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I. To each physical system
there corresponds a Hilbert
space    of dimensionality equal
to the system's maximum num-
ber of reliably distinguishablee
states.
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2. Each direction (ray) in the 
Hilbert space corresponds to a 
possible state of the system.

3. Spontaneous evolution of an
unobserved system is a unitary
transformation on its Hilbert
space.
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1. A linear vector
space with com-
plex coefficients
and inner product
< φ | ψ >  = Σ  φ    ψ
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2.  For polarized 
photons two,  e.g. 
vertical and horizonal 
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4.  Unitary = Linear and
inner-product preserving.
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-- more --

ii

Quantum laws
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4. The Hilbert space of a com- 
posite sysem is the tensor 
product of the Hilbert spaces
of its parts.  1

5. Each possible measurement  2
on a system corresponds to a 
resolution of its Hilbert space 
into orthogonal subspaces  { P  },

where   Σ P  = 1.   On state
ψ  the result  j  occurs with 
probability  |P  ψ|  and the 
state after measurement is
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1 . T h u s a  tw o-pho ton
system  can  exist  in  
"p ro duc t sta tes"  such  as
              and   
bu t a lso in  "en tan gled"
state s such  as 

2   B eliev ers  in  th e  "m any
w o rlds  in te rpre ta tion " reje ct
this ax io m  as  ug ly  and  
unnecessary .  Fo r th e m  
m ea su r em ent  is  ju st  a un itary
e vo lu tion  pro duc ing  a n  
e n ta ngle d  state o f th e  sys tem
and  m ea su r ing  appa ratu s .
Fo r other s,  m e asu re m ent  
cau se s  th e  sy ste m  to  be h av e
pro bab ilis tically  a nd fo rg et
its p re -m ea su rem ent  s tate,
un le ss  th at  s tate  ha ppens  to
lie  e n ti rely  w i th in  one  o f th e
subspace s P   . j 

in  w hich  ne ither 
ph o ton ha s  a  d ef in ite  
s tate  ev en thou gh  the  
pa ir toge the r d oes

The quantum states we have been talking about so far, identified with rays 
in Hilbert space, are called  pure states.  They represent situations of 
minimal ignorance, where there is nothing more to know about the system.  
Pure states are fundamental in the sense that the quantum mechanics of 
any closed system can be completely described as a unitary evolution of 
pure states, without need of further notions.  However, a very useful 
notion, the mixed state,  has been introduced  to deal with situations 
of greater ignorance,  in particular

Mixed States and Density Matrices

an ensemble   E   in which the system in question  may be in 
any of several pure states ψ  ,  ψ  ...  with probabilities  p , p ....

a situation in which the system in question (call it A ) is
part of larger system  AB, which itself is in an entangled

pure state Ψ(AB).

12 21

In open systems, a pure state may naturally evolve into a mixed 
state (which can also be described as a pure state of a larger
system comprising the original system and its environment) 
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A mixed state is represented by a Hermitian, 
positive-semidefinite, unit-trace density matrix

ρ   =   Σ  p  | ψ  〉〈 ψ  |i

ρ(A)   =   Tr   | Ψ(AB) 〉〈 Ψ(AB) |
B

 

for an ensemble

for a subsystem

ρ   =    | ψ  〉〈 ψ  | for a pure state(  )

i ii

Different ensembles can have the same density matrix.  For 
example any equal mixture of two orthogonal polarizations has  

ρ = ( 1/2   0 )    What common feature does ρ represent?  0   1/2

The density matrix represents  all  and  only that information which 
can be learned by sampling the ensemble or observing the A part 
of the compound system.  Ensembles with the same ρ  are 
indistinguishable.  Pure states Ψ(AB) with the same ρ(A) are 
indistinguishable by observing the A part.

If Alice and Bob share a system in state Ψ(AB),  then,  for any 
ensemble E  compatible with  ρ(A),  there is a measurement

Bob can do on his subsystem alone, which generates the ensemble, 
in the sense that the measurement yields outcome   i  with 

probability  pi , and, conditionally on that outcome having 

occurred, Alice's subsystem will be left in pure state ψi .

