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Qutline

» Towards hybrid and mono-molecular electronics
* |s DNA a viable electrical material?

» Experiments on DNA charge mobility

* In the Solid State
e Structure, conductivity

* In Solution Chemistry
* Guanine: low ionization potential = hole traps
» Guanine-rich stacks

* Experimental results available, theoretical simulations feasible
* Trstacks, H-bonded ribbons, stacked & H-bonded G4

» DFT simulations: band transport contribution?
* Energetics, electronic properties
* G4: Flat bands, Effective semiconducting DOS

» Conclusions & Perspectives 5 W
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Electironics and Nano-Electronics
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Biomolecular Electronics

the exploitation of functional properties of biomolecules
(DNA, PROTEINS) to be used in hybrid electronic devices
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* |ntrinsic Functionality
* Self-Assembly

> Peculiarities of Biomolecular Devices

* Intrinsically identical building blocks

e Natural Nano-meter scale

e Tens-of-nanometers channel

» Single-molecule Bio-transistor

e Few-nanometers channel

prototype study-case

» Self-assembled few-molecule monolayer

» Two-terminal devices are presently the

O3
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Molecular device scheme

Bridge

Acceptor ¥

What is the role of the bridge energy
levels in the charge conduction

Electrode through the molecule? Elecirode
Coupling: electrode-donor, donor-
O3

bridge-aceptor, acceptor-electrode
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DNA Structural
Features

Unique H-bonding base-base
coupling

* Guanine-Cytosine

* Adenine-Thymine

* Auto-recognition, Self-assembly

Inner Core
* Base-pair stack
* Responsible for electron-hole
mobility
Outer backbone

* Sugar-phosphate bridge
connecting adjacent planes

* May host mobile ions

Protein recognition

* Binding at specific sites of the
sequence

* Molecular nano-lithography

—Phosphate Molecule

— Decaynbose
| Sucer Molecule

M trooe ne s

S g r-Phosp hate
Backbone
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Selected experiments on DNA charge mobility

» Charge migration in DNA in Solufion Chemistry
* Donor-to-acceptor long-range electron transfer
» Superexchange, hopping, polaron hopping (phonon-assisted)
* J.K. Barton: distance independence, wirelike

» Electronic transport in DNA in device configuration

 DNA as a template _> -
- mii * DNA as a (semi)conductor

 Formation of extended states?

» Conductivity through deoxy-guanosine fibers
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DNA in device configuration

> Insulator

* 16-um-long A-DNA, 12-16-pm-spaced electrodes, smgle molecule
* Braun et al., Nature 1998. —

* Template for conducting Ag wires.

* 1.8-um-long A-DNA, SFM, single molecule
* de Pablo et al., Phys. Rev. Lett. 2000.

» Semiconductor

* 10.4-nm-long (30 base pairs) poly(G)-poly(C), 8-nm-spaced elec’rrodes,
single molecule |

* Porath et al., Nature 2000.

» Conductor
* 600-nm-long A-DNA, bundles in 2-um holes
* Fink & Schonenberger, Nature 1999.

» Superconductor (proximity-induced superconductivity)
* 16-pm-long A-DNA, 0.5-um-spaced electrodes, few molecules

e Kasumov et al., Science 2001. 5 = L
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E. Meggers et al., J. Am. Chem. Soc. 120, 12950 (1998)

Experiment: hole transfer
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Mechanisms for DNA charge motion

One-step tunneling, Marcus &
Sutin, Biochim. Biophys. Acta
(1985).

Rate k= (1/h) Vo2 F exp(-BR)

[structureless wide 1D barrier]

Multi-step process, transfer of \ {

localized charge, slow distance - - .
dependence

E. Meggers, JACS 1998. Jortner,

PNAS 1998. 5: ;'NF“"
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Hints

» From experiments in the solid state

* Fix constraints on wire variability
e Sequence
* Length
* Aggregation state

» From experiments in solution chemistry
* Qutstanding role of the Guanine base

5 INFM
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Our approach

» Inorganic nano-wires
* Starting point: 3D crystal - 1D

* Delocalized orbitals
e Bandstructure

* Confinement in 2 directions
* Energy quantization perpendicular to wire axis
* Residual band dispersion along wire axis

» (Bio)Molecular nano-wires

» Starting point: molecular building blocks
* Localized orbitals
* Discrete energy levels

* Periodicity in 1 direction — 1D crystal lattice and bandstructure
* Orbital delocalization & band dispersion along wire axis?

