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1 Introduction

Item Response Theory (IRT) Models, also known as Latent Trait Models, are used in many

areas of cognitive and behavioural measurement. They are especially used in the construction

and evaluation of educational tests, and sometimes also the scoring of them [2]. However,

as well as these main applications, they can also be used in a wide variety of other areas

including psychology, marketing, and politics [1, 6, 9].

IRT models are typically used with categorical data and are probabilistic models for in-

dividuals’ responses to a set of items or questions. These models are based on latent factor

models which classify the individuals into groups based on ‘traits’ where everyone with the

same trait behaves in the same way [5]. IRT models are also similar to linear factor models

[16], however, whilst these assume the observed variables are continuous, IRT models focus

on categorical variables.

One of the most common parametric forms of an IRT model is the two-parameter logistic

(2PL) model [14] which is widely used in educational settings.

2 IRT Model Assumptions

To understand the modelling framework, we can focus on one of the most popular contexts

that this model is used in - educational testing. In this context we can assume that we have

N individuals taking a test which consists of J items. We can then represent individual i’s

response to item j as a binary random variable Yij where a value of 1 indicates a correct

response, and Yij = 0 otherwise. We can also define yij to denote a realisation of Yij .

The IRT model assumes that the Yi = (Yi1, . . . , YiJ)
⊤ are independent and aims to model

the joint distribution of the random vector Yi. This is done by assuming one latent variable

for each individual, denoted by θi. This can be thought of as the individual’s level for the

ability (latent trait) which is being measured in the test. We also assume these latent trait

levels completely characterise each individual’s response patterns.

This is reflected by the conditional distribution of Yi given θi with the specification relying

on two assumptions [5]. The first is that there is conditional independence of Yi1, . . . , YiJ given
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the latent trait level θi. The second is an assumption on the Item Response Function (IRF)

or Item Characteristic Curve (ICC) which is defined as gj(θ|πj) := P (Yij = 1|θi = θ) with πj

representing the parameters of item j.

2.1 Two-Parameter Logistic Model

The two-parameter logistic (2PL) model [14] is a common parametric form of the IRT model

and is widely used. We need to define gj(θ|πj) which for this model is:

gj(θ|πj) =
exp(dj + ajθ)

1 + exp(dj + ajθ)
, (1)

where the item parameters πj = (aj , dj). A unidimensional IRT model such as the 2PL

model assumes that Yij is equal to gj(θ|πj) plus some noise which is often referred to as the

measurement error.

In the educational setting as described above, the IRF is often assumed to be a monoton-

ically increasing function meaning that aj > 0 in the 2PL model. This can be interpreted as

higher latent trait levels (ability in the subject tested) leading to a higher chance of answering

an item correctly. There are however examples of other contexts that IRT models are used in

which do not hold this property. The other parameter, dj is known as the easiness parameter.

2.1.1 Assumptions on θi

To complete the specification of this model, assumptions need to be imposed on the θi. There

are two different regimes that can be considered that lead to different parameter spaces [7].

The ‘stochastic sampling’ regime [19] treats each θi as a unknown parameter to be estimated

from data and leads to a joint likelihood function being used [13].

On the other hand, the ‘random sampling’ regime assumes the θis are independent and

identically distributed samples from a population with density f with respect to a dominating

measure µ. This means that the distribution function f is estimated from the data instead of

the individual values of the θis. This leads to a marginal likelihood function being used [3].

3 IRT Models with Covariates

Sometimes, along with the item response data, covariates of the individuals can also be

collected. The p-dimensional observed covariates of an individual i can be represented by

xi. There are different ways that these covariates can be incorporated in the IRT model

depending on their affect on the latent traits and the model as a whole.

The simplest example of this is the covariates affecting the distributions of the latent

traits [17], however, in some models they can also be viewed to affect the responses for some
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of the items. This leads to a type of model known as a Multiple Indicators, Multiple Causes

(MIMIC) model [18]. These models are used to study differential item functioning (DIF) [8]

which is where items may function differently, or even measure different things, for one group

of individuals compared to another.

