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Phase coherence in the Coulomb blockade regime
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from open to tunneling dots
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coulomb peaks

Signature of
single-level regimekT>>Δ

kT<<Δ

g(e2/h)
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CB peak height (Porter-Thomas) statistics

J. Folk, et al. , Phys. Rev. Lett. 76 1699 (1996).
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FIG. 1. Coulomb blockade peaks in conductance g as a
function of gate voltage Vg at (a) 45 mK and (b) 400 mK from
device 1. Insets: SEM micrograph of device 1. Peak height
fluctuations dgi extracted from these data sets.

and generated according to Eq. (1) assuming a uniformly

spaced spectrum [8]. The RMT results do not change

significantly when Wigner-Dyson statistics for the spec-

trum is included. The saturation of nc!T " at m # 2 for
kBT . 0.5D for the smallest device is evident in Fig. 2(c).
The larger dot begins to saturate for larger n, with a larger
ratio kBT$D, suggesting that the spectrum of the larger dot
is less prone to scrambling. The observed scale of satu-

ration, m, as well as the trend for m to increase with N ,

appears consistent with the RPA estimate given above.

As the gate voltage is swept, two distinct changes occur,

both of which can cause spectral scrambling. The first is

that the number of electrons and size of the dot change;

the second is that the shape of the dot changes due to lo-

cal movement of the boundary at the position of the gate.

This second effect was considered recently in Ref. [16] to

explain the nearly Gaussian peak-spacing distribution seen

in several experiments [11,12,14]. The two effects can be

separated using a dot with two plunger gates, which allows

pure shape distortion without changing N by increasing

one gate voltage and decreasing the other. In practice, it

is easier to raster over the two gate voltages, as seen in

Fig. 3(a). Horizontal and vertical directions correspond to

single-gate CB measurements, while a downward diagonal

following a single peak corresponds to pure shape distor-

tion with fixedN . Correlations in the same dot measured

at fixedN (measured along diagonals) and changingN
(measured along horizontals) can be compared by evaluat-

ing both correlations in terms of Vg1 rather than n. Com-

FIG. 2. Peak height correlations C!n" at 45, 100, 200, 300,
and 400 mK for (a) dot 1 and (b) dot 2. (c) Temperature
dependence of correlation length nc for different device
configurations, and numerical RMT result. Inset: Gray-scale
plots of conductance for three successive CB peaks, showing
paired peaks i and i 1 1, presumably a spin pair.

paring C!DVg1" for the two cases [Fig. 3(b)] shows that
the correlation length associated with shape deformation is

larger by a factor of #4 than that associated with a chang-
ing N . This indicates that the saturation of nc (scram-

bling) is dominated by changes in electron number rather

than by shape distortion. Further work is needed to deter-

mine if this result is universally true, but it appears to hold

in a variety of gate-confined dots that we have measured.

FIG. 3. (a) Gray-scale conductance plot of CB peaks as a
function of Vg1 and Vg2 from device shown in inset of (b), with
D # 23 meV, at 90 mK. The appearance of peaks as short
vertical bars reflects the coarser sampling of Vg2 compared to
Vg1; the patterns of connected bars moving up and to the right
are an artifact of this display. (b) Correlation function C!DVg1"
of peak height fluctuations for fixed N (dashed curve) and
fixed Vg2 (changing N , solid curve).
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The temperature dependence of Coulomb blockade peak height correlation is used to investigate
how adding electrons to a quantum dot alters or “scrambles” its electronic spectrum. Deviations from
finite-temperature random matrix theory with an unchanging spectrum indicate spectral scrambling after
a small number of electrons are added. Enhanced peak-to-peak correlations at low temperature are
observed. Peak height statistics show similar behavior in several dot configurations despite significant
differences in correlations. [S0031-9007(98)07944-7]

