
Using Known Boundaries to
Improve Bayesian Emulation

Rebekah Fearnhead

Durham University

A report submitted for the degree of

MSci

Easter 2024



Abstract

As more complex models that need to be evaluated are being used in a variety of

situations, ways to efficiently perform these evaluations and model the function

need to be developed. One way to do this is to use an emulator, for example

a Bayes Linear Emulator. Whilst these perform well, many techniques have

been being developed to improve the performance of these emulators and reduce

the number of expensive evaluations that need to be preformed. One of these

techniques is to add information about a boundary that can be easily analytically

solved to the emulator.
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Chapter 1

Introduction

Complex Mathematical Models are being used more commonly in many scientific areas to

help to describe complex physical systems. For example, these can be used in systems

biology [8], disease models [9], or to simulate galaxy formation [2]. One problem with this

is that it could take from a week to a month to do a single evaluation so often, it is not

feasible to fully evaluate these models.

Another problem which occurs with these complex models is that they contain many

sources of uncertainties. To perform analysis on these full models, all of these uncertainties

would need to be identified, and their effects quantified. This is difficult to do because of

the complexities of these models, and even if this is done, many more simulator evaluations

would need to be performed in order to account for all the possibilities. This will also

increase the time it takes for the full model to be simulated.

One way to solve these problems is to use an emulator which mimics the computer model

function that we want to evaluate, but will do it much faster than the full model for the

complex system. An emulator provides a prediction for the outputs of the function, f(x),

along with an uncertainty statement for the prediction.
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Chapter 2

Emulation in One Dimension

The simplest type of emulator that can be used is a Bayes Linear Emulator. In order to

mimic f(x), it only uses the second order specifications: expectation and variance, to make

predictions for the function. The most basic version of this emulator is f(x) = u(x), with

u(x) being a weakly stationary process which reflects the prior beliefs about f(x).

Sections 2.1 and 2.2, which describe how to specify our priors and how to update them

based on data, are based on material [2].

2.1 Specifying Prior Beliefs

In order to capture our prior beliefs about f(x), there are three main quantities that need

to be specified. The values of these can be estimated using knowledge of the underlying

equations of the real system which we are modelling.

Firstly, the location of the function needs to be given. This can be done by giving the

prior expectation, E[f(x)].

The second quantity that needs to be given is the variability, which can be used to give

the prior variance, Var[f(x)] = σ2, for the model. The value of this needs to be such that

most of the values of the true function will lie within a 3σ interval of the prior expectation

[4].

The final thing to be considered is the smoothness of the function. This can be specified

in the emulator by defining the prior covariance structure, Cov[f(x), f(x′)]. As well as

defining the covariance structure, this also requires a correlation length parameter, θ to be

chosen. This defines how close points have to be to influence the values of each other. A

quarter of the range of x is often a reasonable value for this.
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2.2 Updating Beliefs

Once we have specified our prior beliefs, Bayes Linear Statistics can be used to update our

second order beliefs for f(x), given a new input x. The update equations that are used are:

ED[f(x)] = E[f(x)] + Cov[f(x), D]Var[D]−1(D − E[D]), (2.1)

VarD[f(x)] = Var[f(x)]− Cov[f(x), D]Var[D]−1Cov[D, f(x)]. (2.2)

This produces ED[f(x)] and VarD[f(x)], the expectation and variance, adjusted by data

D, for f(x). Compared to fully evaluating all the points in the model, calculating these

values could be up to 109 or 1012 times faster, which shows the advantage of using an

emulator for these models.

2.3 Example in 1D

An example of this process can be shown using the 1 dimensional function,

f(x) = 0.45 sin (7x) + 0.2 cos (6πx)− x2 + 0.2, (2.3)

with 5 evaluations of the function equally spaced between 0 and 1.

Unlike the complex models that emulators are usually used on, this function can be

quickly evaluated, however, this allows us to compare the performance of the emulator to

the true function.

2.3.1 Specifying Priors

Before an emulator can be used, the prior beliefs from Section 2.1 need to be specified.

For this example, the prior expectation, E[f(x)], will be 0 as this is where the function

is located. The prior variance, Var[f(x)] = σ2, gives a 3σ interval in which most of the

function should lie, compared to the prior expectation. A good value, therefore is σ = 0.5,

however, depending on the function, a different value may perform better. Finally, the

prior covariance structure, Cov[f(x), f(x′)], and the correlation length, θ, need to be given.

As a quarter of the range of x often works well, θ = 0.25. For the covariance, a squared

exponential structure, σ2 exp
(
|x−x′|2

θ2

)
, will be used.

2.3.2 Emulation Results

Figure 2.1 shows the results of a simple one dimensional emulator on the example function.

The black line shows the true function being modelled, with the green points showing the

points at which we know the true values. The blue line shows the emulator expectation for

4
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Figure 2.1: The (a) true function being modelled by the emulator, and (b) the emulator
given 5 runs, with the blue line giving the emulator expectation, and the red lines giving
the prediction interval.

the function f(x). This goes through the known points, however, the prediction for the rest

of the function is smoother than the true function. The red lines show the 3σ prediction

interval, and the true function is fully inside this interval.

One way to measure the performance of the emulator is to use emulator diagnostics.

This compares the predicted values of the function using the emulator, to the true values

and is calculated as [6]:

SD(f(x)) =
f(x)− ED[f(x)]√

VarD[f(x)]
. (2.4)

A value of SD(f(x)) with a magnitude greater than 3 could suggest an inconsistency in the

prior model.

Figure 2.2 shows the emulator diagnostics for the emulator from Figure 2.1. All the

values are between -3 and 3 which shows that the emulator is performing well, and suggests

that good prior parameters were chosen for the model.

2.4 Varying Prior Parameters

Despite the emulator diagnostics showing that the emulator that was built performed well,

the affects of changing each of the three parts of the prior specification can be investigated.
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Figure 2.2: The emulator diagnostics for the function given the emulator built on 5 known
runs.

2.4.1 Varying the Prior Expectation

Firstly, the prior expectation can be changed to different values between -1 and 1, whilst

keeping the values of the other two parameters constant with σ = 0.5 and θ = 0.1. De-

creasing the value of theta compared to the original emulator better shows how changing

the prior expectation varies the output from the emulator.

From Figure 2.3, it can be seen that increasing the prior expectation causes the values

that the predicted function takes between the known points are higher. As the affect of the

evaluated runs on predicting the value of the function decreases, the predicted values will

tend towards the prior expectation. This also causes the maximum value that the prediction

interval takes to increase due to the prior expectation increasing.

