Mathematical Physics - I

Lecturer:  Vladimir Falko

(room C3 in Physics Building)
_____________________________________________________________________________________________________

Mathematical Physics: 

Selection of analytical methods used in the studies of dynamical systems in classical mechanics, in electro-magnetism, and in quantum mechanics.
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Toolbox to solve differential equations

     ordinary differential equations…....
     use of complex numbers…..….…

   

     elements of Fourier analysis….…..


     partial differential equations……...
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Vector analysis…………………………..

Course program PHYS201

Ordinary differential equations: definitions, examples of integration of some diff. equations of the first order.  Initial and boundary conditions.  Separable 1st order diff. equations.  2nd order differential equations.  First integral and its relation to conservation laws in mechanics.  Integrating multipliers and the use of integrating multipliers for reducing the order of ODE's.

Linear differential equations and properties of their solutions.  Method of eDt  substitution and the auxiliary equation.  Revision of operations with complex numbers.  Complex numbers as variables.  Functions of complex variables, function
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.  Roots of polynomials.  Linear ODE's in application to oscillations driven by an external periodic force.  Phenomenon of the resonance.  Oscillations and resonance in electric circuits.  Fourier series and basic notions of Fourier analysis.  Use of Fourier transform for solving linear differential equations. 

Functions of few variables.  Partial derivatives and partial differential equations.  Wave equation in one dimension; initial conditions for the wave equation.  D'Alamber's method.  Wave equation in restricted geometry, boundary conditions and vibration resonance.  Separation of variables in partial differential equations.  Diffusion equation and its solution in one dimension.

Books: 

All you wanted to know about Mathematics, 

but were afraid to ask (V1&2), 

L.Lyons - Cambridge Press

Mathematical Methods in Physical Sciences, 

M.L. Boas – John Wiley & Sons

Mathematical Methods for Science Students, 

G.Stephenson -  Longman Scientific  &Technical

Lecture notes:

www.lancs.ac.uk/users/esqn/mathphys/phys201

Printing out notes cannot replace attendance of lectures and problem classes (even those on Friday morning!).  They are provided only for saving your time on writing during classes, so that you can concentrate on following the lecture.  Use them as a template for adding your own notes when you follow lectures. 

Classes for PHYS201

16 Lectures     +    4 Seminars  +   Office hours - workshops
Lecture notes will 
w 2,3 - Wednesday
Small group tutorials run by VF and 

be displayed weekly 
  w 4,5 -   Friday

Dr. Ed McCann for helping you to 









work through examples and the 
material of lectures.  Please sign up for a particular group and attend regularly. 

Regular attendance of workshops will help you to spread the workload over the module, cover gaps and make sure you follow the course without leaving unsolved questions to the end.

course mark  = course work (20%)  +  exam (80%)

An algebraic equation:    
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What are 'Differential Equations' about?
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A differential equation:






relation between some unknown function x(t)





and its derivatives of various orders.
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Mathematician's  interest: Given a differential equation, to describe all functions x(t) which satisfy relation between derivatives and functions in that differential equation (that is, to express them in terms of known functions).
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19th century physicist's 
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Starting from Newton's laws,

to find how does some
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physical body move when

affected by various forces.
Anywhere in physics, mathematical formulation of fundamental laws and, therefore, of particular practical problems involves 

relations between physical quantities, whose dependence on relevant variables have to be analysed, and their derivatives.
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Example:  Slowing down of a one-dimensional motion of a particle with mass m due to the air resistance.
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One uses the Newton equation to find out how 

[image: image22.wmf]0

2

=

+

+

c

bx

ax

does the velocity of a particle, v(t) vary in time:       ___________
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acceleration 
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differential 





     relates an unknown function

equation






        to its derivative
_____________________________________________________________
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A very reasonable guess: 
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Why?     Since 
Example:  Radioactive decay problem.
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Given the initial concentration of radioactive nuclei in the medium, 
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one has to find out how many of them remain after the period of time     ?
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The probability for one nucleus to decay over an infinitely small interval of time          is 
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      decay 
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time constant
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Kinetic equation for

a radioactive decay







     differential equation
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Reasonable guess for its solution: 
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Why?  Since
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and 
Example: Kinetics of nuclear reactions 
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dense mixture
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 of deuterium

  and tritium
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neutron
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  if kinetic energy 

 E>E0 is larger than the 

reaction threshold E0
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     releases energy











U=17MeV
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deuterium & tritium mixture heats 

up (over the time interval      )
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Kinetic equation for 

thermo-nuclear reaction

is a differential equation

___________________________________________
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Solution:
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Ordinary differential equations represent mathematical formulation of models for dynamical physical systems.

   Differential equation
   unknown function 


     model for
______________________________________________________________
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     T(t)



     heating in






chemical reactions
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     v(t)



damping by friction
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    electron wavefunction






    in a Schroedinger eqn.
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satellite landing





   

 onto the Earth
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To be distinguished from an algebraic 
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Notations we shall use in this course:

   unknown function 


  its derivatives


     some given 

which has to be found:

of the n-th order

        function
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Ordinary differential equations describe the relations between derivatives of unknown function  x(t)  of a relevant variable  t  and values of these unknown functions and some other given functions.  These relations should to be satisfied for any value of a variable  t.
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Solving differential equation means finding the form of all possible functions, which obey such relations.  

Procedure of solving differential equations consists 

in a systematic construction of these solutions

following a sequence of mathematically approved steps.

Methods of solving ordinary differential are based upon 

(  knowledge of properties of elementary and some special functions

(  experience with differentiation and integral relations

· exploitation of existence of complex numbers and use of functions 

of complex variables 

· use of additivity of solutions of linear differential equations and the 

method of Fourier transform
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Vibrations of molecules and phenomenon

of the resonance 
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when this molecule is in rest
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when it is excited by an

alternating electric field
(from the InfraRed light)
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Newton’s equation for

relative displacement, x(t)  

( m is the reduced mass)

Mathematically rigorous 

[image: image91.wmf]solution can be found with the help of functions of complex variables
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- amplitude



 transmission = portion of the
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 infrared light intensity that passes

 through the gas of molecules
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   - resonance frequency 

Standing waves in mechanical resonators
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function of two variables
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   wave equation:

partial differential

       equation
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boundary conditions

Solution requires the use of a function of a complex variable, exp(ikl), and elements of Fourier analysis. 
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   ‘dangerous’ 

   resonance frequencies:
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Takoma Bridge (1940)
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