PACS numbers: 73.23.Hk, 05.45.+b, 73.20.Dx

Electron transport through irregular quantum dots—i.e.,
micron-scale islands of confined charge weakly connected
to electronic reservoirs—are expected to, and in some
cases actually do, exhibit universal statistics associated
with quantum chaos [1]. An example where theory and
experiment agree well is the distribution of Coulomb
blockade (CB) peak heights [2–5]. At temperatures T that
are much smaller than the mean level spacing of the dot D,
transport on a CB peak is mediated by resonant tunneling
through a single level [6,7]. Large fluctuations in CB peak
heights in this regime reflect the fluctuating strength of
coupling of the chaotic wave function in the dot to the
modes in the leads, leading to universal statistics sensitive
only to time-reversal symmetry [2,3], in good agreement
with experiment [4,5].
At higher temperatures, D , kBT , EC , where EC is

the classical charging energy, each CB peak contains
contributions from !kBT"D quantum levels, and one
would expect roughly this number of adjacent peaks to be
correlated in height. This assumes that the spectrum of
the dot does not change as electrons are added. On the
other hand, if adding electrons alters the spectrum, then
the correlation length in peak number, nc, will not grow
beyond a certain value, m, which roughly measures (but
is not equivalent to) the number of added electrons needed
to completely “scramble” the electronic spectrum.
This Letter presents measurements of the temperature

dependence of the CB peak-to-peak height correlation and
peak height statistics for gate-confined GaAs quantum
dots, and compares these results to finite temperature ran-
dom matrix theory (RMT) calculations that neglect spec-
tral scrambling [8]. We find that the number of correlated
peaks nc#T $ saturates at m ! 2 5, with smaller dots satu-
rating at smaller m. At the low temperature end, we find
that nc#T $ is larger than the value predicted by RMT. That
is, correlations in peak heights beyond thermal smearing

exist for reasons that are not clear. Some possible expla-
nations are considered below.
In contrast to the dependence on dot configuration found

for the peak height correlations [as reflected in nc#T $ and
m], peak height statistics are found to be very similar for
all device configurations. This suggests that peak statistics
are more robustly “universal” than peak correlations, not
surprising considering that distributions are not sensitive
to spectral scrambling. The ratio of the standard deviation
to the mean of peak heights is found to be smaller than
predicted, possibly due to the effects of decoherence.
What does one expect to be the effect of adding electrons

on the spectrum of a quantum dot? In the limit of
weak electron-electron interactions (and neglecting shape
deformations caused by changing gate voltages) a fixed
spectrum of single-particle states is simply filled one at
a time, leading to nc#T$ ! kBT"D and m ¿ 1. In the
opposite limit of strong interactions, the spectrum could be
totally scrambled with the addition of each electron, giving
m ! 1. For a GaAs quantum dot containing many (!100
or more) electrons, RPA calculations [9,10] (appropriate
for weak interactions) indicate that fluctuations in the
ground state energy due to interactions are small, of
order rsg21"2D where g is the dimensionless conductance
of the dot and rs is the so-called gas parameter, the
ratio of potential to kinetic energy of the electrons (rs !
1 2 in GaAs heterostructures). For a ballistic-chaotic
dot containing N electrons g ! N 1"2, giving a rough
estimate for the number of electrons needed to scramble the
spectrum, 1 , m & N 1"2"r2

s , assuming that fluctuations
accumulate randomly as electrons are added to the dot.
Measurements of CB peak spacing statistics have in

some cases found rms fluctuations in EC as large as 15%
[11,12], consistent with classical estimates [13] and nu-
merics [11] for strong interactions (where RPA fails), sug-
gesting that one or a few electrons can significantly alter

5900 0031-9007"98"81(26)"5900(4)$15.00 © 1998 The American Physical Society
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“weak localization” of coulomb blockade

J. A. Folk, et al. , Phys. Rev. Lett. 87 206807 (2001).
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T* ~ Δ N4
Below T*, quasiparticles cannot decay

Δ ~ 0.07 K for Area = 1 µm
Δ ~ 0.7 K for Area = 0.1 µm
Δ ~ 7 K for Area = 0.01 µm
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peaks are thermally broadened and have a height go !
!p"2kT# $G1G2"!G1 1 G2#% [16]. For chaotic or disor-
dered dots, universal spatial statistics of wave functions
allow full distributions of CB peak heights to be calcu-
lated for both broken !B fi 0# and unbroken !B ! 0# time-
reversal symmetry [16,17]. These distributions have been
observed experimentally [18,19], with good agreement be-
tween theory and experiment.

