Lecture 23

Transport characteristics of electrons in a metal
and electron gases in 2D semiconductor
structures, scattering time and momentum
relaxation rate.

Drude formula, diffusion coefficient, Einstein
relation; diffusion equation and its solution.

Next time:

Interference of waves in disordered media, the
phenomenon of enhanced backscattering.

Weak and strong localisation of electrons in
disordered conductors.



Electrons in metals and semiconductors
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Useful formulae for quick estimates

Density of electrons
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Density of states for a d-dimensional metal
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Terminology: linear response regime
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Electron current in a metal

Example: isotropic distribution f (ﬁ) — f (l rj |)
such as fT(p)

or, at least, inversion-symmetric f (ﬁ) =1 (_ I_j)




Phenomenological approach to transport

Drift velocity Vdr describes the
motion of the centre of mass of
all electrons together:
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How must a deviation of the distribution function from the
equilibrium form look like to produce a finite current value:
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Ohm’s law
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Relaxation time, T describes frictional looses of the total
electron momentum.
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Scattering rate and momentum relaxation rate
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Momentum relaxation rate 2'_1 = j (1— COS (9)W((9)d 0

Determines so the called ‘transport time’

In the general situation, one has to distinguish momentum
relaxation rate from the total scattering rate
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(the latter never enters the conductivity formulae)



Impurity scattering
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Impurity scattering may transfer the momentum taken from the
electrons accelerated by an electric field to the lattice into which
they are incorporated.

Born approximation for the impurity scattering:
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Models for impurity scattering

O - functional scatterer, U(F)=u-J(F)
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results in the isotropic scattering (independent of the angle )
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Electrons in a ‘dirty’ metal

momentum relaxation time
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Electron propagation in a disordered metal
IS a random walk process.
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Gives the same as the Drude formula
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Propagation of a multiply
scattered electron along
tree-like paths can be
envisaged as a diffusive
spreading across the
sample of the probability
density to find an electron.
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Diffusion equation and its solution
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Old hunter’s wisdom: any rabbit will finally get into his trap
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Space-time relations
In diffusive systems
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Macroscopic classical systems
L>>1>> A (and 4. — 0)

electrons propagation is described using classical laws.
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Mesoscopic quantum systems
L~L,>1>> 4,

Regime of multiply scattered phase-coherent waves
which interference affects transport characteristics.
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Ballistic — ‘nanoscopic’

(discussed in the previous lectures)
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