We can start by considering the case of a single binary covariate, xi which indicates the

group membership of each individual. A MIMIC model [10] then allows the IRFs of the DIF

items to depend on the group memberships while enabling each of the two groups to have

different distributions for their latent traits. This model can also be expanded to having more

than two groups.

If we assume that the item j is the only one out of the J items that is a DIF item, we can

use 2PL model framework from equation 1 to model the IRF of item j as [23]:

gj(θ|πj) =
exp(dj + ajθ + δjxi)

1 + exp(dj + ajθ + δjxi)
. (2)

In equation 2, the parameter δj characterises the group effect on the IRF. The baseline (or

reference) group is represented by xi = 0. If δj = 0 this means that this is not a DIF item, so

members from the different groups act the same when faced with these items. On the other

hand, if δj ̸= 0, this means that item j is a DIF item. The latent trait distribution can be

modelled by setting θi|xi ∼ N(βxi, 1) instead of a standard normal distribution, where β is a

vector of coefficients.

In the testing setting, δj is usually positive for DIF items meaning that the second group

performs better on these items compared to the reference group. For example, if the individ-

uals in the group where xi = 1 are believed to have cheated on a test, this will mean that

they are more likely to answer the questions correctly. This model also means that for the

baseline group, the IRF is represented by ajθi + dj , which is the same as their form in the

standard 2PL model.

In real-world analysis, however, the DIF items are unknown and therefore need to be

detected based on the data provided. This can be done by casting the DIF analysis into a

model selection problem.

3.1 The DIF-effect Parameter

The DIF-effect parameter, δj characterises how the individuals in the second group differ from

those in the reference group, where xi = 0, for a specific item j. As δjxi = 0 for the reference

group for all of the items, this is able to serve as a reference point to compare the behaviours

of the other group.

This DIF-effect parameter can also be expressed in terms of log-odds under the 2PL model
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[23]:

δj = log

(
P (Yij = 1|θi = θ, xi = 1)/(1− P (Yij = 1|θi = θ, xi = 1))

P (Yij = 1|θi = θ, xi = 0)/(1− P (Yij = 1|θi = θ, xi = 0))

)
. (3)

This means that δj is the log-odds-ratio when comparing two respondents, one from the group

where xi = 1, and the other from the reference group, given that they have the same latent

construct level.

3.2 Expanding to More Groups

This method can be adjusted to allow for there to be more than two different groups that the

individuals can be classified in. Let us assume that the respondents are from K+1 unobserved

groups, and we can represent the group membership using a latent variable, ξi ∈ {0, 1, . . . ,K}.
The DIF-effect parameter can then be represented as δjξi , and the 2PL model in equation 2

can be changed to:

gj(θ|πj) =
exp(dj + ajθ + δjξi)

1 + exp(dj + ajθ + δjξi)
. (4)

For the baseline group, ξi = 0, we can then set δj0 = 0 for all j = 1, . . . , J so that ajθ+ dj

denotes the IRF for this group.

This means that δjk is used to characterise the individuals in group k differ to the reference

group based on the item response behaviour for item j. For the latent classes that are not

the reference group, this DIF parameter can be non-zero for some items where the behaviour

differs between groups. The magnitude of the parameter is also allowed to differ across the

latent classes because of the possibility for varying degrees of DIF effects across the different

groups.

3.3 Structural Model

Using the formulation for having K + 1 unobserved groups, we can then specify a joint

distribution for the latent variables (θi, ξi) [23]. The latent classes, ξi can be assumed to

follow a categorical distribution.

ξi ∼ Categorical({0, 1, . . . ,K}, (ν0, ν1, . . . , νK)), (5)

where νk = P (ξi = k) such that νk ≥ 0 and
∑K

k=0 νk = 1.

We can then assume that the latent variable θi conditional on the latent class ξi follows a
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normal distribution with the mean and variance specified by the class:

θi|ξi = k ∼ N(µk, σ
2
k). (6)

We also want to fix the mean and variance of the reference group to µ0 = 0 and σ2
0 = 1 to

ensure model identification [20].