Meaning of the Density Matrix

(Hughston-Jozsa-Wootters/Schroedinger theorem)



4

Schmidt Decomposition
Any pure state Ψ(AB) of a bipartite system is expressible as

Ψ(AB)   =   Σi  λ1/2
 | αi 〉 | βi 〉 ,

where   | αi 〉  and  | βi 〉  are  (orthogonal)  eigenvectors 

and  λi the common eigenvalues of the density matrices 

ρ(A)  and ρ(B) obtained by tracing out subsystem 

B or A respectively. (Not generally true for tripartite and higher)

i

Corollary: any two pure states of the AB system 
having the same ρ(B) are interconvertible by a 
unitary transformation acting on system A alone.
(important for Bit Commitment No-Go theorem) 

S(ρ)   =   − Tr  ρ  log ρ.

The degree of ignorance embodied
in a mixed state is represented by its
von Neumann entropy

For an ensemble   { pi , ψi }   the von Neumann entropy 
is   [  the Shannon entropy of the probabilities  pi , 
equality holding iff the states are orthogonal.

When a pure state ψ  is degraded by noise, 
the result is a mixed state ρ.   The degree 

resemblence or fidelity of ψ  to ρ   is 

F  =   |< ψ | ρ |ψ > |2.

= Shannon entropy
of eigenvalues of ρ



5

Unitary evolution is reversible, preserving distinguishability.

But quantum systems in interaction with an environment can 
undergo irreversible loss of distinguishability.

• noisy or lossy channels, which lose classical information
• classical wires, which spoil superpositions
• erasure, which destroys distinguishability completely

Any physically possible evolution of an open quantum 
system can be modeled as a unitary interaction with an 
environment, initially in a standard 0 state.

0
0

U=

Nρ N(ρ)(

U
0 E(ρ)(
E E

ρQ N(ρ)(
Q

N((ρ) = Σk Ak ρ Ak
†

where Ak are matrices such that

Σk Ak
†Ak = 1    

Unitary representation.

Kraus representation.

0
0

U=
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The Church of the Larger Hilbert Space

This is the name given by John Smolin to the habit of always 
thinking of a mixed state as a pure state of some larger 
system; and of any nonunitary evolution as being embedded in 
some unitary evolution of a larger system: No one can stop us 
from thinking this way; and Church members find it satisfying 
and helpful to their intuition:

This doctrine only makes sense in a quantum context, where 
because of entanglement a pure whole can have impure parts:  
Classically; a whole can be no purer than its most impure part.

Cf. Biblical view of impurity (Matthew 18:8)
If thy hand or thy foot offend thee, cut them off, and cast them from thee: it 
is better for thee to enter into life halt or maimed, rather than having two 
hands or two feet to be cast into everlasting fire.

Nρ N(ρ)(

U
0 E(ρ)(
E E

ρQ N(ρ)(
Q

U

Φρ ρ
I⊗N))(Φ  )ρ

N(ρ)(

RQρ
Q Q

RρR

0 E(ρ)(
E

Input viewed as entangled 
with a reference system R

Equal entropy

Noisy channel viewed as 
interaction with environment 

CLHS invoked to 
purify noisiness of 
channel

CLHS invoked again 
to purify mixedness 
of input
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Church of the Larger Hilbert Space

He drew a circle that shut me out,
Heretic, rebel, a thing to flout.
But love and I had the wit to win.
We drew a circle that took him in.

--Edwin Markham (1852-1940)

Its teachings were anticipated by those of the actual 
Unitarian Church, as expressed in an unofficial but 
well known poem and logo. 

Reversible and irreversible transformations of quantum states 
(eg under Local Operations and Classical Communication)

Equivalent states

Incomparable

Properly reducible
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Entanglement  Gambling, ie

Sometimes getting a good EPR pair       HH + VV
out of a slightly entangled pair               HH + VV

(but sometimes losing it)

HH + VV
HH + VV

Alice tries to pass her (red) photon through a Brewster window 
(which selectively reflects H photons with some probability). If the 
photon gets through, both parties are left with the desired HH+VV ;
otherwise they are left with the unentangled state HH. 

