Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field

Cédric Gustin and Vincent Bayot

Cermin,
Université Catholique de Louvain,
Belgium
Collaborators

- Cermin, Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium

 Sebastien Faniel
 Benoit Hackens

- Dept. of Electrical Engineering, Princeton Univ., Princeton, NJ, USA

 Etienne de Poortere
 Prof. Mansour Shayegan
Motivations for this work

- Interest for ballistic and phase coherent electron dynamics in mesoscopic systems.
- Effect of an in-plane B on the transport properties (universal conductance fluctuations) of an open quantum dot.
- Influence of the 2DEG confinement potential and finite thickness (orbital motion).
Devices Fabrication

- GaAs/Al$_{0.3}$Ga$_{0.7}$As delta-doped Quantum Wells

<table>
<thead>
<tr>
<th></th>
<th>Narrow QW</th>
<th>Wide QW</th>
</tr>
</thead>
<tbody>
<tr>
<td>QW thickness</td>
<td>15 nm</td>
<td>45 nm</td>
</tr>
<tr>
<td>Density</td>
<td>2×10^{11} cm$^{-2}$</td>
<td>3×10^{11} cm$^{-2}$</td>
</tr>
<tr>
<td>Location (below surface)</td>
<td>100 nm</td>
<td>150 nm</td>
</tr>
<tr>
<td>Mobility</td>
<td>6×10^5 cm2/Vs</td>
<td>2×10^6 cm2/Vs</td>
</tr>
<tr>
<td>Occupied Subbands</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- SEM lithography
- Cr-Au depletion gates
- 3μm2 billiard
Experimental Setup

- Measurements in a 3He refrigerator at 300mK
- Standard lock-in technique at I=1nA

- *In situ* Tilting of the magnetic field
- Second Hall bar on wafer for precise B alignment and tilt angle measurement
Measuring the tilt angle

- Second Hall Bar adjacent to Open dot (150 µm)
- Slope of R_{xy} proportional to tilt angle
- $\Theta=90^\circ$: R_{xy} symmetric in B
- Residual R_{xx} at $B=0T$ taken into account
- Precision: 0.01°
- WQW: Drop in R_{xy} around $B=4.5T$
Universal Conductance Fluctuations

- Perpendicular field
- Low-pass filter to isolate UCFs

Narrow Quantum Well

Wide Quantum Well
Tilting the sample: $\theta=90^\circ$

- UCFs under a pure parallel magnetic field
- Fluctuations frequency much smaller in the narrow QW
- Conductance drop in WQW – 4T
- WQW: Comparison with high T curve \Rightarrow looking at high frequencies only $f_{\text{cutoff}}=0.5\text{Hz}$
θ=90° : Temperature Dependence

Narrow Quantum Well

Wide Quantum Well
Fluctuations Statistics : Variance

Wide Quantum Well

- UCFs only: High T (>3K) magnetoresistance removed
- Comparison between Variances at $\theta=0^\circ$ and $\theta=90^\circ$
- Variance decreases as a function of $B_{//}$ (factor 3.5-5) depending on gate voltage

Cermin - UCL
Possible ingredients

- **2DEG finite thickness**: Electrons “bouncing” on confinement potential walls.

- **Zeeman Energy and SO Coupling**: produce a variance reduction in B_\parallel by a factor of 4

- **Orbital effect**: B_\parallel renormalizes m_{eff}, changes E_F (parabolic in B_\parallel), lifts the symmetry of the dispersion law $E(k)$.

\[
m_{\text{eff}} \rightarrow m_{\text{eff}} \left(1 + \frac{\omega_c^2}{\omega_0^2}\right)
\]

\[
\omega_c = \frac{eB_\parallel}{m_{\text{eff}}}
\]
Subband depopulation – simple model

- Simple Model:
 1. Constant density
 2. 2DEG only
 3. Parabolic confinement potential
 4. No thermal smearing

- Self-Consistent:
 WQW: Upper subband depopulation first
Wide Quantum Well: From 2 to 1 subband

1 subband: variance is constant and equal to the value at high B_{\parallel} for 2 subbands.

No variance reduction with 1 subband

Graph:

- **$v_{\text{back}} = 0\text{V}$**
- **$v_{\text{back}} = 250\text{V}$**

Cermin - UCL
UCFs at Intermediate Angles

Wide Quantum Well

- Intermediate tilt angles: subband depopulation
- High tilt angles: No apparent decrease in UCFs frequency
UCFs at Intermediate Angles (2)

Narrow Quantum Well

- Approaching 90°: oscillations frequency decreases
- Near 90°: both frequency and amplitude saturate
Angle from Power Spectrum

- Evaluation of correlation field B_c at intermediate tilt angle

\[S(f) = S(0) \ e^{-2\pi B_c f} \]

- Comparison with B_c at $\theta=0^\circ$ (perpendicular field)
 - Influence of $B_{//}$ on UCFs statistics
Narrow QW: saturation around $\theta = 89.9^\circ$

Wide QW: saturation below $\theta = 89^\circ$

WQW - 90°: factor 100 in Bc (possible orbital effect)

NQW - 90°: factor 1000 in Bc (not consistent with an orbital effect...
Variance as a function of field: Wide QW

1. M going from 2 to 1 \Rightarrow reduction in variance by a factor of 4: Zeeman and SO coupling might play a role BUT with 1 occupied subband, no further variance reduction is observed!

2. Uncoupled subbands: complete depopulation of upper subband at B=7T. Only lower subband contribute to variance.

3. Why such a large contribution from the upper subband?

4. Could be consistent with finite thickness effect due to semiclassical orbits
Parallel field induced oscillations : Narrow QW

1. Mass renormalization and E_F variation expected to be smaller with narrow confinement potential: lower frequency oscillations induced by $B_{//}$

2. Confinement potential symmetric -> No time-reversal symmetry breaking expected: Variance remains constant

3. Data are not consistent with finite thickness effect due to semiclassical orbits
Conclusions

- Anomalous conductance fluctuations in a parallel magnetic field
- Strong effect of confinement potential
 1. Wide Quantum Well:
 1. Fast oscillating conductance
 2. Variance in pure B$_\parallel$ decreases by a factor of 4 at high field.
 3. One-subband: variance is constant in field
 2. Narrow Quantum Well:
 1. very low frequency oscillations at $\theta=90^\circ$
- Possible ingredients:
 - Semi-classical trajectories
 - Orbital effect with time-reversal symmetry breaking
 - 2DEG subband depopulation