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Giant magnetoresistance 
(GMR)

Tunnel magnetoresistance 
(TMR)

SAN JOSE, Calif., Nov. 10, 1997: IBM today announced the world's highest 
capacity desktop PC disk drive with new breakthrough technology called 
"Giant Magnetoresistive (GMR)" heads.

Magneto-electronics



Spin Torque

Cause and effect, Newton’s third law:

L. Berger: Domain wall resistance Force on the domain wall

J. Slonczewski: Discrete system, tunnel contact.
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Ferromagnet Normal metal
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Ferromagnetic Resonance



Spin Pumping: Abrupt Change
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Abruptly reverse the magnetization direction:

Population of spin-up and spin-down bands in equilibrium:
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Incoming wave: Normal metal 
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No spin-flip:

Scattering Matrix Approach
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2x2 current due to adiabatic change of parameter X(t)
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The emissitivy is 
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There is no pumping of charge. The spin-current is

Adiabatic Spin Pump
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Magnetization precession induces spin-current into normal metal 

2) Perfect spin-dissipation when the spins relax in the normal metal

Spin accumulation, spin-injection, spin-battery

1) No spin-dissipation in the normal metal

Enhanced Gilbert damping in Ferromagnet

Spin Pumping



s N µ= ∆

Normal metalFerromagnet

En
er

g y

∆
µ

N Density of states

(not in equilibrium)

Spin Accumulation



source back
s s sI I I= −
G G G

Diffusion contribution and time-dependent contribution:

source back
s s,   0sI I I= =

G G G
No non-equilibrium occupation:

back source
s ,   0I I I= − =

G G G

Diffusion process

Adiabatic spin pumping 

Source Current and Back Flow

Constant magnetization:



Boundary Condition for Spin Flow

source
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Transport regime:
Ferromagnet larger than the ferromagnetic coherence length.
Ferromagnet smaller than longitudinal spin-flip relaxation length.

Backflow [PRL 84, 2481 (2000)]: 
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Mixing conductance

Spin pumping:



Spin Diffusion in Normal Metal
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Boundary condition at F-N interface:

Boundary condition at the end of the sample:

The spin-current and the accompanying spin-bias 
have AC and DC components.
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Spin bias:



Spin Battery
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The spin-bias is then:

The frequency harmonics of the spin bias are strongly suppressed when
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which is satisfied when 
11

010 / ( )s s H Tτ ω −> ∼

: FMR precession cone angleθ

θ
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ω: cyclotron frequency



Spin Bias
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Spin-injection rate:

Large systems have a smaller injection rate since more states have to be filled.

Metallic contact: The mixing conductance is 
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Spin Bias
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The maximum spin bias is realized when L>>ls (γ->0):

Example: L/ls= 10 gives θ>6 degrees.

Typical resonance frequencies (H0=1.0T):
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Ferromagnetic Resonance



dPy

N NF

Exp: S. Mizukami, Y. Ando, 
T. Miyazaki

Measure Ferromagnetic Resonance
Linewidth vs. width of ferromagnet

Our estimate : 

)(/3.0' Py Ad=α

1.2    ,2.1    :Py == Lgf

Also see experiments by Bret Heinrich et al.

Comparison with Experiments





Conclusions

Phys. Rev. Lett. 88, 117601 (2002). 
Phys. Rev. B 65, 22401(RC) (2002).    
Phys. Rev. B 66, 060404 (RC) (2002). 
Phys. Rev. Lett 84, 2481 (2000). 

Spin-accumulation when the spin-injection rate is faster than the spin-flip
relaxation rate, which is feasible in metals and semiconductors.

A precessing magnetization emits spin-currents from the ferromagnet
into adjacent conductors.

Enhanced Gilbert damping when the normal metal is a spin sink.



Charge Battery
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