Although not emphasized in these earlier papers, it
is readily seen that the two distributions have differ-
ent averages. Introducing a dimensionless peak height
a ! !1"&G'# $G1G2"!G1 1 G2#% and assuming equivalent
leads, &G2' ! &G1' ( &G', one finds &a'B!0 ! 1"4 and
&a'Bfi0 ! 1"3. The resulting difference in average CB
peak heights for the two distributions, normalized by the
average peak height at B fi 0,

dg̃o ! dgo"&go'Bfi0 !
&go'Bfi0 2 &go'B!0

&go'Bfi0
, (1)

is then given by dg̃o ! !&a'Bfi0 2 &a'B!0#"&a'Bfi0 !
1"4. While the peak heights themselves are explicitly
temperature dependent, this normalized difference, dg̃o ,
does not depend on temperature in the absence of inelastic
processes [11,15].

The absence of explicit temperature dependence of dg̃o
is not limited to the regime kT ø D. As long as trans-
port through the dot is dominated by elastic scattering
[Gel ¿ Gin, where Gel ! !G1 1 G2# is the broadening
due to escape and Gin includes all inelastic processes],
the normalized difference in averages does not change
even for kT ¿ D; i.e., the result dg̃o ! 1"4 is not af-
fected by thermal averaging. This remains valid as long as
kT , !Eth, Ec#, where Eth ) h̄"tcross is the Thouless en-
ergy (inverse crossing time), and Ec is the charging energy
of the dot.

As discussed in Ref. [11], the result dg̃o ! 1"4 is re-
duced when inelastic processes dominate transport. In
particular, when Gel ø Gin, dg̃o!T# ! 0 for kTe"D ! `
[see Fig. 2(b)]. The difference in temperature depen-
dence of dg̃o between Gel ø Gin and Gel ¿ Gin arises
because, for inelastic transport, &go' ~ &G1' &G2'"!&G1' 1
&G2'# (the G’s are averaged individually), whereas for elas-
tic transport, &go' ~ &G1G2"!G1 1 G2#' (the entire frac-
tion is averaged) [11]. It is this difference in behavior of
dg̃o!T# that we use to characterize the relative strength of
inelastic processes.

Previous experiments investigating inelastic broadening
of levels in nearly isolated quantum dots have focused
on the relaxation of excited states, identifying a transition
from a discrete to a continuous level spectrum at e . Eth
[20–22]. Other experiments have investigated phonon-
mediated inelastic scattering between coupled quantum
dots [23]. To our knowledge, the only experiment ad-
dressing ground state (i.e., low bias, eVbias , D) transport
through a nearly isolated dot !eVbias , D# is the quantum-
dot-in-a-ring measurements of Yacoby et al. [24]. These
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FIG. 2. (a) Average peak height as a function of perpendicu-
lar magnetic field, normalized by the average at B fi 0, for the
0.7 mm2 dot at Te ! 45 mK. The theoretical curve (dashed
curve) has one adjustable parameter, setting its width [15].
(b) Normalized change in average peak height at B ! 0, dg̃o ,
at several temperatures, Te , for all dots measured, along with
theoretical values of dg̃o when either elastic (solid curve) or in-
elastic (dashed curve) transport dominate [11]. Note crossover
from solid to dashed curve around kTe"D ) 1.

authors inferred a dephasing time tw . 10 ns based on
the dwell time in the dot which is somewhat longer than
found in an open dot experiment that used weak localiza-
tion [4]. The discrepancy hints at a possible enhancement
of tw due to confinement. However, since the two experi-
ments are quite different, a direct comparison of values
may not be appropriate.

We report measurements for four different sized
quantum dots formed in a two-dimensional electron gas
(2DEG), defined using Cr-Au lateral depletion gates
on the surface of a GaAs"AlGaAs heterostructure (see
Table I). All dots were made from the same wafer,
which has the 2DEG interface 90 nm below the surface.
The electron density )2.0 3 1011 cm22 and mobility
)1.4 3 105 cm2"V s yield a transport mean free path
)1.5 mm. The experiment was performed in a dilution
refrigerator with base electron temperature Te ! 45 mK,
measured directly using the width of CB peaks [25].

CB peak heights were measured by sweeping one of
the gate voltages, Vg, over many peaks while simultane-
ously trimming the gate voltages that control lead conduc-
tances to maintain a constant average transmission with
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Decoherence in nearly isolated GaAs quantum dots is investigated using the change in the average
Coulomb blockade peak height when time-reversal symmetry is broken. The normalized change in
the average peak height approaches the predicted universal value of 1!4 at temperatures well below
the single-particle level spacing, T , D, but is greatly suppressed for T . D, suggesting that inelastic
scattering or other dephasing mechanisms dominate in this regime.
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The study of quantum coherence in small electronic
systems has been the subject of intense attention in the
last few years, motivated both by questions of fundamen-
tal scientific interest concerning sources of decoherence
in materials [1–5], and by the possibility of using solid
state electronic devices to store and manipulate quantum
information [6,7].