2.4.2 Varying the Prior Variance

The second prior value that can be varied is the prior variance, Var[f(x)] = σ2. The prior

expectation will be kept at 0, and the correlation length, θ = 0.25, whilst sigma will take

values between 0.25 and 1.

As expected, Figure 2.4 shows that increasing the value of sigma, causes the size of the

prediction interval to increase. However, this does not cause any changes to the value of

the adjusted expectation, shown in blue.

2.4.3 Varying the Correlation Length

The final prior parameter that can be varied is the correlation length, θ. This is used to

describe how much of the area around each of the known runs is affected by them. Whilst
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Figure 2.4: The emulator expectation and prediction interval, with θ = 0.25, E[f(x)] = 0,
and σ = (a) 0.25, (b), 0.5, (c) 0.75 and, (d) 1.

keeping the prior expectation at 0, and prior variance at 0.52, the correlation coefficient can

be varied between 0.1 and 0.5.

Figure 2.5 shows that by changing the correlation length, both the adjusted expectation

and adjusted variance are affected. With a smaller correlation length, a smaller area around

each known run is influenced, so areas far from the runs tend to the prior expectation, and

variance. However, with larger values for θ, the known runs have a bigger influence on more

of the function, which leads to the emulator being more sure of the shape of the function,

decreasing the prediction interval. For θ = 0.5, the emulator is sure of the shape of the

function, however, its adjusted expectation does not model the true function well, and most

of the true function, in black, is outside of the prediction intervals in red. This means,

that whilst using a high value for theta leads to emulators producing results with a smaller
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Figure 2.5: The emulator expectation and prediction interval, with σ = 0.5, E[f(x)] = 0,
and correlation length, θ = (a) 0.1, (b), 0.2, (c) 0.3 and, (d) 0.5.

adjusted variance, this is not always better.
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Chapter 3

Emulation in Two Dimensions

3.1 Generalising from One Dimension to Two Dimensions

Emulation can be expanded to work in more than one dimension. This requires some of

the priors to be changed so that they can take into account the multiple dimensions being

used. These generalisations are based on ideas from [8].

3.1.1 Specifying Prior Beliefs

Whilst both the prior expectation, E[f(x)], and prior variance, Var[f(x)], can be kept the

same when generalising to multiple dimensions, some adjustments need to be made to the

covariance structure.

The squared exponential structure, which was used for emulation in one dimension, can

be generalised to use the full Euclidean distance, between pairs of vector input points. This

leads to the new covariance structure,

Cov[f(x), f(x′)] = σ2 exp−||x− x′||2

θ2
, (3.1)

being used.

3.2 Example in 2D

This generalisation to two dimensions can be shown using the following example function:

f(x) = sin (3πx1) +
1

20
cos (2πx2). (3.2)

The function will be evaluated at 9 points in a grid design, with x1 and x2 both taking the

values 1
6 ,

3
6 and 5

6 . The prior expectation will be set to 0, the prior variance, σ2 = 1, and

the correlation coefficient, θ = 0.35.

Figure 3.1 shows the prediction of the function, made by the emulator, compared to the

true function, f(x). It can be seen that, whilst the emulator models the function well for
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Figure 3.1: (a) The emulator adjusted expectation, (b) the true known function, f(x), (c)
the emulator adjusted variance, and (d) the emulator diagnostics.

x1 values between 0.3 and 0.7, when x1 gets closer to 0 or 1, the behavior of the function is

not captured as well, especially the decreasing behaviour near the boundaries. This can be

explained partially from the adjusted variance graph which shows higher variances at the

boundaries of the emulator.

The emulator diagnostics for a 2D emulator can be calculated in the same way as for a

1D emulator, using (2.4). The emulator is performing well as all values are between -3 and

3, meaning that f(x) is within the 3σ prediction interval, however at the boundary values

for x1, the emulator diagnostics give values above 2, showing how the model built by the

emulator is not performing as well in these areas, compared to the rest of the model.
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3.3 Picking Design Points

As seen in Figure 3.1, using a grid design for picking the points at which to evaluate

the true function at does not always produce the best performing emulator. There are two

characteristics of the example function which mean that a grid design for picking evaluation

points does not perform particularly well.

The first challenge for emulators is modelling the behaviour of the function close to the

boundaries. In the example, the emulator is not able to capture the decreasing behaviour

of the function when x1 gets close to the boundaries, as shown by the high emulator diag-

nostic values. This problem could be solved by moving the points of the gird closer to the

boundaries of the function, however, this would mean that the points would not be able

to influence the prediction made by the emulator as much, as more of the area each point

influences will be outside the area of the function we are interested in.

The second challenge occurs when the true function, f(x), being modelled by the emu-

lator displays periodic behaviour, especially when the gaps between the points in the grid

are a similar distance apart to the period of the function. In this example, this means that

whilst the periodic behaviour of x1 is easily captured by the emulator, the variation in the

behaviour of x2 is not modelled well.

3.3.1 Latin Hypercube Designs

One way to solve these problems is to use a Latin Hypercube Design when choosing the

points at which to evaluate the function at[8]. If we want to pick n points, this is done by

splitting each of the m input dimensions into n equally sized intervals, and then placing the

n runs so that for each input dimension, xj , each interval has one run in it.

Once the intervals that contain a run are decided, either the run can be located in the

centre of the interval, or the position inside the interval for each dimension can be decided

by using a Uniform distribution.

3.3.1.1 Improving the Example

A Latin Hypercube Design can now be used on the example function, (3.2), with n = 9.

Once the intervals for the 9 points have been decided, we want to make sure that the picked

points are spread out to make the emulator more efficient, as, for points close together the

areas that they provide information for will overlap more. This can be done by iteratively

picking two of the decided points and seeing if, by swapping the interval they are located in

for one of the dimensions, this will increase the minimum distance between any two points

12



in the design. If this occurs, then this change is chosen. This is a fast algorithm which can

be repeated hundreds of times, in a very short amount of time.

Once the intervals have been picked, the position of each point, with respect to the

centre of its interval is decided by adding random independent and identically distributed

uniform draws, u ∼ U [−1/(2l), 1/(2l)], where l is the width of the interval [6].
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Figure 3.2: (a) The Latin Hypercube Design points chosen, (b) the emulator adjusted
expectation, (c) the emulator adjusted variance, and (d) the emulator diagnostics.

