Lectures 28-30

Semiconductor quantum dots Interference effects in chaotic quantum dots The resonance tunnelling phenomenon The Coulomb blockade in quantum dots

Chaotic motion of electrons in dots

Chaotic motion of electrons in dots

 $t_{escape} > \tau_L \sim L/V_F$

Chaotic motion of electrons in a dot resembles random motion in a disordered system, including the effect of the interference between electron waves propagating along randomly shaped trajectories.

$$G = \frac{2e^2}{h} \cdot \frac{1}{2} + \frac{\partial G(B)}{\int} \qquad \langle \partial G^2 \rangle \sim \left(\frac{e^2}{h}\right)^2$$

Random magnetic field dependent part, specific to each particular shape of the dot.

Almost isolated quantum dot

$$w_{12} = \frac{\Gamma_{R-dot}\Gamma_{L-dot}}{\left(\varepsilon_F - E_n\right)^2 + \frac{1}{4}\left(\Gamma_{R-dot} + \Gamma_{L-dot}\right)^2}$$

Resonance transmission (Breit-Wigner formula)

Resonance transmission (Breit-Wigner formula) $G \mid$

$$G = \frac{2e^2}{h} w_{12}(\varepsilon_F)$$

$$G = \begin{cases} \frac{e^2}{h} \frac{4\Gamma_{R-dot}\Gamma_{L-dot}}{(\Gamma_{R-dot} + \Gamma_{L-dot})^2} \sim \frac{e^2}{h} & \text{if} \quad \varepsilon_F = E_n \\ 0 & \text{if} \mid \varepsilon_F - E_n \mid > \Gamma \end{cases}$$

Resonant tunnelling through quantum dots

Schmidt, Haug, Falko, von Klitzing, Forster, Luth - Europhys. Lett. 36, 61 (1996)

Coulomb blockade

Dynamical screening and Coulomb blockade in quantum dots.

Counting electrons one by one.

Coulomb blockade in a superconducting island: 'parity effect'

Charge quantization

Although electron carries electric charge e, its interaction with other electrons is screened by the other electrons from the Fermi sea, so that e-e interaction is reduced.

$$\frac{dQ}{dt} = -I = -GV = -\frac{GQ}{C}$$
$$\tau_{scr}^{-1} = \frac{G}{C} = \frac{2e^2 w_{12}}{hC}$$

Decay rate of charge localised at the dot determines broadening of single-electron charged state of the dot due to dynamical screening

Charging energy

$$E_{c} = \frac{e^{2}}{2C} > h\tau_{scr}^{-1} = \frac{2e^{2}w_{12}}{C}$$

if

 $w_{12} < 1$ screening is blocked: Coulomb blockade

Charge quantization in isolated quantum dots

First observations:

T.Fulton, G.Dolan PRL 59, 109 (1987) – Bell Labs M.Kastner - Rev. Mod Phys. 64, 849 (1992) – MIT

Active groups: Marcus (Harvard); Kouwenhoven TUDelft); Haug (Hannover); Enssling (ETH Zurich)

Coulomb Blockade of electron tunneling

Coulomb blockade in a superconducting island: condensate of Cooper pairs creates a gap Δ in the single-particle spectrum

