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Introduction

e T here are two types of quantum corrections to the
Drude formula for o

I) Weak localization (WL): a purely one-particle ef-
fect due to the interference of time-reversed trajectories

II) Interaction corrections (IC): due to the interplay
of interaction and disorder

e In the following we focus on how type II affect
electrical transport beyond linear regime

e T his may be relevant for various experiments

e In general non-linear behavior may probe dephasing
in type Il corrections



Origin of IC
e Electrons are charged

e On average, each electron " feels” the potential of the other
electrons
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interazione Coulombiana

An electron moves along path A or B. Paths A and B have different
phases and do not interfer. A second electron moves along path C,
and cancels the extra phase that A has accumulated with respect

to B

A and B interfer and affect transport



Non-linear transport: Drude-Boltzmann theory

Simple example: a wire attached to leads

mean free path
lead
| O |
K, N | o O T
| o
L

Diffusive regime: \p <l K L

The current is given in terms of distribution function

I= eDNoS/deﬁxF(x, t,€)
One determines F' via

i) Boltzmann eq. (B.E.) = diffusion equation

ii) Boundary conditions at the leads

F(CL’ = O, t, 6) = Fequilib?"ium(e)



Effect of interfaces

The current through the interface

_Gr

I de [F(:E=O+,t,e)—F(ar;IO_,t,e)}

G interface conductance

By matching the currents at the interface = extra bound-
ary conditions to use with B.E.

= Standard result for combining resistive elements



What happens in the presence of quantum in-
teraction corrections?

One expects corrections to

i) distribution function, §F
i) density of states dNg
iii) diffusion coefficient 6D

(Linear regime: Altshuler, Aronov '79, Finkel'stein '83, Castellani
et al '84)

To appreciate this use Keldysh (1964) non-equilibrium
technique

de P
I= 2(—6)/ZZEGK(p, €, x,t)
p

At equilibrium, the spatial and temporal dependence
drops out

GK(p7 6) — Fequilibm'um(e) [GR(pa 6) - GA(p7 6)]

With interaction corrections
GE — GE 4+ 6GE
SGE ~ §F + 6GF
§F — 8V, §GT — 6§Ng, 6D



By a diagrammatic analysis one can prove

0l = 9014 + 61p

014 associated with F'-corrections

0l associated with DoS- and D- corrections

Consider the structure: reservoir-interface-wire-interface-reservoir

interface

lead wire lead

0 X

By current conservation
ST = 6Lap+6Ip,

51A,wire + 5IB,wire
0lar+ 0B R

By requiring that the voltage drop across the system is
fixed

_ RLaIB,L + Rwire5IB,wire + RR(SIB,R
RL + Rwire + RR

0l




Diagrammatic analysis provides expressions for 61p

Let us consider first the wire

S wire = 61 (x) 4+ 617 ()

Il
5D($) _QIm/dEdiBl—F (CE)P (a: :El)FG w(ml)a b, (CUl,ZE)
eD No
2
(SeIDE\Q;O) :Imaw/ddel;j—wF (x)Po(x, 1) Few(x1)Pu(x1, x)

P, (x,x") describes propagation of a diffusive density fluctuation:
CDW(:E, x’)is the effective potential created by a density fluctuation
by (z,2') = [ da"Vy(z,2")Pu(z”, ")

Vo (x,x") screened Coulomb interaction



A few comments

e The two terms correspond to the diffusive (?)and
drift (1) term of the phenomenological expression
of the current

® For a wire attached to ideal leads by ideal interfaces
oI =0

® In the presence of interfaces, there is charge accu-
mulation close to the boundary and 672 has to be
taken into account

® The ingredients of the calculation: F,P,® which
have to calculated

i) F obeys B.E.

ii) P obeys diffusion equation

iii) ® depends on screening and geometry



For the current at an interface

SlpL(z) = ~er Im/dedxl— (Fe(0) — Fr)
L

Po(x,21)Fe_p(x1) Py (21, )

F(x)

FL F(0)
|lead wire

0lp 1 is similar

Note: we have neglected quantum interaction correc-
tions in the leads, but they can be included



First example: long wire L > Ly, Lin
L,, e-phonon relaxation time
L;, e-e relaxation time

electrons in the wire scatter inelastically many times

= distribution function has a local equilibrium form with
spatial dependent pu and T (Nagaev 1995)

eVrt
——2/ dr/ dt (smh( Tt)) Pi(r)sin( )