3.3.1 Form of the Marginal Likelihood

In this model, both the latent classes, ξi and the latent variables, θi are unobserved. This

means that the inference on the proposed model is based on the marginal likelihood with both

ξi and θi marginalised out. For the 2PL model, this marginal likelihood function has a form

of [23]:

L(∆) =

N∏
i=1

K∑
k=0

νk

∫  J∏
j=1

(exp((ajθ + dj + δjk)Yij)/(1 + exp(ajθ + dj + δjk)))

ϕ(θ|µk, σ
2
k)dθ,

(7)

where ϕ(θ|µk, σ
2
k) denotes the density function of a normal distribution with mean µk and

variance σ2
k. We also let the vector ∆ denote all the known parameters, aj , dj , δjk, νk, µk

and σ2
k.

3.4 Model Selection and Estimation

When solving the DIF analysis problem, it is helpful to adopt the sparsity assumption [15]

that assumes that for many of the DIF parameters, δjk = 0. In many applications, the number

of DIF items is low, so this is a meaningful assumption.

Under this assumption, we can use a L1 regularised estimator to both learn the sparsity

pattern of the DIF-effect parameters, and estimate the unknown model parameters. This

estimator has the form:

∆̃(λ) = arg∆min− logL(∆) + λ

J∑
j=1

K∑
k=1

|δjk|,

s.t. νk ≥ 0, k = 0, 1, . . . ,K, and

K∑
k=0

νk = 1, (8)

where L(∆) is defined in equation 7 as the marginal likelihood function, and λ > 0 is the

tuning parameter.

The L1 regularisation term λ
∑J

j=1

∑K
k=1 |δjk| behaves similar to Lasso regression [22] as

it tends to shrink some of the DIF-effect parameters to zero, and in the extreme case when
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λ → ∞, all the parameters will shrink to zero. When λ is chosen properly, this estimator

yields estimation and selection consistency [24]. This means that the latent trait is identified

correctly and the estimated DIF-effect parameters can be used to classify each item as either

being a DIF or a non-DIF item.

The tuning parameter λ can be selected by using the Bayesian Information Criterion (BIC)

[21] by using a grid search approach. The tuning parameter, λ̂ can then be selected by finding

the value of λ that minimises the BIC.

4 Simulation Study

We can look at how this method performs by simulating data to represent a scenario where

the number of latent classes, is fixed and known as being 2. To do this we need to first

simulate the data to represent each of the individual’s behaviour and latent traits, and then

we can use this to perform analysis.

4.1 Simulation Settings

We first need to set up the simulation parameters. In this simulation we set the number of

individuals, N to be 1000 and the number of items, J to be 25. We also set the number of

DIF items to p = 10, and the proportion of individuals in the outlier group to be 0.1. Finally,

the class threshold which is used to identify which group the individuals are assigned for is

set to 0.5.

To best see how the algorithm performs when trying to identify the DIF items and the

groups that the individuals belong in, we set the number of iterations of the data generation

and simulation to 100, and then the averages of the values of interest can be taken.

4.1.1 Data Generation

For generating the data for each simulation, the item parameters aj and dj are generated

from a Uniform(0.5, 1.5) and Uniform(-2, 2) distribution respectively. In this example, we let

the DIF items be the last p items, and for these δj1 is distributed as a Uniform(0.5, 1.5), and

for the non-DIF items this value is 0.

The individuals are separated into the two classes using a binomial distribution meaning

that the respondents in the outlier class can occur anywhere in the N individuals, with a

probability of 0.1. The latent ability θ for each individual in the reference group is generated

from a Standard Normal distribution, and the latent ability for the outlier class is generated

from N(µ, σ2) where we have set µ = 0.5 and σ2 = 2.25.

This then allows the item response probabilities to be calculated which can then be used

to generate the item responses using a Bernoulli distribution for each individual i and item j
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using the response probabilities calculated.