Figure 3.2 shows the location of the 9 points chosen for the Latin Hypercube Design, and

the performance of the emulator using these points. The emulator adjusted expectation,

ED[f(x)], does not show as much cyclic behaviour as in Figure 3.1, and is also able to show

the lower values obtained at the boundaries of the x1. However, the emulator prediction

for the function is not as similar to the true function compared to the prediction using the

grid design, especially in the top left and bottom right areas of the function, and this can

be seen from the high values in the emulator adjusted variance. However, looking at the
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emulator diagnostics, the large values near the boundaries of x1 are no longer present, even

in these more uncertain areas. This shows the improved performance that choosing the

points at which to evaluate using this method provides.

3.4 Changing Covariance Structure

There are other ways that the emulator can also be improved, and one of these is by

changing the prior covariance structure. Our choice describes the prior beliefs we have

about the differentiability of the function we are trying to model [10].

3.4.1 Squared Exponential Covariance Function

The covariance function we have used in the previous examples is the squared exponential

covariance function which takes the form:

Cov[f(x), f(x′)] = σ2 exp−||x− x′||2

θ2
. (3.3)

This performs well if we think that f(x) is smooth, and therefore infinitely differentiable.

However if it is used on a function that is not infinitely differentiable, it can be too smooth

and lead to poor performing emulator diagnostics.

3.4.2 Matérn Covariance Function

This covariance function works well if we believe that k derivatives of f(x) exist, and takes

the form:

Cov[f(x), f(x′)] = σ2 2
1−ν

Γ(ν)

(
2
√
ν
||x− x′||

θ

)ν

Kν

(
2
√
ν
||x− x′||

θ

)
, (3.4)

where Kν is a modified Bessel function of the third kind, and ν rounded down to the next

integer gives the k, the number of derivatives that exist.

When ν → ∞, the Matérn covariance function will tend to the Squared Exponential

covariance (3.3). When ν is a half integer, it will simplify to an exponential multiplied by a

polynomial, with the most common versions being ν = 3/2 and ν = 5/2, for when we think

f(x) is differentiable 1 or 2 times respectively.

3.4.3 Exponential Covariance Function

When we do not believe that f(x) is differentiable, but is still continuous, the Exponential

covariance function can be used:

Cov[f(x), f(x′)] = σ2 exp−||x− x′||
θ

. (3.5)

This is another special case of the Matérn covariance function, where ν = 1/2 and θ is

rescaled to
√
2θ.
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3.5 Changing Correlation Lengths

Another way to improve the emulator is to use different correlation lengths, θi, for each

input dimension, xi. In the example function, (3.2), x1 causes more dramatic changes in

the behaviour of the function, compared to x2. This can be modelled by setting θ1 = 0.25

and θ2 = 1, while still keeping σ = 1. Using the grid design for picking known runs allows

us to more easily see the affect of the different values of θi.

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Expectation
 E_D[f(x)]

x1

x2

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

True Computer Model Function
 f(x)

x1

x2

(a) (b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Variance 
Var_D[f(x)]

x1

x2

−3

−2

−1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Diagnostics 
S_D[f(x)]

x1

x2

(c) (d)

Figure 3.3: (a) The emulator adjusted expectation, (b) the true known function, f(x), (c)
the emulator adjusted variance, and (d) the emulator diagnostics, when using θ1 = 0.25 and
θ2 = 1.

Figure 3.3 shows how using different values of θ for each dimension is able to improve

the performance of the emulator, even when a grid design is used. Looking at the adjusted

variance shows how the area that is affected by each known point is no longer circular.

This is due to the higher value of θ2 meaning that the area affected by the known points
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in the x2 dimension is bigger than in the x1 dimension, leading to a striped pattern for

the adjusted variance. As the function varies a lot more in the x1 dimension, this allows

the emulator to perform better and this is shown by the decreased emulator diagnostics

throughout the whole model. The improvement in the emulator in Figure 3.3, compared to

the original emulator with a grid design, shown in Figure 3.1 can also be seen in the adjusted

expectation graphs, as the emulator with different correlation lengths for the dimensions is

able to show the decreasing behaviour of the function at the boundaries of x1, which was

not modelled using the original emulator.

16



Chapter 4

History Matching

One use of emulators created for complex physical systems is history matching. Using the

computer model, f(x) and observed data z of the true system, y, we can try to learn about

the inputs, x, which can produce these results. There are two main questions that can be

answered. Firstly, are there input parameters, x, that lead to acceptable matches between

the emulator output, f(x), and observed data, z? Secondly, what is the set, X , that contains

all of the possible input parameter settings?

4.1 Sources of Uncertainty

There are two main sources of uncertainty that need to be taken into account before history

matching can be performed [9]. This is due to the complex model, f(x), only mimicking

the real system, y.

4.1.1 Model Discrepancy

The first source of uncertainty is the model discrepancy, represented by ϵ. Even if we

picked the best input, x = x∗, for our model, f(x), it would not be precisely in agreement

with the true system, y, due to the simplifications and approximations of the model. This

discrepancy between the model and the real system can be represented by:

y = f(x∗) + ϵ, (4.1)

where ϵ is assumed to be independent of f(x∗). We can use the second order statements,

E[ϵ], and Var[ϵ], to express our prior beliefs about ϵ, in Bayes Linear analysis.

4.1.2 Observations of the Real System

The second source of uncertainty comes from the imperfect observations of the real system,

y, represented by z. These observations are often performed with some observational error,
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e, and the relationship between these observations, and the real system, can be represented

by:

z = y + e. (4.2)

The prior beliefs about e can be represented by E[e], and Var[e], based on knowledge about

the observation process.

4.2 Implausibility Measures

Implausibility measures can be used during history matching to identify parts of the input

space, X0, that need further investigation. For a univariate output, f(x), we want to know,

for an unexplored input parameter, x, how far would the emulator’s expected value for the

function output have to be from the observed value z, before we could deem it unlikely for

f(x) to give an acceptable match, if we were to evaluate the function at this value of x.

The square of the implausibility measure, I(x), is given by [5]:

I2(x) =
(ED[f(x)]− z)2

Var(ED[f(x)]− z)
,

=
(ED[f(x)]− z)2

VarD[f(x)] + Var[ϵ] + Var[e]
. (4.3)

The numerator of (4.3) gives the difference between the emulator expectation, ED[f(x)],

and the observation, z. The denominator standardises this by the uncertainties, obtained

by viewing z as uncertain, but D as known.

