ASSEMBLY AND PROCESSING OF ORGANIC NANOSTRUCTURES

D.L. Keeling¹, J.A. Theobald¹, Y. Luo¹, G. Wang¹, N.S. Oxtoby², N.R. Champness² and P.H. Beton¹

Schools of Physics & Astronomy¹ and Chemistry² University of Nottingham Nottingham NG7 2RD UK

Outline

Introduction

H-bonding induced self-assembly

• Organic micro- and nano-crystals on PMMA/SiO₂

Summary

Molecular organisation using weak intermolecular interactions

highly directional interactions - dipolar coupling, metal coordination, H - bonding used for supramolecular assembly

H bonding

20nm x 20nm

benzoic acid derivatives (PVBA) on Ag(111) J.V. Barth et.al., Angew. Chem. (2000) **Dipolar interaction**

70nm x 70nm

formation of dimers, trimers and chains from functionalised porphryns Yokoyama et.al. Nature (2001)

NTCDI and NTCDA

NTCDA

NTCDI

Crystal structure of NTCDI

H-bonded molecules canted through $\theta = \pm 13^{\circ}$ in alternate rows

Ag/Si(111)-($\sqrt{3} \times \sqrt{3}$)R30° surface

prepared and imaged in UHV

lattice constant a = 0.665nm

dangling bonds only present at step edges and surface defects

- 1st Si Layer
 2nd Si Layer
 Si Trimer
 Ag Atom
 Ag Trimer
- Cell

C₆₀ island on Ag/Si(111)

T. Takahashi et al., Japn. J. Appl. Phys. 27, 1753 (1988)

NTCDI and NTCDA on Ag/Si(111) - $(\sqrt{3} \times \sqrt{3})R30^{\circ}$ NTCDANTCDI

50nm x 50nm

150nm x 150nm

islands and rows of NTCDI running along principal crystallographic directions

H bonded chains

chains up to 25nm assembled from 1nm building blocks

Row adsorption sites

6.4nm × 6.4nm, -1V, 0.1nA intermolecular separation = 3a/2 = 0.998nm bulk spacing of NTCDI molecules 1.018nm alternate molecules adsorbed at different sites canting angle $\theta = 13 \pm 1^{\circ}$

H-bonded rows of NTCDI

intermolecular spacing within 0.02nm of bulk rows two inequivalent binding sites

STM induced modifications

12.5nm × 12.5nm, -1.2V 0.1nA

PTCDI on Ag/Si(111)

short chains - kinetically unstable

bulk spacing - 1.44nm surface spacing - 2a = 1.33nm incommensurability leads to compressive strain

PTCDI on Ag/Si(111) - honeycomb network

lattice constant $3\sqrt{3}a = 3.46$ nm

PTCDI on Ag/Si(111) - honeycomb network

40nm x 40nm

6nm x 6nm

C₆₀ molecules trapped in pores stabilisation of heptameric clusters

Pentacene thin films and single crystals

vacuum sublimation (Dimitrakopoulos, Gundlach et.al.)

pentacene on PMMA/SiO₂ (13nm) scan size 3 x 3 μ m²

can large single crystals be grown on substrates using sublimation?

Growth of fractal microcrystals

LEEM images of pentacene growth on hydrocarbon terminated passivated Si(100)

fractal islands separated by ~100μm

Meyer zu Heringdorf et.al. Nature (2001)

Growth of pentacene on PMMA

- PMMA spin coated and baked at 180°C
- film thickness 100 200nm
- low pinhole density
- smooth surface

Pentacene thin films on PMMA

room temperature

heated substrate $T = 80^{\circ}C$

 $117\mu m \times 117\mu m$

5μm x 5μm

isolated islands up to ~ $20\mu m$

island size ~ 2µm

Pentacene thin films on PMMA

room temperature

heated substrate $T = 80^{\circ}C$

23µm x 23µm

5μm x 5μm

island size ~ $2\mu m$

isolated islands up to $\sim 20 \mu m$

Island density and sticking coefficient

'extreme incomplete' growth regime - nucleation still occurring

Temporal development of island

 $T = 83^{\circ}C$

step height ~1.5nm

18μm x 18μm

Monolayer growth

simulations on square lattice diffusive capture by 'hit and stick' (diffusion limited aggregation) reduced sticking coefficient on PMMA - molecules removed after N_D hops diffusive capture growth rate α r direct capture growth rate α r²

Fractal - compact size dependent transition

 $N_D = 200, N_T = 70000$

fractal dimension 1.83

lateral growth continues until 2nd layer nucleates

2nd layer acts as a sink for diffusing molecules - transition from lateral to vertical growth

$$\frac{dn_2}{dt} = R - \frac{n_2}{\tau} - \frac{2a}{r} \frac{n_2}{\tau} \qquad (a - order molecular dimensions)$$
(a - order molecular dimensions)
(see Tersoff et.al. PRL 1994)
(see Tersoff et.al. PRL 1994)
(m_2 \alpha r - nucleation rate \alpha r^m)

Morphology of multilayer islands

direct capture switched off after N_S particles further lateral growth by diffusive capture only

anisotropy incorporated by ascribing probability P to hit and stick success for new bonds oriented along the y direction $N_D = 70$, P = 0.2, $N_S = 3000$, $N_T = 3500$

 $N_{\rm D}$ = 70, P = 0.2, $N_{\rm S}$ = 15000, $N_{\rm T}$ = 21000

Single crystal pentacene FET

hole inversion layer

Island height 20nm L = $5\mu m$ W = $13\mu m$

thickness dependent mobility $\mu \sim 10^{-4}$ cm²/Vs for trilayer & bilayers

Cobalt phthalocyanine grown on SiO₂

substrate temperature 85 °C

nanocrystalline rods height 10-30nm length ~2µm

see also Katz et.al.

Summary

intermolecular interactions and growth kinetics may be exploited to form:

self assembled rows and networks for use in templating and capture of molecules

ordered monolayers with mesoscopic lateral dimensions

micron and nanometre scale organic crystals

Engineering and Physical Sciences Research Council