Taking advantage of quantum coherence in the solid
state requires a means of isolating the device from various
sources of decoherence, including coupling to electronic
reservoirs. In this context, we have investigated coherent
electron transport through quantum dots weakly coupled to
reservoirs via tunneling point-contact leads. In this nearly
isolated regime, it is expected theoretically that inelastic
relaxation due to e-e interactions will vanish below a tem-
perature that is parametrically larger than the mean quan-
tum level spacing in the dot, D [8–10].

It is not obvious, however, how to measure coherence
in nearly isolated electronic structures. In this Letter, we
introduce a novel method, applicable in this regime, that
uses the change in average Coulomb blockade (CB) peak
height upon breaking time-reversal symmetry as the metric
of quantum coherence within the dot. By comparing our
data to a model of CB transport that includes both elastic
and inelastic transport processes [11], we find inelastic
rates that are consistent with dephasing rates t21

w in open
quantum dots measured using ballistic weak localization
[4]. Extracting precise values for inelastic scattering rates
using this method appears possible, but it would require a
quantitative theory of the crossover from elastic to inelastic
tunneling [12].

When a quantum dot is connected to reservoirs (la-
beled 1, 2) via leads with weak tunneling conductance,
g1,2 ø 1 (in units of e2!h), transport is dominated by
Coulomb blockade, which suppresses conduction except
at specific voltages on a nearby gate. The result is a se-
ries of evenly spaced, narrow conduction peaks as the gate
voltage is swept, as seen in Fig. 1. In this regime, the usual
techniques for extracting electron decoherence from trans-

port measurements, for instance, using weak localization
[13,14], are not applicable. Instead, we take advantage of
an analog of weak localization that reflects a sensitivity of
the spatial statistics of wave functions to the breaking of
time-reversal symmetry. As in conventional weak localiza-
tion, this effect changes the average conductance—or in
the present context, the average CB peak height — upon
breaking time-reversal symmetry with a weak magnetic
field [11,15].

At low temperatures, CB peak heights fluctuate con-
siderably, as seen in Fig. 1, reflecting a distribution of
tunneling strengths between the quantum modes in the dot
and the leads. When G1, G2 ø kT ø D, where G1"2# !
g1"2#D!2p are the couplings to the leads, transport oc-
curs via a single eigenstate of the dot. In this case, CB
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FIG. 1. Coulomb blockade peaks at electron temperature
Te ! 45 mK, for the 0.7 mm2 device at (a) B ! 0 and
(b) B ! 15 mT. Every second peak was measured, as peak-to-
peak correlations made measuring each peak inefficient.
(c),(d) Peak heights, extracted from (a),(b). Horizontal lines
show average peak height, indicating suppression of average
height at B ! 0.
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TABLE I. Device parameters for the four quantum dots mea-
sured: dot area, A, assuming 100 nm depletion at edges; mean
spacing of spin-degenerate levels, D ! 2p h̄2!m!A, where m!

is the effective mass; number of electrons in the dot, N " nA,
where n ! 2 3 1011 cm22 is the 2DEG density; Thouless en-
ergy, Eth; charging energy Ech; and energy e!! below which
dephasing times due to e-e interactions are predicted to diverge
(see text).

Area D Eth Ec e!!

#mm2$ #meV$ N #meV$ #meV$ #meV$

0.25 28 400 250 400 75
0.7 10 1400 150 290 32
3 2.4 6000 75 110 10
8 0.9 16 000 45 65 5

balanced leads throughout the sweep. This allowed the
collection of "50 peaks in the smallest dot and hundreds
of peaks in larger dots (see Fig. 1). Additional ensembles
were then collected by making small changes to the dot
shape using other gates. Average peak heights, %go&, were
extracted from these data, collected as a function of per-
pendicular magnetic field and normalized by their averages
away from B ! 0. Figure 2(a) shows that the functional
form for the normalized average peak height, % g̃o#B$& !
%go#B$&!%go&Bfi0, calculated within random matrix theory
[15], agrees well with the experimental values. % g̃o#B$&
was measured at several temperatures in each device, and
dg̃o#Te$ was extracted for each. These are presented in
Fig. 2(b), together with the predicted temperature depen-
dences for dg̃o#Te$ when either elastic or inelastic trans-
port dominate [11]. Except where otherwise noted, the
point contacts were set to give %go&Bfi0 " 0.05, though
different dot shapes had average peak height that varied
by up to 50%. The data in Fig. 2(b) represent averages
over several ensembles at each temperature.