A large value of I(x) for a given x occurs when the emulator expectation is far from

the observed data z, even when considering the uncertainties produced in the model. This

would mean that we would be unlikely to obtain a acceptable match between f(x) and

z, if we ran the model there. We can discard x, the input, from the parameter search if

I(x) > c, for some cutoff c, for example setting c = 3. We then refer to this input, x being

implausible.

However, a small value for I(x), can occur for two different reasons. Either the emulator

expectation, f(x), is close to the observed data, z, or the uncertainties in the denominator of

the implausibility measure are large. We do not refer to these inputs as being plausible, as

after performing more runs to reduce the uncertainty of the emulator, we may the rule this

value of x out. Instead we refer to these low implausibility outputs as being non-implausible.

These values are therefore good candidates for further runs as they are likely to either

produce acceptable matches, or may reduce the emulator variance and therefore be highly

informative.
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Figure 4.1: (a) The emulator adjusted expectation, (b) the emulator adjusted variance, (c)
the implausibility, I(x) of the emulator for z = −0.1, and (d) the implausibility for the true
model, for z = −0.1, with cutoff, c = 3.

4.3 Example

The process of history matching can be demonstrated on (3.2), the function that was mod-

elled using the emulator in Section 3.2. Both the model uncertainty variances, Var[e] and

Var[ϵ] will be set to 0.052, and the observed data, z will be -0.1. Nine evaluated runs will

be used, arranged in a Latin Hypercube design.

Figure 4.1 shows the implausibility, I(x), of the emulator for z = −0.1. As we know the

true function, we can compare this to the implausibility of the true function,

I2true(x) =
(f(x)− z)2

Var[ϵ] + Var[e]
. (4.4)

This cannot usually be done as we normally do not know the true form of the model, however

it allows us to see how the difference between the implausibility of the emulator, compared
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to the most accurate implausibility that can be achieved. Looking at the implausibility

from the emulator, it is possible to see the 3 large strips of implausible values, similar to the

true implausibility, however, there are still many values that are currently non-implausible,

which, after placing more runs would be ruled to be implausible.

As evaluating runs is often expensive, and there is normally a limit to the number that

can be performed. As we are not normally interested in the behaviour of the whole function,

but instead what inputs, x, allow for the observed output, z, then the evaluation of two

waves of runs could improve the emulator and the results it produces. By calculating the

implausibility of the function after the first wave of runs, we can then be better informed

about where to place the runs in the second wave to obtain the information we want to

learn.

4.4 Iterative History Matching

Iterative history matching allows us to perform our allocated number of run evaluations

within two, or more, waves [5]. Using measures such as implausibility between these waves

would then allow us to gain more information about where to place future runs. This would

allow us to learn as much information about the function we are modelling as possible, in

the areas that we are most interested in.

4.4.1 Picking Points for Wave k

Whilst using a Latin Hypercube design for the first wave of runs is seen to perform well, as

this means that the points are well spread out while avoiding problems due to periodicity,

there may be different factors that need to be considered when placing further waves of

points. As we will have knowledge of some of the implausible regions of the function, we

can use this information when placing further points [1].

4.4.1.1 Latin Hypercube for Wave 2

The simplest way to pick runs for wave 2 is to again generate a Latin Hypercube design

for the points, however, after this is done, any of the suggested runs that are located in the

implausible region are discarded, and not evaluated at. As we do not want wave 2 runs

to be very close to runs already performed in wave 1, due to them not providing us with

much new information, wave two runs within a certain distance of a wave 1 run can also be

discarded.

Using Figure 4.1 as the first wave of runs, the second wave can be picked, by creating a

Latin Hypercube design with 6 points, and then discarding the three points that are either

located in the implausible region, or too close to already known runs.
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Figure 4.2: The implausibility of the emulator for z = −0.1 after (a) nine points forming
wave one, (b) adding three more points in wave 2, using a Latin Hypercube Design.

Figure 4.2 shows how, after adding the second wave of points, the non-implausible

region has become smaller, which now means that there are fewer possible output values

to consider which could match the observed value, z. One problem with this method for

choosing the runs for wave 2 is that there is still a large amount of randomness in both how

many additional runs are chosen, and where these runs are placed. This leads to some areas

being far away from any known runs, leading to a high adjusted variance, and therefore

small implausibility measure. To avoid this, different techniques could be used to decide

the position of the runs in the second wave.

4.4.1.2 Maximising Minimum Distance to a Known Run

To make sure that the second wave of runs explore the space that does not have any first

wave runs nearby, and therefore has the potential to provide the most information with a

run, runs could be picked to be far from the known runs. This can be done by looking

at each possible input value that is currently non-implausible, and finding its distance to

its nearest known run. The point that has the highest distance to its nearest known run

can be picked to be evaluated at in wave 2. Points located directly on the edge of the

function space are not considered as these would provide a lot less new information than a

run even slightly away from the boundary. Once we have evaluated this new run, the new

implausibility measures can be calculated, and this can then be repeated to pick more new

values for us to evaluate runs at.

Using the same wave 1 runs as in Figure 4.1, three more runs can be iteratively added

using this technique.
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Figure 4.3: The implausibility of the emulator for z = −0.1 after (a) nine points forming
wave one, (b) adding three more points in wave 2, by maximising the minimum distance to
a known run.

Figure 4.3 shows the advantage of using this method compared to using a Latin Hyper-

cube Design shown in Figure 4.2. This algorithm for adding new runs to evaluate at does

better at ensuring that these runs are more spread out, especially as the three new runs

are added iteratively, instead of all at once. This can be seen by the size of the rightmost

implausible region being increased more than it was using the Latin Hypercube technique

which does not cause the region to reach the x2 = 0 boundary. There is however, still a

large non-implausible area which does not have any runs in it. Adding another one or two

more runs should place a run in this area which would solve this problem. Another solution

would be to expand the area around the boundaries of the space that the function is being

evaluated on, in which the wave 2 runs are not allowed to be placed.

4.4.1.3 Minimising Distance to Furthest Part of the Non-Implausible Region

Another method which could work well is by placing the wave 2 runs at the non-implausible

points which have the shortest distance to the non-implausible point the furthest away from

them. This would work best if there is a main non-implausible area in the middle of the

function, but the other methods are choosing to prioritise placing the extra runs in areas

near the boundaries or corners of the function. This could possibly be due to the original

runs in the Latin Hypercube Design not being close to some of the corners.

The affects of this can also be seen by adding 3 more runs iteratively to Figure 4.1.

