Lecture 23

Transport characteristics of electrons in a metal and electron gases in 2D semiconductor structures, scattering time and momentum relaxation rate.

Drude formula, diffusion coefficient, Einstein relation; diffusion equation and its solution.

Next time:

Interference of waves in disordered media, the phenomenon of enhanced backscattering.

Weak and strong localisation of electrons in disordered conductors.

Electrons in metals and semiconductors

$$\mathcal{E}(\vec{p}) \approx \frac{p^2}{2m} \implies \vec{v} = \frac{\vec{p}}{m}$$

$$\vec{v} = \vec{\partial}_p \mathcal{E}(\vec{p})$$

the effective mass approximation

group velocity

distribution function $f(t, \vec{r}, \vec{p})$

probability density to find electron with momentum *p* at the coordinate *r*

$$n_{e}(t,\vec{r}) = \int \frac{d\vec{p}}{(2\pi\hbar)^{d}} \cdot f(t,\vec{r},\vec{p}) = \int d\varepsilon \,\gamma(\varepsilon) \cdot \bar{f}(t,\vec{r},\varepsilon)$$

electron
density
of states

$$\bar{f} = \int \frac{dS_{\vec{p}}}{S_{\vec{p}}} \cdot f(t, \vec{r}, \vec{p})$$

$$p = p' = p_F$$

$$p_z$$

$$f(\vec{p}) \approx f_T(\varepsilon) = \frac{1}{e^{[\varepsilon(\vec{p}) - \varepsilon_F]/T} + 1}$$
almost a step function at $\varepsilon = \varepsilon_F$

$$eV, T \ll \varepsilon_F$$

Useful formulae for quick estimates

Density of electrons

$$n_e \sim \lambda_F^{-d} = \left(\frac{p_F}{2\pi\hbar}\right)^d$$

Density of states for a *d*-dimensional metal

$$\begin{split} \gamma_F &\equiv \gamma(\varepsilon_F) = \int \frac{d\vec{p}}{\left(2\pi\hbar\right)^d} \delta(\varepsilon(\vec{p}) - \varepsilon_F) \\ \gamma_F &\sim \frac{\lambda_F^{-d}}{\varepsilon_F} \sim \frac{n_e}{\varepsilon_F} \sim \frac{mn_e^{1-2/d}}{\hbar^2} \end{split}$$

Fermi energy, Fermi wavelength and the density

$$\varepsilon_F = \frac{p_F^2}{2m} \sim \frac{\hbar^2}{m\lambda_F^2} \sim \frac{\hbar^2 n_e^{2/d}}{m}$$

Terminology: linear response regime

$$eV \ll T \ll \varepsilon_F$$

Electron current in a metal

Example: isotropic distribution

$$f(\vec{p}) = f(|\vec{p}|)$$

such as $f_T(p)$

or, at least, inversion-symmetric $f(\vec{p}) = f(-\vec{p})$

$$\vec{j} = \int \frac{d\vec{p}}{(2\pi\hbar)^d} \vec{v} f(\vec{p}) \bigg|_{\vec{p}\to-\vec{p}}$$
$$= \int \frac{d\vec{p}}{(2\pi\hbar)^d} (-\vec{v}) f(-\vec{p})$$
$$= \int \frac{d\vec{p}}{(2\pi\hbar)^d} (-\vec{v}) f(\vec{p}) = 0$$

Phenomenological approach to transport

$$\vec{j} = \int \frac{d\vec{p}}{(2\pi\hbar)^d} \vec{v} f_T(\vec{p} - m\vec{v}_{dr})$$

$$= \int \frac{d(\vec{p} - m\vec{v}_{dr})}{(2\pi\hbar)^d} (\vec{v} - \vec{v}_{dr}) f_T(\vec{p} - m\vec{v}_{dr})$$

$$+ \vec{v}_{dr} \int \frac{d(\vec{p} - m\vec{v}_{dr})}{(2\pi\hbar)^d} f_T(\vec{p} - m\vec{v}_{dr})$$

$$\vec{j} = \vec{v}_{dr} \int \frac{d\vec{p}}{(2\pi\hbar)^d} f_T(\vec{p}) = \vec{v}_{dr} n_e$$