4.2 Results

In this analysis, the thing that we are most interested in is how well the model performs,

specifically when it comes to correctly identifying which items are the DIF items, and also

correctly separating the individuals into the correct groups. As the data used was simulated

and we know the true classifications of all the data, we are able to also compare how well this

approach performs compared to if we were to perform the classifications while knowing the

true values of the parameters.

4.2.1 ROC Curves
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Figure 1: ROC curve for classification of individuals into groups using the True Parameters
(red) and the Estimated Parameters (blue).

Figure 1 shows the ROC curves for the classification of the individuals into one of the

two groups - the reference group and the outlier group. The true positive rate represents

the proportion of individuals that were correctly identified to be in the outlier group and is

calculated as the number of people who were predicted to be in the outlier group and are

actually in the outlier group divided by the number of people who are actually belong in the
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outlier group, no matter which group the model classified them in. We want this value to

be high as it means that the models we are using for classification are performing well at

correctly classifying the people in our group of interest, the outlier group.

On the other hand, the false positive rate represents the number of individuals who were

incorrectly identified as belonging to the outlier group. This is calculated as the number of

individuals who were predicted to be in the outlier group but are actually in the reference

group, divided by the the number of individuals that belong in the reference group. We want

this value to be small as it means that the model is not assigning individuals to the outlier

group who are not part of the group.

By varying the class threshold between 0 and 1, this allows us to plot the ROC curve.

A threshold close to 0 means that individuals are more likely to be assigned to the outlier

group, and as the threshold value increases, the individuals become more likely to instead

be assigned to the reference group with the model needing much more extreme behaviour to

assign individuals to the outlier group.

The closer to the top left corner an ROC curve is, the better the classifier is performing.

In Figure 1, the red curve represents the performance of the classification when the true

parameters used to generate the data are used, and shows the optimal performance able to

be obtained using the classification method. As the blue line representing the performance

of the classification using the estimated parameters is close to the red line, this means that

this method for estimating the parameters performs almost as well as if we knew the true

parameters.

4.2.2 DIF Detection Performance

Another thing we can look at is how well the model is able to classify the items into non-DIF

and DIF items.

Figure 2 shows the performance of the model in classifying the items as DIF or non-DIF

items. On the left, the True Positive and False Positive rates for item classification over all

the iterations is shown. The True Positive Rate shows how often the DIF items are correctly

identified as being DIF items and takes a value of 0.959. This means that over 95% of the

time, DIF items are correctly identified.

On the other hand, the False Positive rate is 0. This means that over all the iterations, a

non-DIF item is never incorrectly identified as being a DIF item.

On the right hand side of Figure 2, the detection rate of each individual item being a DIF

item is shown. For the first 15 items, the detection rate is 0. These items are the non-DIF

items so we do not want them to be erroneously classified as being DIF items. The last 10

items are the DIF items and, as shown by the True positive Rate for the overall DIF item

detection performance, these items are on average correctly identified as being DIF items
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Figure 2: The True Positive and False Positive Rates for detecting DIF items (left), and the
frequency of DIF item classification for each item (right).

95.9% of the time. Averaged over 1000 iterations, the detection rate for an individual item is

between 94% and 99%.

5 Real Life Example

As we have seen that this method performs well on simulated data, we can now look at how

it performs on real data. The most common area for using IRT is in the education setting for

the evaluation of educational tests as this allows for the detection of anomalous performances

for example due to cheating, or the comparison of performance of individuals from different

demographic groups.

However, these techniques can be used in many other scenarios in which there are ex-

pected to be DIF items and different group memberships which affect the distributions of

the individuals’ latent traits. The main criteria is that the data being used to perform the

analysis and classification is binary data.

One example of this is in political data, for example the voting patterns of different senators

in the US Senate. We can use this data to see if the voting patterns of the different senators

can be used to classify them into the two main parties - Republicans and Democrats.

5.1 The Data

The data includes information about 14 bills voted on by the US Senate in the 116th Congress

[12]. For each of the bills and senators, a 1 is recorded if the senator votes in favour of a bill

(“Yea”) and a 0 if the senator votes against (“Nay”). Any abstentions are treated as missing
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data. The dataset provides information of the 101 senators who voted on at least one of these

14 bills.