Whilst in some scenarios this may work well, Figure 4.4 shows that this does not perform

as well as either of the other techniques on this function. This is because, as there are non-

implausible regions at the boundaries for both x1 = 0 and x1 = 1, the points that are
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Figure 4.4: The implausibility of the emulator for z = −0.1 after (a) nine points forming
wave one, (b) adding three more points in wave 2, by picking runs to minimise the distance
to the furthest non-implausible region of the function to the chosen run.

picked will always be as close to x1 = 0.5 as long as there is still a non-implausible region

there. This means that points chosen for the extra runs will not favour the bigger regions

of non-implausibility, which are closer to the boundaries.
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Chapter 5

The Lotka-Volterra Model

5.1 The Model

One real life example where emulation and history matching could be used, is in a Predator-

Prey model. An example of one of these complex models is the Lotka-Volterra Predator-Prey

model. The simplest version of this is used to describe the dynamics of two species, a prey

(represented by g1), and a predator (represented by g2), across a time series, labelled by

time t.

The system follows the deterministic differential equations [3]:

dg1
dt

= x1g1 − x2g1g2, (5.1)

dg2
dt

= x2g1g2 − x3g2. (5.2)

The system involves three inputs, x = (x1, x2, x3), which determine the speed of reproduc-

tion of the prey, the predator-prey interaction rate, and the predator death rate, respec-

tively. Recommended ranges for these input variables are 0.7 < x1 < 1.5, 4.4×10−5 < x2 <

7.5× 10−4, and 1.4 < x3 < 2.5.

5.1.1 Example of Behaviour

Setting the initial conditions of the system to be (g1(t = 0), g2(t = 0)) = (2000, 800), and

the input variables to x1 = 1, x2 = 0.00044, and x3 = 1.8, this model can then be run until

t = 10.

The output of this run is shown in Figure 5.1. The behaviour of this run shows the lag

between the peaks of the population of the prey and the predators. This is due to a large

population of prey providing more food to the predators which then causes the population

of predators to increase and prey to decrease. This then leads to there being less food for

the predators to eat, meaning that their population decreases, allowing the population of

the prey to increase again.
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Figure 5.1: The population of Prey (blue), and Predators (red), from t = 0 until t = 10,
with starting conditions (g1, g2) = (2000, 800).
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Figure 5.2: The population of Prey (blue), and Predators (red), from t = 0 until t = 50,
with starting conditions (g1, g2) = (2000, 800).
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By increasing the amount of time the model is run for, by setting t = 50, it can be seen

in Figure 5.2 that the behaviour of the populations of predators and prey is cyclic, and that

the time between the peaks, and the height of them stays constant. This may not fully

represent how the populations would behave in real life, as there may be other factors that

affect the populations. However, using this simple version of a predator-prey model allows

for it to be analytically solved meaning that results from emulation and history matching

can be compared to the true model.

5.1.2 Challenges of Modelling

Compared to the two dimensional example from Section 3, there are additional things that

need to be considered when performing emulation and history matching, on this model.

The first thing that needs to be considered is the role of time. There are two main

ways that this time series can be modelled. The first option is to treat t as an input, and

therefore the emulation will take place in four dimensional space. This will increase the

size of the input space that the emulator has to perform in, and will therefore increase the

amount of computation that has to be performed to build each emulator. This will also lead

to more runs needing to be evaluated to achieve the same performance from the emulator.

The other option is that t can be considered as a constant, and the time series will only

be considered at a chosen point in time, instead of across the whole time series. This can

then be repeated at multiple time points, and as the function is smooth, then the behaviour

between the chosen time points can then be estimated.

Even if the function is evaluated at a constant time point, t, the model still has three

input variables, therefore emulation will take place in three dimensions. Whilst the emulator

structure for two dimensions can be generalised to more dimensions, one problem that occurs

is the visualisation of the results. Whilst in two dimensions, the emulator diagnostics and

implausibility measures can be shown in a 2D grid, in three dimensions this is harder to

achieve.

There are two main techniques to model the implausibility in more than two dimensions,

using pair plots [2]. The first is to show the minimised implausibility for each pair of input

variables, over all the possible values of the other input variables. This is good at showing

which pairs of input values still have the potential to be non-implausible. The other option

is to use optical depth which involves, for each pair of input values, showing what percentage

of the values for the other variables will produce non-implausible output values. This has

the advantage of showing which of the non-implausible areas are more likely to produce the

wanted output values, and therefore where the second wave runs should be placed.
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Another option is that if some of the input variables have a larger affect on the behaviour

of the model compared to the others, only these could be considered during the history

matching, with the other variables set to their mid-value, or other chose value.

Finally, as the predator-prey model has multivariate output, because it models the

populations of both the predators and prey, the emulator will have to produce models

predicting the behaviour of each output variable separately, and this will also impact the

history matching techniques used.

5.2 2D emulation

5.2.1 Variable Selection

In order to perform 2D emulation on this model, the input variables which we want to vary

need to be chosen. This can be done by looking at the affect of individually varying each

of these variables, while keeping the other two constant.

By plotting Figure 5.3 on a log scale, it can be seen that varying x1 and x2 has a

bigger affect on the populations of the predators and prey compared to varying x3 which

causes the population of prey to exponentially increase and the population of predators

to exponentially decrease. The affects of varying x1 and x2 produces more complicated

behaviour of the populations. For example, once x1 increases above 1.25, the population

of the prey starts to decrease, whilst for lower values of x1, this population is increasing.

This suggests that these are the two variables we are most interested in when performing

emulation and history matching.

5.2.2 Emulation for x1 and x2

Emulation can be performed for x1 and x2, while keeping x3 = 1.8, and for t = 2. Before

doing this, the priors need to be defined. Firstly, the prior expectations can be set by

looking at the behaviour of the populations in Figure 5.3, for varying x1 and x2. For the

prior expectation for predators, 2000 is a suitable value as this is the average population

when varying x1, and around the population produced for higher values of x2. For the

prior expectation for the prey, 7000 is a suitable value as this is located halfway between

5000 and 10000 on a log scale, which is the range that the population is located in while

varying both x1 and x2. A good value for θ is often a quarter of the range of values that

the input parameter can take. For x1, θ = 0.2, and for x2, θ = 0.00018. For the variance,

we want most of the function to lie within 3σ of the mean. By looking at the ranges of

both populations in Figure 5.3, σ for the population of prey will be set to 2500, and σ for

the predator population will be 1000.
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Figure 5.3: The population of predators (red), and prey (blue), at t = 2, whilst varying
(a) x1, (b) x2, and (c) x3. Keeping the other two input variables constant at x1 = 1,
x2 = 0.00044, and x3 = 1.8.
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Figure 5.4: (a) The emulator adjusted expectation, (b) the emulator adjusted variance, (c)
the emulator diagnostics, and (d) the true population of the prey at t = 2.

