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* Summary



Molecular organisation using weak
intermolecular interactions

highly directional interactions - dipolar coupling, metal co-
ordination, H - bonding used for supramolecular assembly

H bonding
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benzoic acid derivatives (PVBA)
on Ag(111)

J.V. Barth et.al., Angew. Chem.
(2000)

20nm x 20nm

Dipolar interaction
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70nm x 70nm

formation of dimers, trimers and
chains from functionalised porphryns
Yokoyama et.al. Nature (2001)



NTCDI and NTCDA

NTCDA NTCDI



Crystal structure of NTCDI

H-bonded molecules canted through 6 = £+ 13° in alternate rows
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Ag/Si(111)-(v3 x Y3)R30° surface

prepared and
imaged in UHV

|attice constant
a=0.665nm

dangling bonds only present at step edges and surface defects
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Ce, island on
T. Takahashi et al., Japn. J. Appl. Phys. 27, 1753 (1988) Ag/Si(111)



NTCDI and NTCDA on Ag/Si(111) - (V3 x Y3)R30°
NTCDI

50nm x 50nm 150nm x 150nm

islands and rows of NTCDI running
along principal crystallographic directions



H bonded chains

chains up to 25nm
assembled from 1nm building blocks



Row adsorption sites

3 lattice
constants

A

6.4nm x 6.4nm, -1V, 0.1nA 6.4nm x 6.4nm, +1.2V, 0.1nA

intermolecular separation = 3a/2 = 0.998nm
bulk spacing of NTCDI molecules 1.018nm
alternate molecules adsorbed at different sites
canting angle 6 =13 + 1°



H-bonded rows of NTCDI

intermolecular spacing within 0.02nm of bulk rows
two inequivalent binding sites



STM induced modifications

12.5nm x 12.5nm, -1.2V 0.1nA



PTCDI on Ag/Si(111)

short chains - kinetically unstable

bulk spacing - 1.44nm
surface spacing - 2a = 1.33nm
iIncommensurability leads to compressive strain



PTCDI on Ag/Si(111) - honeycomb network

lattice constant 3V3a = 3.46nm



PTCDI on Ag/Si(111) - honeycomb network
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40nm X 40nm 6nm X 6nm

Cgo molecules trapped in pores
stabilisation of heptameric clusters



Pentacene thin films and single crystals
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vacuum sublimation . N
(Dimitrakopoulos, Gundlach et.al.) T o
- - -
SiO, gate insulator P pentacene P N |
sourcegm— drain “ 1

p-Si substrate (gate) -

»

Al back contact .
u, =0.1-1.5cm?/Vs pentacene on PMMA/SIO,
(13nm) scan size 3 x 3 um?

can large single crystals be grown on substrates using sublimation?



Growth of fractal microcrystals

LEEM images of pentacene growth on hydrocarbon terminated
passivated Si(100)

fractal islands
separated by ~100um

Meyer zu Heringdorf et.al. Nature (2001)



Growth of pentacene on PMMA

pentacene

REAR.

p-Si substrate

Al back contact

* PMMA spin coated and baked at 180°C
* film thickness 100 - 200nm

* low pinhole density

« smooth surface



Pentacene thin films on PMMA

room temperature heated substrate T = 80°C

o i Y

Sum X Sum 117pum x 117um

island size ~ 2um iIsolated islands up to ~ 20um



Pentacene thin films on PMMA

room temperature heated substrate T = 80°C

SUMm X dSum 23um x 23um

island size ~ 2um iIsolated islands up to ~ 20um



Island density and sticking coefficient
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‘extreme incomplete’ growth regime - nucleation still occurring



Temporal development of island
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step height ~1.5nm

18um x 18um




Monolayer growth

Schwoebel
barrier diffusive

{\ f{\ capture

roughen
smoothen

N.= 1000 3000 10000 30000

simulations on square lattice

diffusive capture by ‘hit and stick’ (diffusion limited aggregation)

reduced sticking coefficient on PMMA - molecules removed after Ny hops
diffusive capture growth rate o r direct capture growth rate o r?



Fractal - compact size dependent transition

Schwoebel
barrier diffusive
capture

N = 200, N; = 70000

fractal dimension 1.83
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Self limiting island growth
® ®

roughen
smoothen 4“-»0

‘e0000 - @

lateral growth continues until 2nd layer nucleates

2nd layer acts as a sink for diffusing molecules - transition from lateral to
vertical growth

dn,=R - n, - 2an, (a - order molecular dimensions)

dt T [ Tgown
(see Tersoff et.al. PRL 1994)

simple steady state: n, =Rrty,,,/22a n, a r - nucleation rate o r™



Morphology of multilayer islands

direct capture switched off after Ng particles
further lateral growth by diffusive capture only

anisotropy incorporated by ascribing
probability P to hit and stick success for

new bonds oriented along the y direction
ﬁ— Np = 70, P = 0.2, Ng = 3000, N; = 3500

Np =70, P =0.2, Ng = 15000, N; = 21000




Slngle crystal pentacene FET

Pentacene Island

hole inversion layer

Island height 20nm

s L=5um  W=13um

thickness dependent

mobility

u ~ 104 cm?/Vs for trilayer
& bilayers




Cobalt phthalocyanine grown on SiO,

°C

substrate temperature 85

nanocrystalline rods

height 10-30nm

" ~ ( 'V ZIN !
.w—rH“\_N/\ /.n/IL.\l\ 4

INALAS XN

- =\’

length ~2um

see also Katz et.al.

6.9 um x 6.9 um



Summary

iIntermolecular interactions and growth kinetics may be
exploited to form:

self assembled rows and networks for use in templating
and capture of molecules

ordered monolayers with mesoscopic lateral dimensions

micron and nanometre scale organic crystals
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