Other information about each of the senators is also provided. This includes their name

and the year of their birth as well as what state and party they are representing.

To make it easier to perform the analysis on this data, we will remove any of the senators

who did not vote in all 14 of the bills which leaves us with 76 individuals. We want to use this

data to see if we can use the voting patterns of senators to work out which party they each

represent. Most of the senators either belong to the Republicans or the Democrats, however,

there is one senator left in this data set who is an Independent. Because of this we will also

remove them from the dataset leaving us with information about 75 senators who voted on

14 bills.

As we know the membership of each of the senators we can use this to compare the truth

to the groupings that are predicted using the estimated parameters. Out of the 75 senators

of interest, we know that 35 are Democrats and the other 40 are Republicans.

Index Bill Total Votes Democrat Votes Republican Votes

1 16 59 20 39

2 22 70 35 35

3 129 68 35 33

4 182 33 33 0

5 185 68 30 38

6 188 70 33 37

7 262 56 33 23

8 311 65 35 30

9 442 71 31 40

10 504 69 35 34

11 520 64 26 38

12 549 57 35 22

13 568 67 31 36

14 625 68 35 33

Table 1: The total number of votes, and the number of votes from each party for each of the
14 bills

Table 1 shows how many of the senators voted for each of the bills out of the 75 senators

who voted on all bills. Whilst for some of these bills, for example bill 188, a similar percentage

of the Democrats (94.3%) and the Republicans (92.5%) voted for the bill, for many others one

party favours it more. For example, with bill 182, all of the Republicans voted against the bill,

and only 2 of the Democrats who voted in all 14 of the bills did. Bills 262 and 549 were also

more favoured by the Democrats, and bill 16 was more favoured by the Republicans. These

differences in voting patterns between the two parties suggests that using IRF to identify the

10



different group memberships may perform well.

5.2 Analysis

Similar to the simulation study, we wish to fit a 2PL model to this data to enable us to be

able to predict the party membership of each of the senators. To do this we can use the mirt

package [4] in R. This can be used to find the item parameters (a and d) as well as values for

θ which, after initialising some small values for the DIF parameters, δ, can be used as starting

values for the expectation-maximisation (EM) algorithm [3]. This is an iterative method to

find local maximum likelihood estimates for the parameters.

5.2.1 Initial values for a and d

After fitting the initial model using mirt, we can look at the values it produces for both the

a and d parameters.
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Figure 3: Initial values of a and d produced by the 2PL model.

Figure 3 shows that, whilst most of the values for a lie between -3 and 5, and most of the

values for d lie between -3 and 8, there are some outliers. These outliers occur for the a value

for item 4, and both the values of a and d for item 14. Having these as the starting points

for these parameters for the EM algorithm may lead to some unwanted behaviour as they are

much higher than the rest of the parameters, and much higher than we would expect them

to be. To solve this, we can instead set a4, a14 equal to 1.5 and d14 equal to 3 which are the

mean values of aj and dj across the other items.

Instead of setting these to a chosen value, multiple possible values for each of the parame-

ters could be tried to see which leads to the best performing final model. However, as we are

more interested in seeing if these methods work in areas different to the testing scenario, we

can instead choose to set these parameters to values close to the mean values of the parameters

corresponding to the rest of the items.
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5.3 Results

Once we have built the model, we need to use these results to predict which of the two parties

each of the individuals belong to. To do this, the probability of each individual being in each

of the two groups - the reference group and the DIF group - needs to be calculated using the

estimated values of aj , dj , δj1, µ, σ
2 and the probability of an individual being in the DIF

group. These probabilities can then be used to produce a normalised probability of each of

the individuals being in the DIF group. A threshold is then needed. This defines what value

the normalised probability needs to be larger than for the individual to be classified in the

DIF group.

For the two group problem, a common value for this threshold is 0.5. This means that each

individual is assigned to the group that they have a bigger probability of being in, according

to the model parameters.

5.3.1 Varying the Threshold

As we know the party membership of each of the senators, we know the true groupings and

we can use this to see how changing the threshold changes how the model performs when

classifying the individuals.