T the elastic scattering time
At low voltages

2 2
ST(V) m 28V D/ Tey, (—4.92 + 0.21D(6;/3/L) e )

h wL S
The first term is the AA correction (1979) (See also
Nagaev '94)
2
T2 =D <g>
L

sets the scale for nonlinear effects.
voltage drop over thermal length~ temperature

eVLr~T, L3 =



Second example: mesoscopic wire Ly < L < Li,
Lt = +/D/T
e [ he wire is phase coherent, no inelastic scattering

e [ he distribution function linearly interpolates be-
tween the distribution functions in the leads

F(x)

lead wire lead

Qe [ o T 2 |
0 = —72/0 dr/T dt (Siﬂh(th)) Pi(r)sin(eVt)r/L



A comment about interplay with heating

conductance

For the local-equilibrium case, non-linear behavior also due to
heating

T, estimated with energy balance arguments P, = Pout
Weak heating, for instance, T. — T ~ 2 D(eV/L)?7pn/T
Following Nagaev (PRB 1995) one calculates T.(x)

Generally, heating is important when eV L =~ T while for non-
heating non-linear eV Ly =T
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I/V is plotted in units of (e?/R)Ly/L

Full line corresponds to the non-equilibrium distribution func-
tion

Long dashed line corresponds to the local equilibrium distri-
bution function

Short dashed line (L/Ly = 5) is the non-linear conductivity
due to the heating contribution only



A comment on the diffuson

e P,(xz,2') obeys a diffusion equation with boundary
conditions

e In the case of ideal interfaces (open boundary con-
ditions)

P, (x, zcl) |x=0,L =0

e [ his condition may be derived by observing that
in the leads the diffusion coefficient is much larger
than in the wire

oo

2sin(kyx) sin(kyx') nm
2 "N — § : _
o (@) L —iw + Dk2 K

n=1
e For L > L

dkexp(ik(x — 2')
N
Pz, ) _/27r “iw + Dk2




Third example: ultrashort wire L < Ly

One can make a lowest mode approximation for the
diffuson

e > T 2
0 = ——A/ dte ot | — sin(eV't)
h J. sinh(wT't)

A~ 0.25

Yo = Dk? = 72D /L? = w?Ery,, Thouless energy
The linear conductance
2e? 1 1

G~ In
h m2  tmax(T, Ery)

i.e., G depends logarithmically at T > E7; and then
saturates at T ~ Epy,



Fourth example: short wire attached to leads by
non-ideal interfaces

e In this case the voltage drop is concentrated at the
interface

e T he distribution function is spatially independent
and a linear superposition of those in the leads
R;'Fr+ Rp'Fr

Fpire(e) ~
( ) Rzl _I_R;{l

e [ he diffuson is evaluated in the lowest mode ap-
proximation with boundary condition

Rwire

L

8xpw(xaa7/)|a:20+ — Pw(xax,)|x=0+

o For Ry,ire < Ry this condition reduces to that of an
interface with the vacuum or an insulator



The current

e [ T 2
60l = ——A/ dte 7ot [ — sin(eV't)
h J. sinh(wxT't)

i) resistive intefaces:
2R.RR
= 5~ 5
(Rr + RRr)
for symmetric system

Yo = ErnRuwire(Rr + Rr)/RrLRr < Erp,



A comment

Our result is perturbative in the screend interaction so
that strong Coulomb blockade physics is not included

To do that one has to resum the density of states cor-

rections to all orders
See, for instance,
Nazarov, 89
Levitov and Shytov,’'95
Kamenev and Gefen '96
Schoén and Zaikin '90

However, charging effects can be included. For a wire
with highly trasmissive interfaces

%) 2
o = / dte ot _ sin(eV't)
(2/2m) 0 sinhwTt

> ZAn{l . e—(ﬂn)2/RCt}



Comparison with experiment (weber et al. PRB 63,
165426)
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Log-T dependence between T'= 100mK and T'= 2K
G(0,T) = G(0,To = 1K) + AIn(T/Tp), A = 0.49¢%/h

Saturation below T'= 100mK

Scaling law

G(V,T)—-G(0,T)
A

= f(eV/T)

Voltage dependence does not change with applied mag-
netic field
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From saturation temperature and prefactor we conclude
that main resistive behavior at interfaces

Changing transparency would result in change of satu-
ration temperature and prefactor



The same analysis can be done for a 2D macro-
scopic film in the presence of a DC electric field
E

ST— B > dt ( =T, )2 sinh (2" g
== - e
(wh) |t \sinhrtT, (tTQEP

T3 = De?E?

