
 

Lecture 23 
 

 
Transport characteristics of electrons in a metal 

and electron gases in 2D semiconductor 
structures, scattering time and momentum 

relaxation rate. 
 

Drude formula, diffusion coefficient, Einstein 
relation; diffusion equation and its solution. 

 
 
 

Next time: 
 

Interference of waves in disordered media, the 
phenomenon of enhanced backscattering. 

 
Weak and strong localisation of electrons in 

disordered conductors. 
 



Electrons in metals and semiconductors 
 

           
 

 
 
the effective mass  approximation      group velocity 
 
 

distribution function 
 
probability density to find electron    
with momentum p at the coordinate r 

 
 

 
electron           density 
density          of states 

 
 
 

__________________________________________ 
  

Equilibrium Fermi distribution function 
 
 
 
 
 
           almost a step function at  
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Useful formulae for quick estimates 
 
 

Density of electrons 
 
 
 
 
 
 

Density  of  states  for  a  d-dimensional  metal 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fermi energy, Fermi wavelength and the density 
 
 
 
 
 
 

 
Terminology: linear response regime
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Electron current in a metal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: isotropic distribution  
 
          such as fT(p) 
 
 
or, at least,  inversion-symmetric 
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Phenomenological approach to transport 

 
Drift velocity            describes the 
motion of the centre of mass of 
all electrons together: 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
How must a deviation of the distribution function from the 
equilibrium form look like to produce a finite current value: 
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Ohm’s law 
 
 
 
 
 
 

in a  
steady 
state: 

 
 
 
 
 
 
 
 

Relaxation time,        describes frictional looses of the total 
electron momentum.  

 
 
 
 
 
 
 
 
 
 

      conductivity 
(Drude formula) 

 
 
 
 

resistivity 
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Scattering rate and momentum relaxation rate 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

scattering rate to angle    
 
 
 

Momentum relaxation rate 
 

     Determines so the called ‘transport time’ 
 
 

 
In the general situation, one has to distinguish momentum 
relaxation rate from the total scattering rate  
 
 
 
(the latter never enters the conductivity formulae) 
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Impurity scattering 

 
 
 

disorder   
   
  

 
 
 
 
 
 
 
 
 
 

 
 

Impurity scattering may transfer the momentum taken from the 
electrons accelerated by an electric field to the lattice into which 

they are incorporated. 
 
 

Born approximation for the impurity scattering: 
 
 
 
 
 

                 after  
averaging 

over Xn
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Models for impurity scattering 
 
 
 
 
 
 
 
 

________________________________________________________ 
 
 

δ - functional scatterer, 
 

 
 
 

results in the isotropic scattering (independent of the angle θ ) 
 
 

 
 
 
 
 
 
 
 

For isotropic scattering 
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Electrons in a ‘dirty’ metal 
  
 

momentum relaxation time 
 
 
 
 

length of the  
mean free path   

 
 

Electron propagation in a disordered metal 
is a random walk process. 

 
 

       Diffusion  
       coefficient  
 

 
 Diffusion 

equation 
 
 
 
 
 

_______________________________________________________ 
 

Conductivity of a disordered metal 
(Einstein’s formula) 

 
 
 
 
 

Gives the same as the Drude formula 
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Propagation of a multiply 
scattered electron along 
tree-like paths can be 
envisaged as a diffusive 
spreading across the 
sample of the probability 
density to find an electron. 

 
 
 

 
     Diffusion equation and its solution 
 
 
 
 
 
 
 
 
 
 
 
 
 

  probability 'to return'  
 
 

_______________________________________ 
 

Old hunter’s wisdom: any rabbit will finally get into his trap 
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Space-time relations  
in diffusive systems 

 
 
 
 
 
 
 

typical distance from the injection 
point for a particle undergoing 

random walk 
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Macroscopic classical systems 
 

 
 

electrons propagation is described using classical laws.  
 
 
 

________________________________________________ 

 
Mesoscopic quantum systems 

 
 

 
Regime of multiply scattered phase-coherent waves 
which interference affects transport characteristics. 

 
 

   phase-coherence  
   time and length 

 
 

________________________________________________ 

 
Ballistic – ‘nanoscopic’  
(discussed in the previous lectures) 
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