A Latin Hypercube Design will be used to pick the 9 points at which to sample runs at,

and the population will be displayed on a log scale due to the exponential behaviour of the

model.

5.2.2.1 Emulation for Prey

Figure 5.4 shows the results of this emulation for the population of the prey. Whilst the

emulation for the middle values of x1 and x2 performs well, with emulator diagnostics close

to 0, the emulator struggles to capture the increasing behaviour of the population, especially

for high values of x1 and low values of x2. This can be seen by the high emulator diagnostic

values in this area. This may partially be caused by the steep increase in population due to

the exponential form of the model. Due to the high prior values for σ caused by the high

range of values that the population can take, the adjusted variance of the emulator quickly

becomes large away from the observed runs.
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Figure 5.5: (a) The emulator adjusted expectation, (b) the emulator adjusted variance, (c)
the emulator diagnostics, and (d) the true population of the predators at t = 2.

5.2.2.2 Emulation for Predators

Figure 5.5 shows the results of emulation on the population of the predators. For the emu-

lator adjusted expectation, ED[f(x)], some of the values produced were negative, however,

as this is measuring population, this is not possible, so these values have been set to 1.

This can be seen by the black oval in adjusted expectation. Similar to the prey, the em-

ulator adjusted variance increases rapidly away from points due to the high σ. There are

high emulator diagnostics for higher values of x1, possibly due to the rapid increasing of

the predator population. The emulator also struggles to model the function for the lower

populations, when x2 is small, as the emulator predicts the function to decrease quicker

than the true function does.
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Figure 5.6: (a) The implausibility for the population of the prey from the emulator, and
(b) the implausibility for the population of the prey from the true model, for z = 15000.
(c) The implausibility for the population of the predators from the emulator, and (d) the
implausibility for the population of the predators from the true model, for z = 1500.

5.3 History Matching

History matching can also be performed on both populations, using the techniques discussed

in Section 4. For the population of the prey, the observed value, z = 15000. The two model

uncertainty variances, Var[e] and Var[ϵ], will be set to 5002.

For the population of the predators, the observed value, z = 1500, and the two uncer-

tainty variances will be set to 2002, as the prior variance for the predators is also lower.

For both the prey and the predators, Figure 5.6 shows that the non-implausible region

for both outputs is much bigger than the non-implausible regions for the true functions used

to model the populations. This could be caused by the high prior variance defined for each

of the models, or could also suggest that more runs need to be evaluated to be able to have
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Figure 5.7: The maximised implausibility, for (a) the emulators, and (b) the true functions.

a good idea of the behaviour of the functions and the shape of the non-implausible regions.

A second wave of runs could be performed, however, different techniques may have to be

used to best incorporate the information we have gained from both the outputs.

5.3.1 Multivariate Output Techniques

As we have two different outputs, when history matching, we want to find points that match

the observed values for both of the outputs. In order to identify these areas, we need to be

able to combine the information we have from both of the implausibility plots.

We can combine these individual implausibilities, Ii(x), together by calculating the

maximised implausibility [2]:

IM (x) = max
i

Ii(x). (5.3)

By then imposing the constraint IM (x) < cM , where cM = 3 is the implausibility cutoff,

means that all the implausibilities, Ii(x), must be lower than this value to be in the non-

implausible region.

Figure 5.7 shows the performance of maximised implausibility on both the emulator

outputs, and the true function. This decreases the size of the non-implausible region,

meaning that second wave runs can be better picked so that they will provide information

for narrowing the shape of the non-implausible region for both outputs.

Whilst the non-implausible region for the maximised implausibility of the emulator

outputs does contain the true non-implausible region, it also contains a lot of the area for

low values of x2. This could be due to there not being many runs from the original wave

of runs in this area, or due to the high emulator adjusted variance caused by the high
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prior variance, however, it suggests that the performance of the emulator could be further

improved in this region.
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Chapter 6

Known Boundary Emulation

6.1 Benefits of Technique

Even in complicated models, sometimes setting a variable to a given value will simplify its

equations, possibly to a constant. Therefore, one way to improve the performance of an

emulator, without having to evaluate more runs, is to add the values on a known boundary

which can be easily calculated. The methods used in this chapter to perform this technique

are based on material [7].

6.2 Updating Second Order Beliefs

If the computer model is able to be solved analytically on a lower dimensional boundary, K,

we can evaluate {f(x) : x ∈ K}, for multiple points on K in a short amount of time. These

can be used to supplement the standard emulator evaluations to produce a emulator which

respects the behaviour of f(x) along the boundary, K. By evaluating a large, but finite

number, m, of points on K, we can then use the standard Bayes linear update to analyse

the expected behaviour of the model.

Plugging the m runs into the Bayes linear update equation would be unfeasible because

of the m×m matrix inversion that would need to be performed on the prior variance matrix.

Let K be the length m vector of model evaluations, which can easily be analytically

calculated. In order to capture the model behaviour on K, we evaluate f(x) at a large, but

finite, number of points m, on the boundary. We can denote these as y(1), . . . , y(m). We

can also evaluate the perpendicular projection of x, the point of interest, onto K, denoted

as xK . The collection of boundary evaluations, K, can then be a m + 1 column vector,

K = (f(xK), f(y(1)), . . . , f(y(m)). The calculation for the emulator adjusted expectation,

EK [f(x)], is infeasible to calculate due to the Var[K]−1 term.

However, if we evaluate this at the point xK which lies on K, because we can easily

evaluate f(xK), we can then find that [E]K [f(xK)] = f(xK), and VarK [f(xK)] = 0. Because
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f(xK) is the first element of K, then [7]:

I(m+1) = Var[K]Var[K]−1,

=


Cov[f(xK),K]

Cov[f(y(1)),K]
...

Cov[f(y(m)),K]

Var[K]−1, (6.1)

with I(m+1) being an identity matrix of dimension (m+ 1).