e Under which conditions? 5 INFW
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Motivations for selecting G4 wires

G-aggregates
* Ribbons, tetrads, DNA sequences

* Role of G and (G),, in DNA damage and electron
transfer

Tetrad stacks: well characterized real systems, X-
ray and NMR data available

Very stable in different chemical environments
* With and without sugar-phosphate backbone

» Stabilized by metal cations in the core
* Mechanically resistant (up to [ um)

Different preparations viable
* From single strands and double strands
* Properties tuned by metal selectivity

Only guanine = no sequence dependence

Appedling to study fransport properties of
guanine-rich self-assembled supramolecular wires

5 s YU
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H-bonded quartet
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Method

o Structural Optimization

* DFT-GGA (BLYP), ab-initio soft pseudopotentials (M&T), plane wave
basis, periodically repeated supercells, BZ sampling along the wire
Qxis

» Atomic displacement until forces vanish (within 0.05 eV/A)
* Suitable to describe structures with long-range order - 1D wires

e C,N,O: hard cores = many plane waves needed, 50 Ry cutoff
e Large supercells (6x103 A3), 195 atoms, thick vacuum
» Tests on isolated G molecules and H-bonded G ribbons

* Relative formation energies
* Dependence on the atomic and electronic (E;) chemical potentials

* Electronic properties
* Bandstructure

* Density of States g I
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Building block: the Guanine base

Carbon, ,
, Oxygen

Bond lengths: 2%
Bond angles: 1%

HOMO and LUMO:
rtcharacter

nanoStructures and hioSystems at Surfaces



Isolated G:

HOMO: 1t character
Localized on C-C and
C-N bonds

electron states

LUMO: 1t character
E.umo-Evomo=4.8 eV
Localized on atoms

Suitable for = interactions in G stacks 5
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Energy (eV)

Guanine stacks
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G4-wires: structure o
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The planar tetrad
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Periodic boundary conditions

Y Lol

Unit

cell

24.3 A

+« Many infinite wires
e Wire thickness 110 A

+ Avoid inter-wire spurious coupling - large distance

5 INFM
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G4 Stability

» K-rich conditions AEfom = AEtot — AnKpK - AneE,

o K= pKioulk)

1.0 —— — .
e AnK = Ane = 3 for i
3G4/K+ 05 L i
» Variable Fermi level 5 -
e Linear dependence § 0.0 _ _
» Stable wires Q _pg5t i
« 3G4/K* favored forE. < E ! 3G4 |
1 eV 2 1.0 7
e Fermi level pinning at the LW - . .
HOMO (E; = 0) consistent <] -1.5 3G4/K .
with the presence of 7
cations -2.0 ' 2‘) ' .
» Metal cations stabilize
the extended E_(eV)

nanowires 5 A
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=4 Electronic Properties

» Bandstructure

Bandstructure Density of States « Flat bands
A = 4 * No dispersion
[ ] _ along wire axis
2t 12 (F-A)
; 0| | — 10 m * Minibands
2L | —y T | 3 » DOS
> 2 —_— 12 = * Peak spreading
9 4 _ 2 < from minibands
S e ™ &+ mlike and o-like
Ll g _ _— 1- ,5 » Effective
—_— : semiconductor
0 | _8
I A DOS (arbitrary units)

INFA
A. Calzolari et al., Appl. Phys. Lett. 80, 3331 (2002) 5

nanoStructures and hioSystems at Surfaces



G4 Electron orbitals

Delocalization along wire axis
* Channels for charge motions
*Through the bases, not through the

inner core
. & K
/ K* i “:
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Al F(. A ',f:—'*%*' &
Vi - .K+ - L’} i
Linear combination of s > ol

almost degenerate
HOMO's (~20 meV)
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Conclusions

» Stability of G4-based columnar stacks in the
presence of K+ ions

» TeTtsuperposition insufficient to induce band
dispersion along the wire axis

» Minibands from closely spaced energy levels

» Possible thermal coupling
e Combination of orbitals leads to delocalization

» Effective behavior of wide-bandgap
semiconductors

» Appealing candidates for biomolecular electronics

5 INFM
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Perspectives

» G4: Effects of other metal cations
« Stability

* Electronic properties
* Tuning by different metals: effective doping, tfransport mediation

* Relation between disctrete charge fransfer and continuous charge
transport

» Other nucleotide-based structures that may function as
good molecular wires

» Implementation of methods for ab-initio computation of
the quantum conductance and transport characteristics

5 INFM
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