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50 years of Anderson Localization
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This paper predents a simple model for such processes as spin difuslon or condaction In the “impurity
band.” These processes invalve tmnsport in a lattice which is in some sense random, and in them diffusion
is expected to tnke place via quantum jumps between localized sites, In this simple mode]l the e2sential
rendomness 15 introdpced by requiring the snergy to vary mndemly from site to site. I is shown that at low
enough densmties no diffuson at all con take place, and the crterin for transporct Lo ootur are gaver.




Nobel Lecture

; - ~ phi | iI:I W_ An derED n Mobel Lecture, December 8, 1977

g The Nobel Prize in Physics 1977

Local Moments and Localized States

| was cited for work both. in the field of magnetism and in that of
disordered systems, and | would like to describe here one development
In each held which was specifically mentioned in that citation. The two
theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which. were very much in the air at
the time, and it had rapid and permanent acceptance because of its
timeliness and its relative simplicity. What mathematical difficulty it
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and

even fewer saw its importance; among those who failed to fully
understand it at first was certainly its author. It has yet to receive

adequate mathematical treatment, and one has to resort to the indignity
of numerical simulations to settle even the simplest questions about it .



@art 1. Introduction




Einstein Relation (1905)

E Conductivity Density of states j

Diffusion Constant j

No diffusion - no conductivity

Localized states - insulator
Extended states - metal

Metal - insulator transition
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Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities
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f=3.04 GHz f=7.33 GHz

Anderson Insulator Anderson Metal



Fermi Pasta Ulam 1955

. Will a nonlinear system (system?,;u;_,_,;..}-' A s

Q _ of interacting particles) ™
completely isolated from the g K
outside world evolve to a

microcanonical distribution
(reach equipartition).

Anderson 1958

_ Will'a density fluctuation (a wave
Q _ packet) in a system of quantum 7
particles in the presence of disorder
dissolve In the diffusive way.




Localization of single-electron wave-functions:
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@ Scattering centers,
e.g., impurities

Models of disorder:

Randomly located impurities
White noise potential

Lattice models
Anderson model
Lifshits model



Anderson e Lattice - tight binding model
\i[e) d e| * Onsite energies E&; - random

 Hopping matrix elements 1 ij

I l and l are nearest
neighbors

uniformly distributed 0 otherwise

" I, 1 1
Anderson Transition W (ﬁ) (m)

< Ic I1>1 .
Insulator Metal

All eigenstates are localized There appear states extended
Localization length g all over the whole system



Why arbitrary ®® e
. weak hopping I is ? ® ® ®
not sufficient for ©e @
o i R
the existence of ™ s o0
the diffusion s

iy

process —> diffusion

uantum mechanics is not marcovian
There is memory in quantum propagation =

Why 7
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von Neumann & Wigner “noncrossing rule”

I g -

Level repulsion

What about the eigenfunctions ?



~ & | g, —& &, —&>1
1 2 2 1 2 i
H = Ez_Elz\/(gz_51)+|2z

What about the eigenfunctions ?
P& P&, = Wi, By, By

2, =& o | Z, =@ == |
[ | )
Vi, =¢,+0 D1
\&r — &1 Wi, RO, X0,
Off-resonance Resonance
Eigenfunctions are In both eigenstates the
close to the original on- probability is equally

site wave functions shared between the sites
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Anderson insulator
Few Isolated resonances
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Anderson metal
There are many resonances
and they overlap



Simplest example: Anderson Model Cayley tree:

J. Phys, C: Solid State Phys, Vol. 6, 1973, Printed in Grear Britain. @ 19732

A selfconsistent theory of localization

R Abou-Chacrat, P W Andersonfs and D J Thoulesst
t Department of Mathematical Physics, University of Birmingham, Birmingham, B13 2TT

T Cavendish Laboratory, Cambndge, England and Bell Laoratories, Murray Hill, Mew
Jersey, 07974, TISA

Becewved 12 January 1973

Abstract. A new basis has been fonnd Mo the theory of localization of elecirons i disorderad
svstemns, The method is based on a selfconsistent solution of the eguation for the self energy
in second order perturhation theory, whose sclution may be purely real almost evervwhere
(localized states) or complex everywhere (nonlocalized stares), The equations used are
exact for a Bethe lattice, The selfconsistency condition grves & nonlinear integral equation
in two variables Tor the probakility distribution of the real and imaginary parts of the self
enérgy, A simple approximation for the stability himit of localized states gives Anderson’s
‘upper limit approximation’. Exact solution of the stability problem in a special case gives
resulis very close io Anderson’s best estimate, A generzal and simple formula for the stability
limnit is derived; this formula should be valid for smooth distribution of site energies away
from the band edge. Results of Monte Carle calculations of the selfconsistency problem
are described which confism and go heyvond the analytical results, The relation of ihis
itheory to the old Anderson theory 15 exarmmed, and i 15 consluded that the present theory
% similar but bacter.