How must a deviation of the distribution function from the equilibrium form look like to produce a finite current value:

$$\begin{split} f(\vec{p}) - f_T(\vec{p}) &= f_T(\vec{p} - m\vec{v}_{dr}) - f_T(\vec{p}) \approx -m\vec{v}_{dr} \frac{\partial f_T}{\partial \vec{p}} \\ &= -m\vec{v}_{dr} \frac{\partial \varepsilon}{\partial \vec{p}} \frac{\partial f_T}{\partial \varepsilon} = -m\vec{v}_{dr} \cdot \vec{v} \frac{\partial f_T}{\partial \varepsilon} \approx m\vec{v}_{dr} \cdot \vec{v} \,\delta(\varepsilon - \varepsilon_F) \end{split}$$

Ohm's law

$$\vec{j}_e = \sigma_0 \vec{E}$$

Relaxation time, τ describes frictional looses of the total electron momentum.

$$\vec{j}_e = en_e \vec{v}_{dr} = en_e \frac{e\tau}{m} \vec{E} = \frac{e^2 n_e \tau}{m} \vec{E} = \sigma_0 \vec{E}$$

conductivity (Drude formula)

$$\sigma_0 = \frac{e^2 n_e \tau}{m}$$

resistivity

$$\rho_0 = \frac{1}{\sigma_0} = \frac{m}{e^2 n_e \tau}$$

Scattering rate and momentum relaxation rate

 $\Delta p_{beam} = p_F (1 - \cos \theta)$

$$\frac{v_{dr}}{\tau} = \frac{1}{mN} \frac{\Delta P}{\Delta t} = \frac{1}{m} \cdot \frac{mv_{dr}}{p_F} \cdot \int d\theta p_F (1 - \cos\theta) w(\theta)$$

scattering rate to angle θ

Momentum relaxation rate

$$\tau^{-1} = \int (1 - \cos \theta) w(\theta) d\theta$$

Determines so the called 'transport time'

In the general situation, one has to distinguish momentum relaxation rate from the total scattering rate

$$\tau_0^{-1} = \int w(\theta) d\theta$$

(the latter never enters the conductivity formulae)

Impurity scattering

Impurity scattering may transfer the momentum taken from the electrons accelerated by an electric field to the lattice into which they are incorporated.

Born approximation for the impurity scattering:

$$w_{\vec{p}\to\vec{p}'} = \frac{2\pi}{\hbar} \cdot \left| \langle \vec{p} | \sum_{n} u(\vec{r}-\vec{X}_{n}) | \vec{p}' \rangle \right|^{2} \delta(\varepsilon(\vec{p}) - \varepsilon(\vec{p}'))$$

$$\left| \left\langle \vec{p} \mid \sum_{n} u(\vec{r} - \vec{X}_{n}) \mid \vec{p}' \right\rangle \right|^{2} = \left| \int d\vec{r} \frac{e^{i\vec{r} \cdot (\vec{p} - \vec{p}')/\hbar}}{L^{d}} \sum_{n} u(\vec{r} - \vec{X}_{n}) \right|^{2} \frac{\text{after}}{\text{averaging}}}{\text{over } X_{n}}$$
$$= \sum_{n,m} \frac{e^{i(\vec{X}_{n} - \vec{X}_{m}) \cdot (\vec{p} - \vec{p}')}}{L^{d}} \left| \int d\vec{r} e^{i\vec{r} \cdot (\vec{p} - \vec{p}')} u(\vec{r}) \right|^{2} \approx \frac{N_{imp}}{L^{d}} \left| u_{\vec{p} - \vec{p}'} \right|^{2} = n_{imp} \left| u_{\vec{p} - \vec{p}'} \right|^{2}$$

Models for impurity scattering

$$w_{\vec{p} \to \vec{p}'} = n_{imp} \frac{2\pi}{\hbar} \cdot |u_{\vec{p} - \vec{p}'}|^2 \, \delta(\varepsilon(\vec{p}) - \varepsilon(\vec{p}'))$$
$$u_{\vec{p} - \vec{p}'} = \int d\vec{r} \cdot e^{i\vec{r}(\vec{p} - \vec{p}')/\hbar} u(\vec{r})$$