This can be done for each threshold being investigated by dividing the number of individ-

uals correctly classified by the total number of individuals. As the numbers of members of

each of the parties are close to equal, this means that it is difficult to know before looking at

the data which of the two political parties the model is going to treat as the reference group.

This means that if when we plot the percentage of correctly classified individuals, this value

is always under 0.5, we need to switch which of the groups refer to each of the parties.

Figure 4 shows how the value of the threshold changes how well the model classifies the

individuals into two groups. The red line shows that by using a threshold of 0.435, 84% of the

individuals were assigned to the correct political party. If we instead did not know the true

groupings so chose to use a threshold of 0.5 as shown by the blue line, this would still manage

to correctly classify 79% of the individuals. Even though around 20 % of the individuals

are incorrectly classified using this method, this still performs better than if we assigned all

individuals to the same, most popular group, which would lead to all of the individuals being

classed as Republicans with a correct prediction rate of 53%.

For the rest of the analysis, even though we do know the true groupings so are able to

pick the best threshold, we will set the threshold to 0.5 which is a good value for when the

true groupings are not known.
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Figure 4: How the percentage of correct classifications varies as the threshold changes. The
global maximum is at 0.435 (red) with 84% correct classifications. If we set the threshold to
0.5 (blue), 79% of classifications are correct.

5.3.2 Predicted Classifications

Using a threshold of 0.5 to classify each individual, we can then see how this compares to the

true classification.

In our dataset, we had 35 senators who were Democrats, and the other 40 were Re-

publicans. On the other hand, the classification from our model predicts 47 senators being

Democrats, and only 28 Republican senators. This could be due to the size of our chosen

threshold as the higher the threshold, the fewer the number of individuals that will be as-

signed to the DIF group. In this scenario the DIF group represents the Republicans. If we

instead used a threshold of 0.435, this would give 35 Democrats and 40 Republicans which is

the same as in the dataset.

The normalised probabilities for individuals being Republican (DIF group) from those

whose true identity is Republican range between 0.303 and 0.675 with a mean of 0.499. These

probabilities for Democrats range between 0.283 and 0.517 with a mean of 0.398. This means

that whilst there is a difference on average between the values taken by the individuals from

each of the two parties, no matter where the threshold is placed, there will be some individuals

who the model gives the wrong classification to.
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This can be seen by looking at the numbers of individuals from each party who are

classified correctly or incorrectly by the model. Out of the 35 Democrats, 33 of them are

correctly classified as Democrats (94.3%). On the other hand, out of the 40 Republicans, only

26 are correctly classified as Republicans (65%). To increase this percentage, the threshold can

be lowered, but this could lead to a decrease in the number of Democrats correctly classified.

5.3.3 Estimated Parameters

Looking at the values of the parameters that the model estimates for both the individuals

and the items can help to see if the model performs well and captures the true behaviour of

the scenario we are looking at.

In the testing scenario, the parameters dj represent the difficulty of each of the items, and

the parameters aj represent the sensitivity to proficiency with higher values meaning that

having a better latent ability will highly affect the individuals ability to correctly answer the

item [14].
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Figure 5: Estimated parameter values of a and d for each item

On the other hand, in this scenario these two parameters are more difficult to interpret,

but some general patterns can be identified. Figure 5 shows how the values of aj and dj vary

for each of the J items.

Values of aj

In this setting, the values of aj represent how much the latent trait of each individual affects

how they vote for each of the bills. In the simulated data set, all of the values for aj are

positive as having a higher latent ability means that the individual is more likely to get each

of the questions correct, no matter how difficult the questions themselves are. In this setting,

the latent ability θi represents the ideological position of each of the senators. This means

that for some of the bills, having a ideological position represented by a higher value may lead
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to an individual being less likely to vote for a bill.