Simplest example: Anderson Model Cayley tree:

Parameters: I, W and branching number K (here K=2)
Crucial simplification: no loops

The probability ; 1 Y
amplitude to find the n
particle at a distance A(n) oc | H . N —

n is proportional to J=1 j




The probability
amplitude to find the n
particle at a distance A(n) oc |

n 1s proportional to

a .
At each step among K site we can

choose the one, which energy Is
(_the closest to &, i.e.,[e —&,| W /K __

K>1: Competition between exponentially small amplitude of
each path and exponentially large number of paths.

Conclusion: for | < I, where |, ~W /K the system is an
Insulator, because A(n — oo) — 0 Inthe opposite case — metal

More precisely |_ zW/(K log K)



j=1 € &, W

Conclusion: for | < I, where |, ~W /K the system is an
Insulator, because A(n — oo) — 0 Inthe opposite case — metal

More precisely |_ zW/(K log K)

A(n)oc 1"T]—2 | z.n(ﬁjn

| >W / K Typically there is a resonance at every step

The particle can trave

Infinitely far through the

W/(K log K)< | <W/K' (esonances of sites, which
are not nearest neighbors

| > W Typically each pair of nearest neighbors is at resonance






Noncrossing rule (theorem)
Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)

Usually textbooks present a simplified version of the justification
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. |., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989



Arnold V.l., Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989

In genle][al all multflple sapectrufm In

typical families of quadratic forms g

IS observed only for two or more E H (X) = Ea (X)
parameters, while in one-
parameter families of general
form the spectrum is simple for
all values of the parameter. Under
a change of parameter in the
typical one-parameter family the
eigenvalues can approach
closely, but when they are
sufficiently close, it Is as if they
begin to repel one another. The
eigenvalues again diverge,
disappointing the person who
hoped, by changing the
parameter to achieve a multiple
spectrum.




RANDOM MATRIX THEORY

ensemble of Hermitian matrices
N xN with random matrix element N — ©
E, - spectrum (set of eigenvalues)
O, = <E05+1 —Ea> - mean level spacing
< ...... > - ensemble averaging
g = E..—E, - Spacing between nearest
- 5, neighbors
P(S) - distribution function of nearest

neighbors spacing between

Spectral Rigidity [NZCEIEL

EVEIRE SN P(s<<1)cs”  p=12,4



Wigner-Dyson; GOE Gaussian |
Poisson Orthogona
0.8 T 1 Ensemble
0.6 } Orthog]onal
Unitar
0.4 } “ =2y
Simplectic
02 I 1.4 . ﬂ=4
0 —_—
0 05 1 15 2 joep
S “ 0.6 F
Poisson — completely “
uncorrelated )

Ievels 0 015 1 1j5 2 2.5 3



RANDOM MATRICES

N x N matrices with random matrix elements. /N — o0

Dyson Ensembles

Matrix elements Ensemble £ realization

real orthogonal 1  T-inv potential

2 x2 matrices simplectic 4  T-Inv, but with spin-
orbital coupling



SE

Reasonfor P (S) — 0 when s> 0:

1.

(H L
. g Ez_E1=\/(H22_H11)2+‘H12‘2

\ & e i 22/ small small small

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

. If H12 is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((H22- H 11) and H 12)
should be small and thus P(s)ocs p=1



”d H11_H22)jH125(E E f) H11_H22 (le)



Reasonfor P (S) — 0 when s> 0:

SE
I

1.

(H L
. g Ez_E1=\/(H22_H11)2+‘H12‘2

\ & e i 22/ small small small

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

. If H12 is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((H22- H 11) and H 12)
should be small and thus P(s)ocs p=1

Complex H, (unitary ensemble) == both Re(H;,) and

Im(H12) are statistically independent == three mdependent
random variables should be small =» P(S) oc 5% L =2



Anderson e Lattice - tight binding model
\i[e) d e| * Onsite energies E&; - random

 Hopping matrix elements 1 ij

uniformly distributed

Is there much in common between Random Matrices
and Hamiltonians with random potential ?

