
USING KNOWN BOUNDARIES TO IMPROVE BAYESIAN EMULATION
REBEKAH FEARNHEAD DEPARTMENT OF MATHEMATICAL SCIENCES, DURHAM UNIVERSITY

INTRODUCTION
Complex Mathematical Models are being used in many scientific areas to
help describe complex physical systems. For example, in systems biology,
predator prey models, or to simulate galaxy formation. One problem with
this is that it could take from a week to a month to do a single evaluation.
One way to solve this problem is to use an emulator which mimics the
computer model function that we want to evaluate, and does it much
faster than the full model for the complex system. An emulator provides a
prediction and uncertainty statement for the outputs of the function, f(x).

LOTKA-VOLTERRA MODEL
The Lotka-Volterra Predator-Prey model uses deterministic differential
equations to describe the populations of prey (g1) and predators (g2) over
a time series, t:

dg1
dt

= x1g1 − x2g1g2,

dg2
dt

= x2g1g2 − x3g2,

where the inputs x1, x2 and x3 represent the reproduction speed of the
prey, the predator-prey interaction, and the death rate of the predators
respectively.
Using suggested input values x1 = 1, x2 = 0.00044, and x3 = 1.8,
and starting populations of 2000 prey and 800 predators produces the
following behaviour for the populations over time:

0 2 4 6 8 10

0

2000

4000

6000

8000

time(t)

P
re

d/
P

re
y 

N
um

be
r

Prey
Pred

Figure 1: Predator and Prey Population over time.

REFERENCES
[1] Vernon, I., Jackson, S. E., and Cumming, J. A. Known boundary emulation

of complex computer models. SIAM/ASA Journal on Uncertainty Quantification,
7(3):838–876, 2019.

FUTURE RESEARCH
• Applying the known boundary technique to the Lotka-Volterra

model would work well, since, setting any one of the input variables
to 0 would simplify the equations, making them much faster to
evaluate. For example, setting x2, the predator-prey interaction
to 0 will cause the prey population to continuously grow, and the
predators to eventually die out.

• More outputs or variables could be added to the Lotka-Volterra
model, for example, additional animals to interact with the predator
and prey, or adding a natural death rate for the prey.

• Additionally, a second known boundary could be added to the
emulator, either perpendicular or parallel to the first known
boundary.

EMULATION IN 2D
To emulate in two dimensions, the simplest model that can be used is
f(x) = u(x), where u(x) is a weakly stationary process.
Once runs, D, of the model have been performed, f(x) needs to be
updated, using:

ED[f(x)] = E[f(x)] + Cov[f(x), D]Var[D]−1(D − E[D]),

VarD[f(x)] = Var[f(x)]− Cov[f(x), D]Var[D]−1Cov[D, f(x)],

where ED[f(x)] and VarD[f(x)] are the adjusted expectation and variance
of f(x).
For example, using the function,

f(x) = − sin (2πx2) + 0.9 sin (2π(1− x1)(1− x2)),

and evaluating runs at 9 design points, the following results are produced:

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Expectation E_D[f(x)]

x1

x2

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Variance Var_D[f(x)]

x1

x2

(a) (b)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

True Computer Model Function f(x)

x1

x2

(c)

Figure 2: The a) Expectation, and b) Variance, of the Emulator given 9 design
points, and c) the True Function value.

IMPROVING DESIGN
Whilst the emulator in the previous example performs well and models
the characteristics of the function well, sometimes it struggles to model
some details, for example periodic behaviour.
To improve this, a Latin Hypercube Design can be used to pick the points
to evaluate at, by splitting each axis into n sections and making sure that
there is one point in each of the n sections for each axis.

−1.0

−0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Expectation E_D[f(x)]

x1

x2

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Variance Var_D[f(x)]

x1

x2

(a) (b)

Figure 3: The a) Expectation, and b) Variance, of the Emulator on the example
function, given 9 design points in a Latin Hypercube Design.

ADDING A KNOWN BOUNDARY
Even in complicated models, sometimes setting a variable to a given value
will simplify its equations, possibly to a constant. Therefore, one way to
improve the performance of an emulator, without having to evaluate more
runs, is to add a known boundary to it which can be easily calculated.
Given a known boundary, K, the orthogonal projection, xK , of point x,
onto the boundary at distance a, and r1(a), the correlation structure:

EK [f(x)] = E[f(x)] + r1(a)(f(x
K)− E[f(xk)]),

CovK [f(x), f(x′)] = σ2(r1(a− a′)− r1(a)r1(a
′))r−1(x

K − x′K),

VarK [f(x)] = σ2(1− r1(a)
2).

Adding the known boundary at x1 = 0 on the example function, without
any design points can already capture some of its behaviour.

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Expectation E_D[f(x)]

x1

x2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Emulator Adjusted Variance Var_D[f(x)]

x1

x2

(a) (b)

Figure 4: The a) Expectation, and b) Variance, of the Emulator with a known
boundary.


