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• Spin is a “good” quantum number for conduction band electrons

• Highest energy discrete valence-band states are “heavy-hole states”

• ~105 atoms (= nuclear spins) in each QD.
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Artificial alkali-like atom?

• Is it possible to realize a quantum dot system with 2 or more
low energy states with a long coherence time?

⇒ Spin states of an excess conduction-band electron:
A system with long coherence times (> 10μs) + fast optical manipulation



Controlled charging of a single QD: principle
Coulomb blockade ensures that electrons 

are injected into the QD one at a time
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Voltage-controlled photoluminescence (PL) 

Quantum dot emission energy depends on the charge state due to 
Coulomb effects.

X0 and X1- lines shift with applied voltage due to DC-Stark effect.

The length of the tunnel barrier (25 vs 35 nm) strongly affects the PL.
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Charged QD X1- (trion) absorption/emission
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⇒ σ+ resonant absorption is Pauli-blocked

⇒The polarization of emitted photons is determined by the hole spin

laser excitation
σ− photon



B0e- 2e-

Trion transitions in a charged QD

Γ: spontaneous emission rate Ω: laser coupling (Rabi) frequency

γ: spin-flip spontaneous emission rate due to electron or hole state mixing

ξ: spin-flip rate due to hyperfine flip-flop or co-tunneling events

Ω



Absorption Plateau of a single-electron charged QD

B = 0 Tesla
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Absorption Plateau of a single-electron charged QD

B = 0 Tesla

-An expected Zeeman
shift of the absorption
plateau to higher laser
frequencies

-The dissapearance of 
absorption in the center of 
the plateau suggests
optical pumping
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Trion transitions in the center of the absorption plateau:
Hyperfine mixing of spin-states

B = 0 T: fast spin-flips (ξ-1 ~3 ns) B = 0.2 T: slow spin-flips

γ−1 ∼ 1 μs,     Γ−1 = 1 ns

⇒ The electron is optically pumped into the |↑> state for B > 0.1 T

Ω Ω



0 Tesla 0.2 Tesla 0.2 Tesla

Recovery of absorption in a single-electron charged QD

⇒ Absorption is recovered fully by applying a second laser.

⇒ Spin pumping only occurs in the center of the plateau?

Ω Ω



Exchange interactions with the Fermi-sea induce spin-flip
co-tunneling

• Co-tunneling is enhanced at the edges of 
the absorption plateau where the virtaul
state energy ~ initial/final state energy

• Co-tunneling rate changes by 5-orders-of-
magnitude from the plateau edge to the
center
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QD absorption as a function of an external field

• For B > 5 Tesla, absorption reappaears due to spin-orbit mediated spin relaxation

• Electron is well isolated from reservoirs only for

0.1 Tesla < B < 5 Tesla           500 mV < Vgate < 530 mV



• Cooling takes place due to one-way pumping by spin-flip spontaneous
Raman scattering at rate γ ∼106 s-1.

• There are three mechanisms for randomizing the spin state (~103 s-1):
a) Hyperfine interactions:

b) Exchange interactions with the electron reservoir (co-tunneling):

c) Phonon-assisted spin-flips due to spin-orbit interaction:

⇒QD behaves like an artificial atom only for a certain range of the
applied gate voltage and the magnetic field.

Spin cooling mechanism

Effective only for B ~0 due
to energy conservation (i.e. 
incommensurate electronic
and nuclear Zeeman energies)

Effective only at the edges of the plateau: co-tunneling rate differs
by 5 orders of magnitude from the edge to the center of the plateau

Effective only for B > 5 Tesla.



Measurement of a single QD spin

• The spin-state selective absorption: right (left) hand circularly
polarized laser sees substantial absorption if the electron spin
is in |↑> (|↓>) and perfect transmission otherwise.
⇒ Optical pumping of spin destroys the information about

the initial spin before it can be measured.

• Faraday rotation of an off-resonant laser field (dispersive
response) allows for shot-noise limited measurement, without
inducing optical pumping.

• It is possible to obtain Faraday SNR>1 while keeping spin-flip
Raman scattering events negligible (no need for a cavity):
⇒ maximize σabs/Alaser



Absorptive vs. Dispersive response of a QD

Initial 
electron 

spin-state 
determines 
whether the 
polarization 
rotation is 
+θ or –θ; 

this rotation 
is measured 

by the 
difference 

signal 



Measurement of an optically prepared single spin-state using Faraday 
rotation of a far detuned (~50 GHz) linearly-polarized laser

electron 
prepared in 

spin-up 
state using 
a resonant 

laser

electron 
prepared in 
spin-down 
state using 
a resonant 

laser



Towards quantum nondemolition read-out of a single spin

• Single-spin read-out will be a key tool for assessing the 
fidelity of various quantum information processing protocols.

• Currently, back-action in the form of spin-sflip Raman 
scattered photons is at the level of ~ 1 - 10 in a measurement 
time (500 ms) yielding SNR = 1.

• Improvements in detector efficiency and the use of a solid-
immersion lens that enhances σabs/Alaser should enable back-
action evading read-out, without the need for a cavity.
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Transmission measurements: the next generation

The laser extinction is 12% 
with a solid-immersion-lens



Saturation of QD absorption: direct measurement (no lock-in)



Semiconducting carbon nanotubes
(with A. Hoegele & C. Galland)

• A solid-state system with vanishing hyperfine and spin-orbit 
interaction

• Due to strong exciton binding and diameter-dependence of 
emission energy, fast emitters over a broad wavelength range

AFM Topography

ZrO2/n=2

CoMoCat nanotubes on functionalized 
solid-immersion lens



Quantum light from a 0.5 μm long carbon nanotube
Photoluminescence  Photon auto-correlation
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Quantum light from a 0.5 μm long carbon nanotube
Photoluminescence  Photon auto-correlation
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Why does a nanotube emit quantum light?
Exciton localization vs. Auger processes
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Lifetime and saturation
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⇒ Fast decay component dominating at high pump powers suggests that Auger 
processes play a key role in observed photon antibunching – QDs for free!
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