Electronic properties of graphene - |

Viadimir Falko

helped by

V.Cheianov, E.McCann
LANEHETEH) K.Kechedzhi, D.Abergel
R - T.Ando, B.Altshuler, I.Aleiner




Ultra-thin graphitic films: from flakes to micro-devices

Novoselov et al -
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L1: band structure of monolayer graphene,
‘chiral’ electrons, Berry’s phase z In
monolayer graphene, unusual properties of
the PN junction in graphene.

L2: bilayer graphene and QHE in graphene.

L3: disorder and transport in graphene.



Monolayer graphene

e

Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

‘Chiral’ electrons and Berry’s phase z in monolayer graphene,
suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene
focusing & caustics, Veselago lens for electrons.




Carbon has 4 electrons in the outer s-p shell

szhybridisation forms strong directed bonds
which determine a honeycomb lattice structure.
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p () orbitals determine conduction properties of graphite
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Wallace, Phys. Rev. 71, 622 (1947)
Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)
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Tight binding model of a monolayer

Saito et al, "Physical Properties of Carbon Nanotubes™"
(Imperial College Press, London, 1998): Chapter 2.
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Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Transfer integral on a hexagonal lattice
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Tight binding model of a monolayer

Saito et al, "Physical Properties of Carbon Nanotubes"
(Imperial College Press, London, 1998): Chapter 2.
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Electronic dispersion of a monolayer

Saito et al, "Physical Properties of Carbon Nanotubes"
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Two bands: no energy gap at the K-points



N kR
four-fold degeneracy k= Lge e
In the corners of the Brillouin zone, e’ i0
electron states on the A and B sub-lattices e ei27z/3

decouple and have exactly the same energy:
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Four degenerate states in the corners of the

Brillouin zone realize a 4-dimensional

Irreducible representation of the symmetry

group of the honeycomb lattice
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valley index
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Also, one may need to take into account an additional real spin degeneracy of all states
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ARPES: heavily doped graphene synthesized on silicon carbide

A. Bostwick et al — Nature Physics, 3, 36 (2007)
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Dirac Hamiltonian of a monolayer
written in a 2 component basis of A and B sites
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Monolayer graphene
e

Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

‘Chiral’ electrons and Berry’s phase z in monolayer graphene,
suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene
focusing & caustics, Veselago lens for electrons.




To write down the monolayer Hamiltonian describing
electrons near the K-points, one has to construct all
possible invariants using 4x4 matrices (with sublattice and
valley indices) acting within the 4-dimensional
representation and the momentum operator, f? .
(phenomenology)

Alternatively, one can apply the tight-binding model
Including the dominant next-neighbour (AB) hop and also
longer-distance (AA) hops
and to expand to higher order in pa <<1 (or x, ).
(microscopy)
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O 7Z'Jr O 72'2 weak ‘trigonal warping’: which
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A. Bostwick et al — Nature Physics, 3, 36 (2007)



Monolayer graphene
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Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

‘Chiral’ electrons and Berry’s phase z in monolayer graphene,
suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene
focusing & caustics, Veselago lens for electrons.




Monolayer graphene: truly two-dimensional gapless
semiconductor with the Dirac-type spectrum of electrons
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K. Novoselov et al., Science 306, 666 (2004)
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Bloch function amplitudes (e.g., in the valley K)
on the AB sites (“isospin’) mimic spin
components of a relativistic Dirac fermion.
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Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

‘Chiral’ electrons and Berry’s phase z in monolayer graphene,
suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene
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PN junctions in the usual gap-full semiconductors are non-
transparent for incident electrons, therefore, they are highly resistive.

Diode Bipolar Transistors




Transmission of chiral electrons through the PN junction in graphene

conduction band electrons £
—=p— 5

o-n=1 —>
. e Due to the isospin conservation, A-B symmetric potential
Y =75 1012 cannot backward scatter chiral electrons

N\
F ’ _ et For graphene PN junctions: Cheianov, VF - PR B 74, 041403 (2006)
- VG' p ‘Klein paradox’: Katsnelson, Novoselov, Geim, Nature Physics 2, 620 (2006)



Transmission of chiral electrons through the PN junction in graphene
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Due to the ‘isospin’ conservation,
electrostatic potential U¢x) which
smooth on atomic distances cannot
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backward direction.
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Transmission of chiral electrons through the PN junction in graphene

Due to transmission of electrons with a small 2
Incidence angle, 8<I/p d, aPN junction in graphene gnp 2e Pr

should display a finite conductance (no pinch-off —
play (nop ) LL 7Z'h d

A characteristic Fano factor in the shot noise: <[ : ]> =(1- \/%) el

Cheianov, VF - PR B 74, 041403 (2006)



Fig. 2. (a) Atomic force microscopy image of a single-layer graphene Josephson junction used in our
experiments. The electrodes consist of a Ti/Al bilayer, with the Tutatnium in contact with graphen.(b)
Large graphene layer deposited on top of a Si/Si02 substrate by controlled exfoliation of a single
graphite erystal. graphe

2.0
45}
4.0
§3.5 -
230t
© 2.5k
2.0F
1.5}
1.0

PN junctions should be
taken into consideration in
two-terminal devices,
since contacts dope
graphene.

Heersche et al - Nature Physics (2007)



Wishful thinking about graphene microstructures

Focusing and Veselago lens for electrons in ballistic graphene

Cheianov, VF, Altshuler - Science 315, 1252 (2007)

c (P) =Vp Fermi
momentum

momentum
Py

The effect we’ll discuss would be the strongest in sharp PN junction,
with d~Ap .
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Veselago Lens for photons
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Veselago, Sov. Phys.-Usp., 10, 509 (1968) Pendry, Phys. Rev. Lett., 85, 3966 (2000)



Veselago lens for electrons

Graphene bipolar transistor
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Focusing prism (beam-splitter) for electrons







Graphite
studied from 1930t

Buckyballs
BO—O\O Curl, Kroto Nanotubes
Smalley 1985 lijima 1991

Smalley 1993 ‘Theoretical
graphene’
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Layered poorly conducting In the rt]heorydOf
semimetal used in pencils and grapnite an
nanotubes

nuclear fusion moderators

M. Dresselhaus, G. Dresselhaus
Adv. Phys. 51, 1 (2002)

Physical Properties of Carbon Nanotubes
Saitoh, Dresselhaus, Dresselhaus, Imperial College Press 1998