If we assume that there will be a difference in ideological position between the two parties,

this means that when aj has a large absolute value, members of one party are a lot more

likely to vote for (or against) the bill compared to members of the other party. The lowest

value of aj occurs at j = 9 which represents bill 442. From table 1 it can be seen that 100%

of the Republican senators in this dataset voted in favour of this bill, but only 88.6% of

Democrat senators did. This shows that the ideological position has a strong affect on how

the senators are likely to vote for this bill. Bills 16 and 520 also have negative values for aj

which agrees with the voting information that Republicans are more likely to vote for these

bills. On the other hand, bills 129 (j = 2) and 549 (j = 12) have high values which reflect

how the Democrats are more likely to vote for these bills than the Republicans.

One data point that is not behaving as what may be expected is j = 4 which represents

bill 182. Table 1 shows that 33 of the 35 Democrat senators voted for this bill, but all of the

40 Republican senators voted against. This should lead to a high value for a4, however this

lower value could be caused by the starting value for this parameter being manually assigned

before performing the EM algorithm leading to a lower value than better performing models

may estimate.

A value of aj close to 0 should mean that there is not much affect on the latent ability,

or ideological position on how a senator votes which would be expected for example in bill

188, however, a6 = 1.49 which is larger than expected and might mean that there is some

other underlying behaviour that is not being captured well based on other characteristics of

the senators.

Values of dj

Most of the parameters dj take a value greater than 0. In the testing setting, dj represents

the difficulty of each question with the easier questions which are more likely to be answered

correctly having higher values for the parameter dj . In the voting setting, a high dj represents

that item j is more likely to be voted for by any of the individuals, compared to an item with

a lower value.

The one dj that takes a negative value is d4 and this represents bill 182. Table 1 shows

that it was only voted for by 33 out of the 75 senators which only represents 44% of the votes.

As it is less likely to be voted for than the rest of the bills, this is equivalent to a test question

being difficult and therefore unlikely to be answered correctly, leading to a high difficulty and

a low dj .

The higher values of dj , for example d2 represent the bills that a lot of the senators are

likely to vote for. For j = 2, 70 out of the 75 senators vote for this bill, which is equivalent

to the item having a easy difficulty and therefore leads to large value for dj .
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6 Conclusions and Further Work

It has been shown that IRT models are popular and can perform well in the educational

setting, especially with respect to identifying students who have cheated, as well as other

anomalous results. The 2PL model used in the simulated data example performs well and

manages to correctly identify each of the DIF items over 90% of the time while providing no

false positives. Whilst this model performs well and is easily interpretable, there are other

models that are used for IRT, for example Rasch models [19] and Probit models [11]. These

models may perform better in this scenario depending on the values of the true parameters and

the underlying behaviour. This includes the number of different groups that the individuals

belong to, as well as the percentage of individuals belonging to the outlier group and the

percentage of DIF items. Smaller changes in behaviour between the groups may also be

better identified using other models.

For the political scenario, using a 2PL model looks like it could have a high success rate

in correctly identifying which parties individuals belong to. Whilst the highest success rate

for correct classifications achieved was 84% it is possible that this could be improved if there

was more data available. Having voting data for more bills would make it easier to notice the

trends in voting patterns, and how the latent variable, θi and the group membership affects

the voting behaviour of individuals and this could lead to a better classification.

It has been seen that the behaviour of the estimated aj and dj parameters mostly matches

what is expected based on the voting patterns of the individuals based on their true party

membership. However, as there are other variables that may affect the way that the sena-

tors may vote, this leads to some individuals from both parties being incorrectly classified.

Changing the model to having more than two groups that the individuals can be assigned

to can allow the affects of other variables such as age or the State that they represent to be

included.

The estimated δj values could also be analysed more. A non-zero delta suggests that even

after accounting for the ideological position of a senator, one class is more or less likely to

support a bill and this leads to the item showing DIF. This is more difficult to understand

than in the testing setting as the latent abilities do not behave in the same way as they do

in the testing setting. A higher θi does not automatically mean that the individual is more

likely to vote for a bill.

Finally, the success of this method for modelling different group membership could be

tested in more scenarios as the performance it has shown in the political setting suggests that

there are other scenarios with binary data and people belonging to different groups that could

also use this method, for example in marketing and psychology.
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