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Outline

1) Optical pumping of a single-electron spin

2) Faraday rotation from a single confined spin
3) How strongly can a quantum dot absorb light?
4) A new solid-state system for quantum optics
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* Spin is a “good” quantum number for conduction band electrons
» Highest energy discrete valence-band states are “heavy-hole states”

« ~10° atoms (= nuclear spins) in each QD.



Artificial alkali-like atom?

 Is it possible to realize a quantum dot system with 2 or more
low energy states with a long coherence time?

—> Spin states of an excess conduction-band electron:

A system with long coherence times (> 10us) + fast optical manipulation



Controlled charging of a single QD: principle

Quantum dot embedded Coulomb blockade ensures that electrons
between n-GaAs and a top gate. are injected into the QD one at a time
Schottky Gate Single electron charging energy:
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Voltage-controlled photoluminescence (PL)
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Quantum dot emission energy depends on the charge state due to
Coulomb effects.

X% and X' lines shift with applied voltage due to DC-Stark effect.
The length of the tunnel barrier (25 vs 35 nm) strongly affects the PL.



Charged QD X! (trion) absorption/emission

Excitation Emission
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—> o+ resonant absorption 1s Pauli-blocked

—The polarization of emitted photons 1s determined by the hole spin



Trion transitions in a charged QD
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I[': spontaneous emission rate Q2: laser coupling (Rabi1) frequency

v: spin-flip spontaneous emission rate due to electron or hole state mixing

&: spin-flip rate due to hyperfine flip-flop or co-tunneling events



Absorption Plateau of a single-electron charged QD
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LASER DETUNING (GHz)

Absorption Plateau of a single-electron charged QD
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-An expected Zeeman
shift of the absorption
plateau to higher laser
frequencies

-The dissapearance of
absorption in the center of
the plateau suggests
optical pumping




Trion transitions In the center of the absorption plateau:
Hyperfine mixing of spin-states
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B =0 T: fast spin-flips (&% ~3 ns) B =0.2 T: slow spin-flips

yl~1ps, T1=1ns

— The electron is optically pumped into the |T> state for B> 0.1 T



Recovery of absorption in a single-electron charged QD
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= Absorption is recovered fully by applying a second laser.

= Spin pumping only occurs in the center of the plateau?



Exchange interactions with the Fermi-sea induce spin-flip
co-tunneling

INITIAL STATE VIRTUAL STATE FINAL STATE

Relative Absorption (%)

=]
-
=]

0.05

0.00

(a) | » Co-tunneling is enhanced at the edges of
1  the absorption plateau where the virtaul
state energy ~ initial/final state energy

1. Co-tunneling rate changes by 5-orders-of-
magnitude from the plateau edge to the
center

'l i 'l
550 600
Gate Voltage (mV)



QD absorption as a function of an external field
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* For B > 5 Tesla, absorption reappaears due to spin-orbit mediated spin relaxation

* Electron is well isolated from reservoirs only for

0.1 Tesla<B < 5 Tesla 500mV<V__. <530mV

gate



Spin cooling mechanism

* Cooling takes place due to one-way pumping by spin-flip spontaneous
Raman scattering at rate y ~10° s-I.

* There are three mechanisms for randomizing the spin state (~103 s-1):
a) Hyperfine interactions: A ;
Effective only for B ~0 due Hint hﬁ 7 Z ol
1

to energy conservation (i.e. A 1
incommensurate electronic - Z o; (=0, I +

. “«—Z /
and nuclear Zeeman energies) N , 2

b) Exchange interactions with the electron reservoir (co-tunneling):

Effective only at the edges of the plateau: co-tunneling rate differs
by 5 orders of magnitude from the edge to the center of the plateau

c¢) Phonon-assisted spin-flips due to spin-orbit interaction:

Effective only for B > 5 Tesla.

=QD behaves like an artificial atom only for a certain range of the
applied gate voltage and the magnetic field.



Measurement of a single QD spin

* The spin-state selective absorption: right (left) hand circularly
polarized laser sees substantial absorption if the electron spin
is in [T> (N>) and perfect transmission otherwise.

= Optical pumping of spin destroys the information about
the initial spin before 1t can be measured.

« Faraday rotation of an off-resonant laser field (dispersive
response) allows for shot-noise limited measurement, without
inducing optical pumping.

It 1s possible to obtain Faraday SNR>1 while keeping spin-flip
Raman scattering events negligible (no need for a cavity):

—> Mmaximize Gabs/ Alaser
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electron
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polarization
rotation 1s
+0 or —0;
this rotation
1S measured
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difference
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Absorptive vs. Dispersive response of a QD
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Measurement of an optically prepared single spin-state using Faraday
rotation of a far detuned (~50 GHz) linearly-polarized laser
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Towards quantum nondemolition read-out of a single spin

« Single-spin read-out will be a key tool for assessing the
fidelity of various quantum information processing protocols.

* Currently, back-action in the form of spin-sflip Raman
scattered photons 1s at the level of ~ 1 - 10 1n a measurement
time (500 ms) yielding SNR = 1.

* Improvements in detector efficiency and the use of a solid-
immersion lens that enhances o, /A, . should enable back-
action evading read-out, without the need for a cavity.




Transmission measurements: the next generation
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Normalized Detector Output

Saturation of QD absorption: direct measurement (no lock-in)
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Semiconducting carbon nanotubes
(with A. Hoegele & C. Galland)

* A solid-state system with vanishing hyperfine and spin-orbit
interaction

* Due to strong exciton binding and diameter-dependence of
emission energy, fast emitters over a broad wavelength range

AFM Topography CoMoCat nanotubes on functionalized
= . solid-immersion lens
: ® © ©




Quantum light from a 0.5 pym long carbon nanotube
Photoluminescence
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PL Intensity (cts/sec)

Quantum light from a 0.5 pym long carbon nanotube

Photoluminescence Photon auto-correlation
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PL Intensity (cts/sec)

Why does a nanotube emit qguantum light?
Exciton localization vs. Auger processes
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Lifetime and saturation
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— Fast decay component dominating at high pump powers suggests that Auger
processes play a key role in observed photon antibunching — QDs for free!
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