In the 0.25 mm2 dot at Te ! 45 mK and 70 mK, dg̃o
was consistent with 1!4 as expected since kTe ø D for
both temperatures. In this regime, one cannot distin-
guish between elastic and inelastic scattering since both
mechanisms give dg̃o ' 1!4. In the 0.7 mm2 device at
45 mK, we again find dg̃o " 0.25. In this dot, however,
45 mK corresponds to kTe!D " 0.5. For Gin ¿ Gel, a
ratio kTe!D " 0.5 gives a predicted value for the aver-
age peak height difference of dg̃o " 0.13 [see the dashed
curve in Fig. 2(b)] whereas, for Gel ¿ Gin, dg̃o ! 0.25
for all values of kTe!D [solid line in Fig. 2(b)]. We there-
fore conclude that Gin , Gel in the 0.7 mm2 device at
45 mK, when the point contact transmissions are set so
that %go& " 0.05. We can extract Gel from average peak
height %go& using the equation Gel " %go&D, valid in the
regime kTe * D [16]. For %go& " 0.05 in the 0.7 mm2

device, this gives Gel " 0.5 meV, and we therefore con-
clude Gin , 0.5 meV at 45 mK.

Similarly, we can observe for each dot (with different
values of D), at each temperature, whether transport is
principally elastic or inelastic, or whether the two rates

are comparable. Measurements of % g̃o#B$& in the 0.7 mm2

device at 45, 70, and 200 mK are shown in Fig. 3, with
the extracted values of dg̃o#T$ shown in the inset. For
the 0.7 mm2 device, we find that Gel . Gin at 45 and
70 mK, whereas by 200 mK the crossover to the lower
curve #Gel , Gin$ has begun, presumably because Gin in-
creases at higher temperature. We infer that a 0.7 mm2 de-
vice at 200 mK is in the crossover regime Gin " 0.5 meV.

We observe a similar crossover from Gel . Gin to Gel ,
Gin by changing Gel at a fixed temperature. Figure 4 shows
% g̃o#B$& in the 0.7 mm2 device at 200 mK for three differ-
ent settings of the point contacts, ranging from %go&Bfi0 !
0.016 to %go&Bfi0 ! 0.057; the extracted values for dg̃o
are shown in the inset. Despite significant statistical un-
certainty, it is clear that dg̃o decreases as Gel decreases.
We note that in the same device at 45 and 70 mK there
is no change in dg̃o over the same range of point con-
tact transmissions, within experimental uncertainty. This is
presumably because Gin is lower at these temperatures, and
Gel . Gin for all point contact transmissions measured.

One expects inelastic scattering due to electron-electron
interactions to be strongly suppressed in isolated quantum
dots for kT , e!!, where e!! " N1!4D for ballistic
chaotic dots containing N electrons [8–10]. Because
this suppression is not expected to occur in open dots,
it is useful to compare the constraints on inelastic rates
discussed above for nearly isolated dots with experimental
values of the phase coherence time tw measured in open
dots [4]. Although there may be dephasing mechanisms
that do not involve inelastic processes, the inelastic
scattering rate should provide a lower bound for the
dephasing rate t21

w . Dephasing rates extracted from weak
localization in open quantum dots are found to be well
described by the empirical relation h̄!tw#Te$ " 0.04kTe
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FIG. 3. Normalized average peak height as a function of per-
pendicular magnetic field, for the 0.7 mm2 dot at several tem-
peratures. The inset shows dg̃o for each temperature, along with
theoretical curves from Ref. [11]. Note the crossover from the
solid to the dashed curve at Te " 200 mK.
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FIG. 4. Normalized average peak height as a function of per-
pendicular magnetic field, for the 0.7 mm2 dot at Te ! 200 mK
for three settings of the point contacts. The inset shows dg̃o
for setting, along with theoretical curves from Ref. [11]. As Gin
is decreased by closing point contacts, experimental dg̃o moves
away from the solid curve !Gel . Gin" toward the dashed curve
!Gel , Gin", as one would expect.