HH

(entanglement is sexy) ∧ (sex is risky) ⇒

Measures of entanglement of bipartite pure state Ψ

• Schmidt Rank (the number of nonzero Schmidt coefficients) is
conserved by gambling, when it succeeds. 

• Entropy of Entanglement E(Ψ), the local entropy of either party, 
is asymptotically conserved in entanglement concentration and 
dilution
E.g.  for Ψ = αHH + βVV, E(Ψ) = H(|α|2,|β|2).

For large  n,   n copies of Ψ can be created from  n E(Ψ) +o(n) 
EPR pairs, and can be converted into  n E(Ψ) -o(n) EPR pairs.  
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Entanglement Concentration and Dilution

Entanglement Concentration (the large n limit of 
entanglement gambling) is exact and requires no 
communication.

Entanglement Dilution requires O(√n) one way classical 
communication, and yields the desired diluted state in the 
limit of large n.

A source emitting 0 and 45 degree photons has a peculiarly quantum 
kind of redundancy because the states are nonorthogonal.  
Schumacher compression squeezes out this redundancy with 
arbitrarily little disturbance in the limit of large block size.
More generally any quantum source ρ can be compressed to a size 
equal to its von Neumann entropy  S(ρ) = –Tr(ρ log ρ) ,  but no 
smaller.   
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Schumacher Compression
Projects state ρ⊗n into subspace spanned by its Schmidt
eigenvectors of eigenvalue Λ > Λ′, setting the threshold Λ′ 
so that the remaining eigenvalues, although very 
numerous, have negligible total weight. 
Result: a high-fidelity approximation to the original 
non-maximally entangled state, but living in a smaller
Hilbert space of dimension  
≈ 2nH(ρ)

λmin
n λmax

n

Entanglement Concentration
Projects local state ρ⊗n into a random one of its 
degenerate eigenspaces, resulting in a maximally 
entangled state of local entropy  ≈ nH(ρ).  This
state has low fidelity with respect to the original state, but 
retains most of its entanglement. 

Λ′

Entanglement Concentration

Let  Ψ n=(HH+vv)n  be shared between Alice & Bob

Alice measures how many H’s she has, but not in which positions.  
Suppose she gets the result  k.  This result will be binomially 
distributed. (If Bob measured, he would get the same k, through the 
magic of entanglement.)  The residual state after measuring k is a 
maximally entangled state with (n choose k) equal terms, which can 
be converted into about  nE(Ψ) EPR pairs.  

Entanglement Dilution: Alice makes the state Ψ n locally in her lab.  
She Schumacher-compresses one side of it and teleports it to Bob 
using about nE(Ψ) EPR pairs.  He then decompresses it. Other 
techniques use less classical communication.
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Alice

Bob

 Classical 
messages

Many
Pure
EPR 
Pairs 

Many Noisy
EPR Pairs 

Fewer
Pure
EPR 
Pairs 

Entanglement Distillation

Noisy quantum 
channels

Phase (Ψ/Φ) gets XORed upward
Amplitude (−/+) gets XORed down

M

M

Keep 
remaining 
pair if 
measure-
ment
results 
agree; 
discard     
it if they 
disagree

Two-way distillation for Bell pairs “recurrence method” 
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M

M

One-way distillation by random Hashing

An unknown state of  N  Bell pairs is characterized by a 
distribution over 2N bit strings  x.
To get a random subset parity  s.x of this string, local operations 
are performed, then a single pair is measured, and from the 
results of the measurement, half the candidates for the  
remaining unmeasured pairs can be excluded.  Method gives 
positive yield if initial Bell mixture has entropy less than 1 bit.

Us

Vs

Some upper and lower bounds on one- and two-way 
distillable entanglement of symmetric 2-qubit mixed states

Fidelity wrt singlet
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Distillable Entanglement   ED
The asymptotic efficiency with which the state in question can be 
converted into singlets, using LOCC.

Entanglement Cost or asymptotic entanglement of formation  EC  
The asymptotic efficiency with which singlets can be converted into the 
state in question, using LOCC.