The first row of (6.1) gives Cov[f(xK),K]Var[K]−1 = (1, 0, . . . , 0). We can then write

x = xK + (a, 0, . . . , 0), where a is a constant representing the perpendicular distance from

x to the known boundary, K. By defining ri(a) as the correlation structure of the model

in dimension i between the point x and xK , the covariance between a point x and the

boundary conditions can be written as:

Cov[f(x),K] = r1(a)Cov[f(x
K),K]. (6.2)

This removes the need to explicitly calculate the inversion of the matrix Var[K]. This

therefore allows an analytically solvable boundary to be added to the emulator without

greatly increasing the amount of computation or time it takes, while increasing the amount

of information about the behaviour of the function that is available.

We can then use this to form the emulator adjusted expectation and variance given K,

a length m vector of model evaluations on the analytically solvable boundary, K.

6.2.1 Update Equations for Adding a Known Boundary

Given the orthogonal projection, xK , of a point x, onto the boundary K at distance a. With

the correlation structure between x and xK in dimension i being represented by ri(a), the

Bayes Linear update equations for the known boundary, K, are [7]:

EK [f(x)] = E[f(x)] + r1(a)(f(x
K)− E[f(xK)]), (6.3)

CovK [f(x), f(x′)] = σ2(r1(a− a′)− r1(a)r1(a
′))r−1(x

K − x′K), (6.4)

VarK [f(x)] = σ2(1− r1(a)
2). (6.5)

6.2.1.1 Limiting Behaviour

One way to analyse the behaviour of this update is to look at the limiting behavior of the

emulator for the expectation, variance and covariance.

As x moves towards K, the emulator expectation should tend towards the known bound-

ary function. On the other hand, as it becomes further away from the boundary, it should
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tend towards the prior expectation:

lim
a→0

EK [f(x)] = f(xK), lim
a→∞

EK [f(x)] = E[f(x)]. (6.6)

For the adjusted variance, when x moves towards the boundary, the emulator will tend

towards the known boundary function with a variance of 0 as the true value on the boundary

is known. Similarly to the expectation, as x gets further away from the boundary, and

a → ∞, the the variance will tend to the prior variance.

lim
a→0

VarK [f(x)] = 0, lim
a→∞

VarK [f(x)] = Var[f(x)]. (6.7)

Finally, for the covariance, when x and x′ are far from the known boundary, and a− a′

is finite, the covariance should tend to its prior form, whereas, if either a or a′ tends to zero,

the covariance will also tend to zero:

lim
a→0

CovK [f(x), f(x′)] = 0, lim
a,a′→∞

CovK [f(x), f(x′)] = Cov[f(x), f(x′)]. (6.8)

6.2.2 Updating by Model Evaluations

Once the known boundary, K, has been emulated at, and we have calculated analytic

expressions for EK [f(x)],VarK [f(x)] and CovK [f(x), f(x′)], we may then want to add our

expensive simulator evaluations into the model. To do this, we preform n expensive runs,

represented by D, of the full model.

We then want to update the emulator by the union of the two sets of evaluations, D

and K. This will give us ED∪K [f(x)],VarD∪K [f(x)] and CovD∪K [f(x), f(x′)], which can be

calculated using a sequential Bayes linear update [7].

ED∪K [f(x)] = EK [f(x)] + CovK [f(x), D]VarK [D]−1(D − EK [D]), (6.9)

VarD∪K [f(x)] = VarK [f(x)]− CovK [f(x), D]VarK [D]−1CovK [D, f(x)], (6.10)

CovD∪K [f(x), f(x′)] = CovK [f(x), f(x′)]− CovK [f(x), D]VarK [D]−1CovK [D, f(x)].

(6.11)

As the number of evaluations, n is usually small due to the expense of evaluating runs in

the full simulator, we do not need to worry about VarK [D]−1 being intractable due to its

size.
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6.3 Adding a Known Boundary to the Lotka-Volterra Model

This technique of adding a known boundary could be used on the Lotka-Volterra model

from Section 5.1. It would improve the emulation and the performance of history matching

on the model, and would also help to mitigate against some of the problems that were seen

when just using runs to build the emulator. For example, one problem that occurred was

a decrease in performance of the emulator towards the boundaries of the function space.

By adding a known boundary, this would improve the emulation at one of the boundaries,

and would therefore mean that the runs to be evaluated could be placed closer to the other

boundaries.

6.3.1 Adding a Boundary

The Lotka-Volterra model is well suited to the known boundary technique, as, if certain

input variables are set to 0, the equations in the model are simplified and are able to be

solved analytically and a lot quicker than most evaluations are able to be made. Despite it

not being inside the recommended values for x2, it may help the emulation to set x2 = 0.

This represents there being no interaction between the two populations of animals. This

means that the prey will not be eaten by the predators, so their population will be able to

exponentially increase, and as the predators will not have any food, their population will

eventually die out.

Setting x2 = 0 will result in the following simplified version of (5.2):

dg1
dt

= x1g1, (6.12)

dg2
dt

= −x3g2. (6.13)

Using the same prior parameters as in Section 5.2.2, along with t = 2, x3 = 1.8 and 0.7 <

x1 < 1.5 emulation can be performed. Compared to last time, however, 0 < x2 < 7.5×10−4,

which allows us to evaluate a known boundary at x2 = 0.

6.3.1.1 Emulation for Prey

Firstly, the performance of adding a known boundary at x2 = 0 to the emulator for the

population of the prey can be observed.

Comparing Figure 6.1 to the results of the emulation using a Latin Hypercube Design

in Figure 5.5 shows the benefits of adding the information gained from this analytically

solvable boundary into the emulator. By including the knowledge about the behaviour of

the model at this boundary, it removes the high emulator diagnostics that the previous

emulation produced for high values of x1, while x2 was close to 0. Whilst it is not able to

37



5000

10000

15000

20000

25000

30000

35000

40000

0e+00 2e−04 4e−04 6e−04

0.8

1.0

1.2

1.4

Emulator Expectation, Prey: 
known boundary at x2=0

x2

x1

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0e+00 2e−04 4e−04 6e−04

0.8

1.0

1.2

1.4

Emulator Variance, Prey: 
 known boundary at x2=0

x2

x1

(a) (b)

−6

−4

−2

0

2

0e+00 2e−04 4e−04 6e−04

0.8

1.0

1.2

1.4

Emulator Diagnostics, Prey: 
 known boundary at x2=0

x2

x1

5000

10000

15000

20000

25000

30000

35000

40000

0.8 1.0 1.2 1.4

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

True Computer Model Function:
 Prey

x2

x1

(c) (d)

Figure 6.1: (a) The emulator adjusted expectation, (b) the emulator adjusted variance, (c)
the emulator diagnostics, and (d) the true population of the prey at t = 2, with a known
boundary at x2 = 0.
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Figure 6.2: (a) The emulator adjusted expectation, (b) the emulator adjusted variance, (c)
the emulator diagnostics, and (d) the true population of the predators at t = 2, with a
known boundary at x2 = 0.

capture the behaviour of the model for higher values of x2, as the emulator resorts back

to the prior expectation and variance, this can be changed by adding expensive model

evaluations, by using a sequential Bayes Linear update.