over the range of temperatures #70 300 mK, indepen-
dent of dot size [4]. For the closed dots we again may
use Gel # $go%D, giving a ratio of elastic scattering
rate to dephasing rate in the corresponding open dots
Gel&!h̄&tw" # !$go%&0.04"kTe&D. If, for the sake of
comparison, we identify Gin with h̄&tw, we would then
expect for $go%Bfi0 # 0.05 a ratio Gel&Gin # kTe&D,
suggesting a crossover between the curves in Fig. 2(b)
for kTe&D # 1. The data in Fig. 2(b) do show a
crossover in the vicinity of kTe&D # 1, consistent with
the identification G

!closed"
in # !h̄&tw "!open". For a more

quantitative comparison between dephasing in open dots
and inelastic scattering through nearly isolated dots, one
would need a theoretical calculation of dg̃o in the regime
Gel # Gin [12].

We do not see evidence for the predicted [8–10] diver-
gence of the coherence time for kTe&D , N 1&4 # 5. A
possible explanation is that electron-electron interactions
are not the primary dephasing mechanism in our system.
Several other mechanisms have been proposed, includ-
ing external radiation [3,26], two-level systems [27], and
nuclear spins [28]. We cannot, however, rule out some
enhancement of coherence due to confinement at a level
reported in [24]. The lack of a quantitative theory in the
crossover regime Gin # Gel prevents us from extracting
exact values for Gin from our data.
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FIG. 4. Normalized average peak height as a function of per-
pendicular magnetic field, for the 0.7 mm2 dot at Te ! 200 mK
for three settings of the point contacts. The inset shows dg̃o
for setting, along with theoretical curves from Ref. [11]. As Gin
is decreased by closing point contacts, experimental dg̃o moves
away from the solid curve !Gel . Gin" toward the dashed curve
!Gel , Gin", as one would expect.

over the range of temperatures #70 300 mK, indepen-
dent of dot size [4]. For the closed dots we again may
use Gel # $go%D, giving a ratio of elastic scattering
rate to dephasing rate in the corresponding open dots
Gel&!h̄&tw" # !$go%&0.04"kTe&D. If, for the sake of
comparison, we identify Gin with h̄&tw, we would then
expect for $go%Bfi0 # 0.05 a ratio Gel&Gin # kTe&D,
suggesting a crossover between the curves in Fig. 2(b)
for kTe&D # 1. The data in Fig. 2(b) do show a
crossover in the vicinity of kTe&D # 1, consistent with
the identification G

!closed"
in # !h̄&tw "!open". For a more

quantitative comparison between dephasing in open dots
and inelastic scattering through nearly isolated dots, one
would need a theoretical calculation of dg̃o in the regime
Gel # Gin [12].

We do not see evidence for the predicted [8–10] diver-
gence of the coherence time for kTe&D , N 1&4 # 5. A
possible explanation is that electron-electron interactions
are not the primary dephasing mechanism in our system.
Several other mechanisms have been proposed, includ-
ing external radiation [3,26], two-level systems [27], and
nuclear spins [28]. We cannot, however, rule out some
enhancement of coherence due to confinement at a level
reported in [24]. The lack of a quantitative theory in the
crossover regime Gin # Gel prevents us from extracting
exact values for Gin from our data.
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[22] D. Davidović and M. Tinkham, Phys. Rev. Lett. 83, 1644

(1999).
[23] T. Fujisawa et al., Science 282, 932 (1998).
[24] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman,

Phys. Rev. Lett. 74, 4047 (1995).
[25] L. P. Kouwenhoven et al., in Mesoscopic Electron Trans-

port, edited by L. L. Sohn, L. P. Kouwenhoven, and
G. Schön (Kluwer, Dordrecht, 1997).

[26] M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 60, R16 311
(1999).

[27] Y. Imry, H. Yukuyama, and P. Schwab, Europhys. Lett. 47,
608 (1999); A. Zawadowski, J. vonDelft, and D. C. Ralph,
Phys. Rev. Lett. 83, 2632 (1999).

[28] A. M. Dyugaev, I. D. Vagner, and P. Wyder, e-print cond-
mat/0005005.