" What are the spectral statistics ?
= of afinite size Anderson model &



Anderson Transition

Strong disorder
I<I

Insulator
All eigenstates are localized

Localization length &

The eigenstates, which are

localized at different places
will not repel each other

J

Poisson spectral statistics

Weak disorder
1>1
C
Metal

There appear states extended
all over the whole system

Any two extended
eigenstates repel each other

J

Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

20

—L
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Energy/Spacing
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~
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Energy scales in the localization problem.

(Thouless, 1972)

L. Meanlevelspacing &, = 1/vxL*

15 L IS the system Sizé;
i 1/

energy

d IS the number of
dimensions

This scale exists in the Random Matrix theory



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
b Insulator Metal %
Poisson spectral Wigner-Dyson
statistics spectral statistics

Transition at g~1.
Is it sharp?



Volurrne=81818 volume =20 x 20 x 20
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The bigger the system the sharper the transition



Anderson transition in terms of

pure level statistics

]. w w
metal, W=5 =
critical, 16.5 =

Scaling of level spacing variance

insulator, 100 - 0.7 F  Linear size of 3D cube

Wigner

Var 5

0.2

12 14 16 15 20

disorder W



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
b Insulator Metal &
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots

with Thouless
conductance g

N xN
Random Matrices

The same statistics of the
random spectra and one-
particle wave functions
(eigenvectors)




Part 3.
Quantum Chaos

and Localization




Finite size quantum physical systems

Atoms
Nuclel
Molecules

Quantum
Dots



Main goal is to classify the eigenstates in

2UNCLYER terms of the quantum numbers
For the nuclear excitations this program does
NUCLE| g

Study spectral statistics of a particular
quantum system - a given nucleus




Main goal is to classify the eigenstates in

2UNOLYER terms of the quantum numbers
For the nuclear excitations this program does
NUCLE | pressme>

. Study spectral statistics of a particular
E.P. Wigner: quantum system - a given nucleus

Spectra: {E }

Random Matrices Atomic Nuclel

* Ensemble *Spectral averaging (over Q)

e Ensemble averaging *Particular quantum system

NV TSP Statistics of the nuclear spectra

are almost exactly the same as the
Random Matrix Statistics




10 P(S) Particular

1 T
(3)

poisson iy 1 nucleus
/.\ 108 spacings -

| | 166E,,

I GOE
_ / -

0 1 2

L)

3
§ Spectra of
n ' —1 several

Poisson NDE

i 1726 spacings nUC|ei.
N. Bohr, Nature ¢ | combined
137 (1936) 344. [ 1 (after
_ oot | spacing)
: rescaling
1 by the
l , mean level

1




Why the random matrix
Q " theory (RMT) works so well ?
" for nuclear spectra -

Oriainal These are systems with a large
9 number of degrees of freedom, and
ansWer. therefore the “complexity” is high

| ater it  there exist very “simple” systems
with as many as 2 degrees of

became freedom (d=2), which demonstrate

clear that RMT - like spectral statistics



Classical ( ) Dynamical Systems with  degrees of freedom

Integrable The variables can be d integrals

separated and the problem l=> :
reduces to d one- of motion

dimensional problems
Examples
1. A ball inside rectangular billiard; d=2

* \/ertical motion can be * VVertical and horizontal

separated from the components of the
horizontal one momentum, are both

Integrals of motion

Systems

2. Circular billiard: d=2

e Radial motion canbe  * Angular momentum

separated from the and energy are the
angular one Integrals of motion



Classical Dynamical Systems with  degrees of freedom

|gIEIO[E101 (GBS The variables can be separated = d one-dimensional
Systems problems = d integrals of motion

Rectan%ular and circular billiard, Kepler problem, .

1d Hubbard model and other exactly solvable models, .



Classical Dynamical Systems with  degrees of freedom

|gIEIO[E101 (GBS The variables can be separated = d one-dimensional
Systems problems = d integrals of motion

Rectan%ular and circular billiard, Kepler problem, .
1d Hubbard model and other exactly solvable models, .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy

Examples

Kepler problem
In magnetic field

Sinai billiard Stadium



: *Nonlinearities
Classical Chaos *Exponential dependence on

= the original conditions (Lyapunov
exponents)

*Ergodicity

P S ATAY /A

I ’,ﬂ’,“‘"ﬁ_ ; \
@?A!’!L‘\a:’l

N, A = o
N XY/

)

Quantum description of any System
with a finite number of the degrees
of freedom is a linear problem -
Shrodinger equation

()’ What does it mean Quantum Chaos 7



Bohigas — Giannoni — Schmit conjecture
VoLume 52 2 JANUARY 1984 NumbEg 1 Chao“c

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws C I aSS i Cal an aI O g

O. Bohigas, M, J. Giannoni, and C. Schmit
Division de Physique Théovigue, Institut de Physique Nucléaive, F-91406 Orsay Cedex, France
(Received 2 August 1983}

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces

the belief that level fluctuation laws are universal.

