be tested.Moreover, in exploratory
analysis, we tested the model selection tool for C3 but found the selected models and

123



Extreme value methods for estimating rare events in Utopia

quantiles to not be satisfactory, particularly in the upper tail of the min-projection
variable. We therefore selected a model manually, using QQ plots to evaluate perfor-
mance. Exploring threshold and model selection techniques for multivariate extremes
represents an important area of research.

In the final multivariate challenge C4, we estimated very high-dimensional joint
survival probabilities. To do so, we split the probability into 5 lower-dimensional com-
ponents which are assumed independent of each other, then estimated each using the
CMEVMofHeffernan andTawn (2004). In thefinal rankings ofRohrbeck et al. (2023),
we ranked 3rd for this challenge. A more prudent method could have been imple-
mented, as groups of variables were never truly independent. Alternatively, although
we achieve relatively stable probability estimates with respect to threshold in Section
5.2 (see SupplementaryMaterial for details), our approach could potentially have been
improved by estimating individual group probabilities across varying thresholds and
taking an average value as our final result. We also do not report the effect of the
choice of the conditioning variable on our estimates. Preliminary analysis suggested
this to be negligible. However, conditioning on each site in a given subgroup and then
taking a weighted sum of the resulting probabilities (e.g., Keef et al. 2013b) may have
resulted in more robust estimates.
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