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Two-elgenfunction correlation
funection

SV [ der([¥ 0 [ ) (B, - E)S(E, —E)

C(E-E") ="~ S (5(E, —E)5(E, —E"))

n,m

Elgenfunction overlap at an
enerqgy separation




Wiy 1o bether?

e.q. local attraction in
superconaductivity
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Modification of states with
Increasing diserder

disorder

How do the matrix
elements change ?




The (standard) Anderson model

H = ZgiCiJrCi _|_ZV..C-+C- + C.C.
i I

I

Shows localization for sufficiently
strong disorder but difficult to treat
both analytically and numerically




Scaling theory ofi localization: What
it IS albout and what It Igneres?
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localization
volume
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Extended, localized and critical
eigenstates e




Wiy -firactal?

1
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Multifractal metal and insulator

Multifractal insulator Multifractal metal

Fractal texture persists in the
metal and insulator




How: do we: knoew! that?




|ldeal metal and insulator

v [d*r{je, (0 [, ()

Small amplitude
100% overlap

Large amplitude
rare overlap




Critical enhancement of
correlations

Amplitude higher than in
a metal but almost full
overlap
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States far away in energy are strongly correlated




Mismatch in the
fractal structure
grows slowly with
the distance in the
enerqy space




Self-aveiding ofi eigenfunctions at
E>Eo
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Overlap Is smaller than

for uncorrelated
elgenfunctions




Stratification of space

Each shell consists of
resonance sites for which
[E-E[<V

For W = (6En) > V there are
more than one shell which
avoid each other in space

Intra-shell states overlap almost
like in metal: enhancement of
C(w) at o < bandwidth =Eo

Inter-shell states avoid each
other: C(w) rapidly decreases
for w > Eo.







Two-elgenfunction correlation: in 3
Anderson moedel (imetal)
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Dynamical lengtiar scale




Two-elgenfunction correlation: in 3
Anderson model (Insulator)

No 1deal
/nsulator even
for very strong

aisorder!
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Two-elgenfunction correlation: in 1D
Anderson model (Insulator)

1D Anderson model, N=2000
W=5 (circles) /dea/
W=10 (stars) insulator for
sufficiently
strong
disorder







Repulsion of centers of lecalization

: 0)
Resonance repulsion R, =2¢ |n(_fj
of centers of @

localization
w=|E-E|<<6,




Resenance enhancement of overap

.II ||| j_“. Enhancement of

overiap at o:=>>w
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At d=1 repulsion of centers

of localization and the
resonance enhancement or NC (CU) =1
overlap compensate each
other

At d>1 resonance NC (@) oc In® 1(5 ) >>1
enhancement prevails 4




SUmmary.

Multifractality, of chiticall eIgeniilnctiens

Persistence off multifractal texture n'a metal and in an
lsulater phase

Critical pewer law:and Chalkers scaling

Criticall enliancement ofi eigentunction correlations at
small energy: separatiens

Elgenfunction mutual aveiding at large enengy.
Sepalations

Stratification ofi coordinate: space

Logarithmic enhancement ofi correlations in 2D and 3D
Insulators




Rancoem: matrix
thEeores




|deal extended states: classic
Wigner-Dysoen: RIVIT

mn >
fluctuating
Gaussian

- <‘ H. . random

entries




|deal localized states: random
diagenallmatrix




Random matrix ensembles with multifractal
eigenstates: critical statistics

<‘ H.. ‘2> = L 0 criticality

1+(n_

Controls fractal
dimensions

b—> Wigner-Dyson RMT

b—0 Diagonal RM




Anderson transition anad
mulufractality at RIgher dinensiens




Signature ofi multifractality
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Spectral statistics

Potential disorder
h=0.38

Potential disorder

+ magnetic field
b=0.16

Potential disorder
+ spin-orbit inter.
b=0.07




Critical Eigenfunction correlation:
3D Anderson moedel vs. RV
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Mobility edge. b=0.42,
potential disorder




Random-maitrix theory for 3D
multifiractal Insulator

controls fractality
of space

controls localization
raaius




Multifractal insulator: RMT vs.
Anderson model

" 3D Anderson model (filled symbols)
10 "'-. 1DRMT, Eq. (7)  (open symbols)

B=5, b=0.42




Possible RM T for a multifiractal

a marks departure
from criticality




Multifractal metal: 3D Anderson vs

mniﬂimnh::.
p
i ‘s




Conclusion

Random matrix moedels for ideal extended
and localized states

Critical random matrix moedel With
mulufractal’ elgenstates

Randem matrix-moedels fier a multifiractal
metal andlan Insulaior: goed descripiien
Off the ofif-critical States










Anderson vs Anderson

Anderson theorem: Tc does not depend on concentration of
nonmagnetic impurities

Ar) = j drA(r)K(r,r';T)

T = ) |l )= = 20 RS
ij P+ j

If A¢) does not depend onr and ¥(r) is real then the properties of
eigenfunctions does not enter due to the normalization condition

[dre, (N, (1) =6,

For strong disorder
ANDERSON THEOREM FAILS




Wihat te do when A(r) significantly
depends; on I 2

At T=Tc the operator K acquires the eigenvalue 1

TriK:Tr(1+ K+K +..+K"+.)=o

TrK "™ =TrK", as n— o

r)\P}*(q)\Pﬁ(r @, ()W, () (1) (1))

Neglect off-diagonal terms with 1,4, k,/ all different

Retain only diagonal elements <‘Pi2(r)‘Pj2(r)> and the
terms with maximal nhumber of summations




TFhe new ME eguation:

~_tanh(E, /2T)
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IHeW: geoed IS the approximation?
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The true small parameter:
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3D Anderson.: — EEislls




Selution te the ME equation

Ag) = f(g/2T)

_ £\l
A wiill enter in the combination V= ﬂ(ﬁj

First non-trivial solution
corresponds to







Anderson spin representation of
superconducting Hamiltonian

Hor =—20,65" = 2 M;(§S] +5/'S])
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Off-diagonal matrix elements LUMESHEAGERORAGYAGN are neglected




Cooper susceptibility

H= > hS +hS/
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Superconducting transition temperature

Z(Tc) = ZZn(Tc) = X

Replaced by: Zl(Tc(O)) = X (TC(O)) OR Y&, (Tc(l)) = X3 (Tc(l))

Operational definitions of Tc for
numerical simulations




MEA VS virial expansion
Virial: Toc(l,'y)=2. 1 ;\,1 -7910.05

MFA: T° (A,y)=2.462.""

L 178
1-d,/d

neglecting thermal fluctuations and non-local spacial fluctuations

neglecting higher-order terms of virial expansion

Good agreement of results of different approximations




MF vs Virial in the insulator

Virial expansion is probably closer to
Tc of global phase coherence




Enhancement of T. near the
Anderson transition

No Coulomb interaction

Possibly realizable

In cold atoms In
iImperfect optical
traps




Superconductor-lnsulator transition: percolation
Witheut granulation

SC
T (crit) >4,
Only states in the

strip ~T. near the
Fermi level take part

INn superconductivity
INS
T (crit) <o,