Low field expansion (The first term is the AAL logarith-
mic correction )

—— =—-E|In——-1.62
e?/(mh) TT w373

0l [ 1 D€2E2]

High field limit: Tk replaces T in the log and gives rise to

a "dephasing” in the particle-hole channel T£h ~ E~2/3

ol 1
—— = —-EIn—
e2/(mh) Tt



Physical interpretation

E campo elettrico

e Both electrons go along the same trajectory in opposite di-
rections

e On average, one electron increases its kinetic energy, while
the second electron decreases it. The energy difference A
yields a dephasing

Interference is suppressed when

A — 6EL¢ ~/ kBT

nonlinear effects for E ~ 10mV/cm



Non-linear effect possibly relevant for 2D SIMOSFET
and GaAs heterostructure

Positive magnetoresistance (Simonian et al. 97, Popovic et
al. 97, Coleridge et al. 99) implies that the spin-triplet chan-
nel contribution is important (Finkelstein 83, Castellani et al.84,
Castellani et. al. 98)

Electric field scaling in 2D SIMOSFET (near MIT) (Kravchenko
et al. 96, Heemsterk and Klapwijk 98)

Non-linear effects used to probe metallic or insulating
behavior in 2D GaAs/AIGaA ( Yoon et al. 98)

Tp < T limit (v2): triplet channel scattering amplitude

2

e e ™ T3
dox = 2_772 [—le(%) In (ﬁ) + %fS(W)T—g

The function f{(y2) controls the RG flow.

f3(y2) = 143 [1— 1+72In(1—|—72)}
Y2
Blp) = l_|_§ 6-|-25’Y2 B (6+272)3(1+72) (1 + )
2 2 V5 V3

Non-linear effects also appear in the magnetoconductance from the
M = +1 triplet contributions (2, Zeeman energy)

3¢(3)

272

e? Q2
22 T2

Aoy = —

3
1 T3 Ts
92(72) + Egz hQ)ﬁ




Note
e > = 0 (dashed line) localizing, 72 = 5 (solid line) metallic

e At small fields, f3(y2) > 0, non-linear conductivity always pos-
itive = we need a careful analysis of experimental data at low
fields (compare with Yoon et al. 98)

e At large electric fields = log-behavior with the sign of f1(v2)
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In semiconductors devices GaAs and Si MOSFET Epc ~ 1V/m, T ~
100mK one estimates Ty ~ 10mK (Yoon et al. 98) (Kravchenko
et al. 96) smaller than what indicated by the experiment

e Need to go beyond lowest order perturbation theory and pos-
sible renormalization of the scale Ty = see next

e Relevance of dishomogeneity and nonuniform electric field in
the sample (Meir 99,)

e Complicated interplay with heating effects and one has to
measure T,; independently =

e Need to go beyond diffusive limit: Tr <= T > 1 (Cf. Zala,
Narozhony, Aleiner 2000).



Some estimates

In the experiment by Yoon et al. typical voltage scale
V* ~ 10~%Volt

Our theory predicts the scale eV (Ly/L) ~ kT

From D ~ 7-10cm/Volt s, T = 8mmK = Ly = 0.8 -
10~%cm, L =7-10"%cm
kg1 L

— ~ 10 3Vvolt
(& LT

‘/theor —

Hence the experimental voltage scale over which the
effect is seen is smaller of the predicted one by one or
two orders of magnitude

To improve agreement one would need a lerger Ly,
which may be obtained by a larger diffusion coefficient,
as in a renormalised theory



Possible consequences for scaling

Tk gives a mechanism for scaling

e Close to QCP (If any (cf. Belitz and Kirkpatrick 94, Sondhi
et al. 97)) T ~ £ % where £ is the correlation length and z is
the dynamical critical exponent.

e In a diffusive system T ~ Dg,(£)/€? with scale-dependent
Dgy(€) diffusion and quasi-particle DOS N, related by D,, =
D/(Ngy/No) (Finkelstein 83, Castellani and DiCastro 86). =
Dqp scales near the QCP as Dqp ~ £277,

e From T3 = Dqpe?E? — E ~ ¢(112),

In the experiments

® : =~ 1 which corresponds to growing D, and a vanishing N,

quasi-particle density of states near MIT.

® T hen one expects large non-linear effects near the QCP point.

® The small value of z < 2 implies ¢, ~ T¢* 2 ~ T2/%,



Conclusions

Formulation of non linear transport includ-
ing quantum interaction corrections in dis-
ordered systems

Analysis of 1D and 2D systems

Good agreement for 1D metallic systems

Qualitative agreement with 2D semicon-
ducting systems