6.3.1.2 Emulation for Predators

Adding this known boundary when emulating the population of predators does not have as

much of an affect on the emulator, compared to when emulating the population of prey.

Whilst the emulator is no longer predicting negative values for the population of the

predators, Figure 6.2 shows that not as much information about the behaviour of the model

can be gained compared to with the prey. As x1 does not affect the population of the

predators while x2 = 0 due to there being no interaction between the two populations,

the known boundary is constant for all values of x1. The emulator diagnostics, once away
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from the known boundary, shows trends in behaviour similar to the true population from

the model. This is due to the emulator adjusted variance and expectation being the same

across this area, so the diagnostics is only based on the distance the true population is away

from the prior expectation.

If the emulation was instead for input variables x2 against x3, with x1 being kept

constant, adding this boundary would have shown more about the behaviour of the model.

Adding expensive evaluations will improve the emulator performance for larger values of

x2, and this boundary should help the emulator to only predict positive populations of the

predators.

6.3.2 Adding Known Runs

Whilst the positions of the model evaluations can be picked using a Latin Hypercube design

as before, as we have the known boundary in the emulator, we can adjust this technique to

increase the amount of information that these evaluated runs will provide. If points picked

to be evaluated are too close to x2 then they will not provide as much new information

about the behaviour of the model as some of the information will have been gained from

the boundary already. We therefore want the points picked to be evaluated at to be located

further away from this boundary. This can be done by picking points in a Latin Hypercube

Design, but by setting the range of x2 that the points can be placed in to be 7.5× 10−5 <

x2 < 7.5× 10−4. This means that no runs will be placed in the 10% of the function space

closest to the known boundary, but 9 runs will still be evaluated.

6.3.2.1 Full Emulation Results: Prey

Figure 6.3 shows how, combining the known boundary technique, with the emulation of the

known runs, helps to improve the overall performance of the emulator. This can be seen by

the emulator diagnostics being closer to 0 than they are in the original emulation without

the boundary. This is because the boundary is able to show the increasing population values

at x2 = 0, when x1 is increasing. This is something that the original emulator was not able

to achieve because the Latin Hypercube Design for picking the runs meant that the runs

were spread over the whole input variable ranges, so were not able to accurately reflect the

behaviour at this boundary.

6.3.2.2 Full Emulation Results: Predator

However, Figure 6.4 shows that this known boundary technique does not work as well for

the population of the predators. This could be because we have chosen the input variable

x3, which controls the death rate of the predators, to be kept constant. Even though the
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Figure 6.3: (a) The emulator adjusted expectation, (b) the emulator adjusted variance, (c)
the emulator diagnostics, and (d) the true population of the prey at t = 2, with a known
boundary at x2 = 0 and 9 evaluated runs.
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Figure 6.4: (a) The emulator adjusted expectation, (b) the emulator adjusted variance, (c)
the emulator diagnostics, and (d) the true population of the predators at t = 2, with a
known boundary at x2 = 0 and 9 evaluated runs.
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Figure 6.5: (a) The implausibility for the population of the prey from the emulator, (b) the
implausibility for the population of the predators from the emulator, and (c) the maximised
Implausibility for the two emulators, with a known boundary at x2 = 0 and 9 evaluated
runs.

boundary x2 is known, the emulator still predicts populations of predators close to this

boundary to be negative, which can not happen in reality. Even with 9 evaluated runs, the

emulator is not able to accurately capture the true behaviour. As the model has exponential

behaviour, the large increases in population that occur for large values of x2 means that

the emulator also tries to show this behaviour for lower values of x2, and this leads to the

negative values of population being produced.

6.3.2.3 History Matching

Another way to see the improvement of adding a known boundary to the emulator is to

perform history matching and to plot the implausibility functions for these new emulators,

using the same z and prior values as in Section 5.3.
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Despite not seeming to improve the results of emulation by much, Figure 6.5 shows that

the non-implausible region for the predator population is smaller than it is in Figure 5.6.

This shows that some information has been gained from adding the boundary, which will

also help when deciding where to place a second wave of runs. As the size of the non-

implausible region for the population of prey has also decreased, this means that the area

that is non-implausible using the maximised implausibility measure IM has also shrunk.

This is now a lot more similar in shape compared to the maximised implausibility of the

true function, shown in Figure 5.7. It can more easily be seen, therefore, the affect that

adding the known boundary has had to the performance of the emulator, especially with

respect to identifying the non-implausible region, and performing history matching. With a

smaller non-implausible region, this would allow us to concentrate our second wave of runs

in a smaller area and allow us to gain more information about the behaviour of the function

in the area we are particularly interested in.
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Chapter 7

Further Work

Whilst Chapter 6 shows that using a known boundary technique is beneficial and can

improve the performance of an emulator without increasing the number of expensive eval-

uations that need to be performed, there are still more improvements that can be made.

One of these improvements is that more known boundaries could be added to the model,

if these are easy to analytically evaluate. These boundaries could either be parallel to the

first known boundary, K, or perpendicular [7]. The difficulty, however, of adding another

known boundary is working out how the boundaries interact with both each other, and the

later evaluated runs.

The performance of this method when varying all three of the input variables at once

could also be investigated, as this would also allow us to have a better idea about the

affect of all the three variables on the behaviour of the model. When just considering x1

and x2, adding the known boundary did not have much affect on the population of the

predators, however adding in x3 would show the improvements that this technique could

have. This would mean, however, that there would be a bigger input space that would need

to be investigated, so more runs may be needed to achieve the same amount of information.

Also, the visualisation techniques mentioned in Section 5.1.2 would need to be used.

The performance of this technique on other complex models could be investigated, either

in a completely different scientific area, or by improving the Lotka-Volterra model. This

model could be improved by adding more variables to help better model the real system

it is representing. For example, other animals, either predators or prey, could be added to

better represent the animal population and interactions in an area. Other input variables

could also be added, for example, a natural death rate for the prey, or time, t, could be

interpreted as a input variable instead of keeping it constant. This would increase the size

of the input space and therefore having computationally cheap ways to add information for

the emulator would become more important.
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