 δ - functional scatterer, $u(\vec{r}) = u \cdot \delta(\vec{r})$ $u_{\vec{p}-\vec{p}'} = \int d\vec{r} \cdot e^{i\vec{r}(\vec{p}-\vec{p}')/\hbar} u \cdot \delta(\vec{r}) = u$

results in the isotropic scattering (independent of the angle θ)

$$\varepsilon(\vec{p}) = \varepsilon(\vec{p}') \approx \varepsilon_F \Longrightarrow p = p' \approx p_F$$
 $\cos\theta = \frac{\vec{p} \cdot \vec{p}'}{p_F^2}$

$$w(\theta) = n_{imp} \frac{2\pi}{\hbar} u^2 \gamma_F \equiv w_0$$

For isotropic scattering

$$\tau^{-1} \equiv \int_0^{\pi} (1 - \cos \theta) w_0 d\theta = \int_0^{\pi} w_0 d\theta \equiv \tau_0^{-1}$$

Electrons in a 'dirty' metal

momentum relaxation time

L

$$l = v_F \tilde{\tau}_1$$

length of the mean free path

Electron propagation in a disordered metal is a random walk process.

Diffusion coefficient	$D = \frac{v_F l}{d} = \frac{v_F^2 \tau}{d}$	
Diffusion equation	$\partial_t \delta n_e = D \nabla^2 \delta n_e$	
	$\delta n_e = \int d\varepsilon \gamma_F \bar{f}(t,\vec{r},\varepsilon)$	
	$\vec{j}_{density} = -D\nabla \delta n_e$	

Conductivity of a disordered metal (Einstein's formula)

$$\sigma_0 = e^2 v_F D = \frac{e^2 n_e \tau}{m}$$

Gives the same as the Drude formula

Propagation of a multiply scattered electron along tree-like paths can be envisaged as a diffusive spreading across the sample of the probability density to find an electron.

$$[\partial_t - D\nabla^2] P(t; \vec{r}, \vec{r}_0) = \delta(t) \cdot \delta(\vec{r} - \vec{r}_0)$$

Diffusion equation and its solution

$$P = \frac{\exp\{-(\vec{r} - \vec{r_0})^2 / Dt\}}{(Dt)^{d/2}}$$

$$P(t; \vec{r}_0, \vec{r}_0) = \frac{1}{(Dt)^{d/2}}$$

probability 'to return'

Old hunter's wisdom: any rabbit will finally get into his trap

$$\int_{\tau}^{t} \upsilon dt \ P(t; \vec{r}_{0}, \vec{r}_{0}) = \int_{\tau}^{t} \frac{\upsilon dt}{(Dt)^{d/2}} = \frac{\upsilon}{D^{d/2}} \times \begin{cases} \ln \frac{t}{\tau} \to \infty & d = 2\\ \tau & \sqrt{t} \to \infty \end{cases} \quad d = 1$$

Space-time relations in diffusive systems

$$P(\vec{r},t) = \frac{e^{-\frac{(\vec{r}-\vec{r}_0)^2}{tD}}}{(Dt)^{d/2}}$$

typical distance from the injection point for a particle undergoing random walk

$$L = |\vec{r} - \vec{r}_0| \sim \sqrt{tD}$$

Macroscopic classical systems

 $L >> l >> \lambda_F (and \ \lambda_F \rightarrow 0)$

electrons propagation is described using classical laws.

$$l \sim L_{\varphi}$$

Mesoscopic quantum systems

 $L \sim L_{o} > l >> \lambda_{F}$

Regime of multiply scattered phase-coherent waves which interference affects transport characteristics.

phase-coherence time and length $L_{\varphi} = \sqrt{\tau_{\varphi}D} >> l$

Ballistic – 'nanoscopic' (discussed in the previous lectures)

 $L \sim \lambda_{F} \ll l$