For Pure Bipartite States,   ED = EC ,  and the amount of classical 
communication per state prepared tends to zero in the limit of large n.

For Mixed States,   ED can be less than EC .  Indeed some mixed 
states (called bound entangled states) have zero distillable entanglement 
but positive entanglement of formation. 

Entanglement Measures for Mixed States

Nρ N(ρ)(

Channels map density matrices onto density matrices in a linear fashion.

Are all such positive maps physically possible?

No.  Consider the transpose.  It maps density matrices onto density 
matrices, but when applied to part of a bipartite system, in an entangled 
state, produces a nonphysical matrix with negative eigenvalues. 

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1  

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

partial transpose  =>

EPR state with 
eigenvalues 
(1,0,0,0)

Nonphysical
eigenvalues 
(-1/2,1/2,1/2,0)

Negativity of partial transpose is a sufficient condition for a
mixed state to be entangled (Peres-Horodecki condition).

Recognizing Entanglement
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Quantum Cryptography

Quantum Cryptographic Key Distribution  (BB84 Protocol)

Alice Sends random Photons

Bob Measures on  random Axes    +  x  +  +  x  x  +  x   x  +  +  x  + +  +  x   x   x  x

Bob's Measurement Results

 Bob reports axes he used           "  +  x  +  +      x  +  x   x      +  x  + +  +  x   x   x  x "

 Alice says which were right        "  +      +                  x           +  x     +      x        x  x "

Photons Alice & Bob should 
agree on (if no eavesdropping)       
Bit Values of Photons                     1       1                 0          1     0     1     0        1   1 

Alice Announces Parities 
of a few Random Subset 
of the Bits and Bob verifies
that they are correct.     "Even"

1       1                 0          1     0     1     0        1   1 

1       1                 0          1     0     1     0        1   1 

"Odd"

"OK"

"OK"

Remaining Shared Secret Bits                                 0          1     0     1     0        1   1 
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Data Reconciliation
Alice and Bob start with N bit strings  xA , xB which agree in most positions

They publicly chooses a random index string  s

They calculate and publicly compare random subset parities  s.xA , s.xB
Each comparison gives Bob (and Eve 1) bit of information about Alice’s string xA.  

They repeat this process with fresh random index strings until Bob thinks he has 
found and corrected all the errors.  They then compute a few more random subset 
parities to be sure. 

Privacy amplification
Using the measured error rates and other properties of the source and channels, 
Bob and Alice estimate Eve’s maximum plausible partial information on  xA,  
including what she may have gained from eavesdropping, pulse-splitting, and 
listening to the public reconciliation discussion.  Suppose Eve’s information  is 
estimated to be less than K bits.  They calculate N-K-m further random subset 
parities on  xA and use them as their final key.  Eve expected information on this 
key is exponentially small in the security parameter m. 

Sources of information for Eve

• Eavesdropping

• Listening to reconciliation

• Pulse-splitting  or photon number splitting (PNS), exploiting Poisson 
photon number distribution in dim laser pulses.   These attacks are 
especially troublesome for long-distance quantum key distribution over 
attenuating fibers, making it insecure when more multi-photon pulses are 
emitted by Alice than 1-photon pulses are received by Bob.  

Defences against Pulse Splitting / PNS attack:

• Single Photon Sources

• Bright/Dim coherent pulse interference methods 

• Decoy states
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example of Bright/dim coherent pulse interference 

φ φ

or

Very dim
SS pulse
(neglected)

Dim ( <1 photon) pulse 
from LS+SL interference 
counted in one detector 
or the other according to 
whether φA-φB = 0 or 180 
deg.  These counts yield 
the raw key.

Bright  LL pulse.  Bob monitors them to guard 
against Eve selectively suppressing dim pulses 
in PNS attack. If she suppressed a dim pulse 
without suppressing its accompanying bright 
pulse, the bright pulse would not undergo 
destructive interference and so would create 
error counts in Bob’s detectors. 

D

D
UBS UBSSBS SBS

Alice Bob

Key Distribution is 
Cold War era  
cryptography.
The good guys trust 
each other and know 
who the bad guy is. 