In

summary, the question at issue is to prove or dis- :
o d b " Wigner- Dyson

prove the following conjecture: Spectra of time- =
reversal—invariant systems whose classical an- SpeCtraI statistics

OFs are SYsiems sniow e same L1
EmErties as Eredicted by GOE ﬂ I

1.0 [T

]ID"1"'II’.’.I,lI.I.I LI
Y Sinai’s billiard T plos) |\

il \\ 1”2 \\ stadium i} '

AV iﬂg QD No quantum
T AN T AN numbers except
FAREN VI B Ay N energy

—— i,




(). What does it mean Quantum Chaos 7

Two possible definitions

Chaotic Wigner -
classical Dyson-like
analog spectrum



Classical Quantum

%
Integrable <—= Poisson

) :
* Wigner-

Chaotic Dyson

0 0.5 1 1.5 2 2.5 3
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(Received 28 February 2000)

Integrable Chaotic
All chaotic
systems
Square f'esemble Smal
. billiard
Al each other.

All integrable
systems are

integrable in _ ~S%
their own way extended

Disordered
localized




Anderson metal;
Wigner-Dyson spectral statistics

Disordered

System S Anderson insulator;
Poisson spectral statistics

= Is it a generic scenario for the P,
= Wigner-Dyson to Poisson crossover *

Speculations

Consider an integrable system. Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of quantum numbers. The
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements
of the hopping between different sites (Anderson model !?)



= a generic scenario for the Wigner-
Dyson to Poisson crossover

Q . Does Anderson localization provide

Consider an integrable system. Each state is
characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum
numbers. The whole set of the states forms a lattice in

this space.

A perturbation that violates the integrability provides
matrix elements of the hopping between different sites
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson



The very definition of the localization is
not invariant - one should specify in which
space the eigenstates are localized.

Level statistics is invariant:
Poissonian basis where the |
statistics eigenfunctions are localized

Wianer -Dvson basis the eigenfunctions
Sta%istics . \v/ are extended




Eanpe I v

Low concentration Electrons are localized on \@{

of donors == donors = Poisson \-f

Higher donor e, Electronic states are \-f \-f
concentration extended = Wigner-Dyson

Example 2 e m.
y —

integrals P, =—;

Lattice in the Iai:nceo(nssutgﬁfe)
momentum space energy Ideal billiard - localization in the
Pyl o seccc00es momentum space
0000000 "000 VO C> POISSO”
0000000 0O0O0O0OL MNOO0OO0OO
20000000000k Deformation or - delocalization in the
smooth random  momentum space

.............w.px

potential = Wigner-Dyson
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Diffusion and Localization in Chaotic Billiards
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Chaotic
stadium

& — 0 Integrable circular billiard

Angular momentum is
the integral of motion

h=0 e&<<l

Diffusion in the
angular momentum

Space D o 85/2/

P(s)

Localization
and diffusion
In the angular
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space
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D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

H T tZ(C:,_O'Ci+l,G - Ci-:l,aci,a)_l_u Zni,ani,—a +V Zni,ani+l,a'
Wez Wez I,0,0'
V =0 Hubbard ntegrable
model J . Onsite n. neighbors
extended _ Interaction Interaction
V #0 Hubbard nonintegrable
model
1 T T e e
3 particles
Zero total spin
Total momentum =/6 X
Oo“”iaulél's _30'1é s




D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

N/ AL % \'O{J \_O'fexchange
71D t-J model on X1 \_{t \_o'ﬂ\opping

a periodic chain

Y/ Y 1deJ

forbidden
XY model
1 v l c———r—r——r—————p—r—v—r ™— . S S SR
J=t 11\ J=2t { | J=31 -
() | AN TP S S |} SRR P cl..",oo....iJ...é..s..a




Wigner-Dyson random matrix statistics
follows from the delocalization.

Why the random matrix
Q " theory (RMT) works so well ?
" for nuclear spectra C

Many-Body excitations are delocalized |
What does it mean ?



