Ordinary differential equations (ODE’s)

definitions of ODE, initial (boundary) conditions, general and particular solutions of an ODE

integration of some 1st order diff. equations

integration of some 2nd order ODE’s
diff. eq. for a harmonic oscillator

1st integral and its relation to the energy conservation law in mechanics
Literature: 

All you wanted to know about Mathematics, 

but were afraid to ask,  L.Lyons  -  Volume 1, Chapt. 5 

Other reading:
Mathematical Methods for Science Students, G.Stephenson – Chapt. 21

Mathematical Methods in Physical Sciences, M.L.Boas – Chapt. 8

An ordinary differential equation (ODE),
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relates values of derivatives of an unknown function x(t) of variable t, 
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to values of this function  x(t)  for each value of variable  t. 

The order  n  of the highest derivative present in such an equation determines the order of a differential equation.

____________________________________________________________

Example: 

Radioactive decay is described by the 1st order ordinary differential equation:
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x(t) – remaining density of radioactive nuclei
____________________________________________________________
Example: Newton’s equation is the 2nd order ordinary differential equation:
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    x(t) – coordinate of a particle
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Reminder:    acceleration -




  
velocity - 

Methods of solving 1st order ODE’s
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     General form of the 1st order ODE:
     where F[x,t] can include any 

     dependence on  x  and  t.
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2. Direct integration of ODE’s: 
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one applies the operation of integration             to both sides:
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solution:
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   initial 

condition
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more general:
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For revision, read in FLAP, modules PHYS 114 and 115

Relation 

between operations of integration and differentiation

to remember:
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for any function   x(t),
Integration and differentiation are inverse to each other.

More general:        for any function G(x)
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2. ODE’s with 'separable variables': 

Example:
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As before, one applies the operation of integration           to both sides:
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exponentiate 
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*)  We have proven systematically that the 1st order linear ODE 
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      has, indeed, a general solution 
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General form of a separable 1st order ODE
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for any pair of functions











f(t) and g(x)
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integrate 

both sides:
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of integration in the

integral over  t  on 

the left hand side
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This reduces the differential equation problem to the solution of an algebraic equation (non-differential), which would relate the value of function x(t) for each  t  to the value of t and one free parameter x(0) (initial condition).
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Example:
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Quick check:     

Home reading
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‘Scale-invariant’ equations: 

equations which do not change their form 

upon a simultaneous re-scaling of both x and t

can be reduced to separable ODE’s

[image: image56.wmf]t

u

dt

du

2

-

=

[image: image57.wmf]Ð







with

___________________________________________________________________

[image: image58.wmf]Ð


Example:





           (note that this equation is not separable)
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Let us introduce a new intermediate unknown function 
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separable equation
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General solution: 
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   parameterised by one 'free' parameter

Initial (boundary) conditions in ODE’s



1sr order ODE





 General solution
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General solution of the 1st order ODE contains one 'free' parameter. 

It describes a group of all possible functions, which obey some given ODE.

When solving a particular physical problem, one seeks a particular solution related to given initial (boundary) conditions.  This requires specifying the value of a 'free' parameter, thus choosing one function from many: the one obeying additional conditions on the beginning of a studied interval of variable t.
___________________________________________________________________

Example:
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Particular solution, which satisfies the initial condition:

___________________________________________________________________



Differential equation





Differential equation


    without initial (boundary)



        with initial (boundary)
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   General solution





 A particular solution
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conditions
To determine only one definite particular solution, 

any ordinary differential equation of the n-th order, 
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has to be complemented with n equations which
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relate the values of x(t) and its lower-order derivatives,
  







taken at the ends of a 

studied interval, a<t<b.
In practice, one has to obtain the general solution
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of a differential equation, first.  The latter would depend 

on  n  free parameters. To find a particular solution, 
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                            using boundary conditions.
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