Often today, especially 
in the business world, there 
is no bad guy per se.  But, 
human nature being what it is, 
the good guys don’t trust each 
other.  Nevertheless they must 
cooperate and make joint 
decisions. But they wish to do 
so circumspectly, as if they 
were dealing through a trusted 
intermediary.  Of course there 
is no one they trust well 
enough to hire for that job.  
What to do? . 

2 Good Guys and 1 Bad Guy

2 Good Guys who don’t trust each other
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Simple examples of Discreet 2-Party Tasks

Dating problem = Logical AND of Alice’s bit x and Bob’s bit y.
Alice and Bob want to go out together if both are willing, while
minimizing the hurt feelings in case only one is willing. If they 
use a trusted intermediary, and only Alice is willing, the date is 
off, but Alice is spared the embarrassment of having Bob learn 
that she wanted it.   Of course there is no way to spare her the
disappointment of learning that Bob didn’t want it, since she 
can infer that from her input and the common output.

Bit Commitment:  Alice wishes to send Bob a bit of her choosing 
but in a form he cannot read. Then, later, at a time of her 
choosing, she wishes to enable Bob to read the bit.   Between 
these two times, Bob should be unable to read the bit, and Alice
should be unable to change it.  A concrete example would be 
sending Bob a locked box containing the bit, then later sending the 
key.  Mayers and Yao showed that a secure bit commitment, if it 
existed, could be combined with other quantum primitives to 
calculate any function of two inputs discreetly.  Unfortunately there 
is no secure bit commitment.. 
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BB84 Bit Commitment, and how to Cheat

To commit to 0(1) 
Alice sends n ran-
dom +(x) photons

Bob measures in 
random bases, 
getting results:

x   +    +  x   +     x   x  +  x    x  +  +

To open her com-
mitment, Alice 
announces all 
her polarizations

“ ”

Bob thinks she’s telling the truth, because her photons agree 
with all his  +  measurement results, and are uncorrelated with 
his  x  measurement results. 

Instead of + or x photons, Alice actually sent  n halves of
EPR pairs, saving the other halves in her laboratory. 

Bob measures in 
random bases, 
getting random 
results:

x   +   +   x   +     x   x  +  x    x  +  +

To open her “commitment” as a 0, Alice measures the saved 
halves in the + basis, obtaining data perfectly correlated with 
the Bob’s + measurements.  She announces, e.g. 

To open her “commitment” as a 1, Alice measures the saved 
halves in the x basis, obtaining data perfectly correlated with 
the x measurements.  She announces, e.g. 

“ ”

“ ”
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Mayers' No-Go theorem for quantum bit commitment

Alice Bob

0 or 1,  the classical value Alice commits to

ρ0 or ρ1    two globally orthogonal 
                 joint states which should
                  look the same to Bob.
      

Stage at which
commitment has been
made but not yet opened

quantum
and/or
classical
commun-
ication

Go to the "Church of the Larger Hilbert Space" by
including Alice's and Bob's environments.  
Now all operations are unitary, all communications 
are quantum and all states are pure.

Alice Bob

Alice's
environ-
ment

Bob's
environ-
ment

0 or 1

ψ0 or ψ1   two globally orthogonal 
                pure states which are known 
                to both parties and which 
                 look the same to Bob.    

Honest 
protocol 
is a global
unitary 
known to
both parties.

Honest protocol outcomes 
are therefore related by a unitary 
transformation on Alice's side alone, 
so if Bob plays honestly, Alice can 
initially make a "commitment" to ψ0  and then later
unilaterally change it to ψ1  without Bob's knowledge or cooperation!
.
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Other ways of obtaining bit commitment

Adrian Kent’s relativistic method.  A and B’s labs each consist of 2 certifiably 
remote parts,   quant-ph/9906013 v6.

A1                                                              A2

B1                                                              B2

A

B

Certifiably 
noisy classical        
or quantum channel 
Crepeau Kilian ’88
Winter et al ‘03

Reference Frame uncertainty    
Harrow Oliveira Terhal       
quant-ph/0506133 

0 UA B

Optical fiber with a secret twist 
inaccessible to A or B