206802-4 206802-4

theory:

VOLUME 87, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 12 NOVEMBER 2001

1.00

0.95

0.90

0.85

〈 g
o(

B
)〉/

〈 g
o〉 B

≠0

151050
B (mT)

 〈go〉B≠0 = 0.057
 〈go〉B≠0 = 0.031
 〈go〉B≠0 = 0.016

0.25

0.20

0.15

0.10

0.05

0.00

δ g
0

1 kTe/∆

~

FIG. 4. Normalized average peak height as a function of per-
pendicular magnetic field, for the 0.7 mm2 dot at Te ! 200 mK
for three settings of the point contacts. The inset shows dg̃o
for setting, along with theoretical curves from Ref. [11]. As Gin
is decreased by closing point contacts, experimental dg̃o moves
away from the solid curve !Gel . Gin" toward the dashed curve
!Gel , Gin", as one would expect.

over the range of temperatures #70 300 mK, indepen-
dent of dot size [4]. For the closed dots we again may
use Gel # $go%D, giving a ratio of elastic scattering
rate to dephasing rate in the corresponding open dots
Gel&!h̄&tw" # !$go%&0.04"kTe&D. If, for the sake of
comparison, we identify Gin with h̄&tw, we would then
expect for $go%Bfi0 # 0.05 a ratio Gel&Gin # kTe&D,
suggesting a crossover between the curves in Fig. 2(b)
for kTe&D # 1. The data in Fig. 2(b) do show a
crossover in the vicinity of kTe&D # 1, consistent with
the identification G

!closed"
in # !h̄&tw "!open". For a more

quantitative comparison between dephasing in open dots
and inelastic scattering through nearly isolated dots, one
would need a theoretical calculation of dg̃o in the regime
Gel # Gin [12].

We do not see evidence for the predicted [8–10] diver-
gence of the coherence time for kTe&D , N 1&4 # 5. A
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Dephasing of one-particle states in closed quantum dots is analyzed within the framework of random
matrix theory and the master equation. The combination of this analysis with recent experiments on the
magnetoconductance allows, for the first time, the evaluation of the dephasing times of closed quantum
dots. These dephasing times turn out to be dependent on the mean level spacing and significantly en-
hanced as compared with the case of open dots. Moreover, the experimental data available are consistent
with the prediction that the dephasing of one-particle states in finite closed systems disappears at low
enough energies and temperatures.
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Quantum coherence of electrons in closed quantum dots
has attracted much interest in recent years [1–5]. Electron-
electron interactions are believed to be one of the main
sources of dephasing in disordered systems at low tem-
peratures. Compared to low-dimensional metals and semi-
conductors [6], substantial modifications of this dephasing
mechanism are caused by the confinement of the quantum
dot which leads to discrete energy levels. In particular,
the dephasing rate was predicted [2] to disappear at low
excitation energies, e , D

p

g! lng, where D is the mean
level spacing and g is the dimensionless conductance of
the dot.

Whereas there are a number of ways to measure the de-
phasing times in open quantum dots [7,8], the situation is
much more complicated in closed dots. Only a few experi-
ments have attempted to study dephasing in closed quan-
tum dots. Most of these have focused on the relaxation
of highly excited states, verifying the continuous to dis-
crete spectrum transition at e ~ gD [3]. Some signatures
of dephasing in thermalized states have been studied by
Patel et al. [9], who analyzed the statistical distribution of
the conductance maxima Gmax (the height of the Coulomb
blockade peaks). They found that the ratio of standard de-
viation to mean peak height s"Gmax#!$Gmax% is smaller
than what random matrix theory (RMT) predicts [10], and
attributed this reduction to dephasing effects. More re-
cently, Folk et al. [4] suggested to use the dependence of
the conductance upon applying a magnetic field B,

a ! "$Gmax%Bfi0 2 $Gmax%B!0#!$Gmax%Bfi0 , (1)

as a probe of dephasing times. This is the closed dot
analog of the weak localization magnetoconductance
which was analyzed earlier for open dots [7]. RMT
predicts a ! 1!4 [11,12], while Folk et al. measured
considerably lower values of a, down to a & 0 for
the largest quantum dot with the maximal ratio kBT!D
(T is the temperature, kB is the Boltzmann constant)
interactions. Beenakker et al. [5] theoretically analyzed

the situation in which the phase-breaking inelastic re-
laxation rate Gin [13] far exceeds the mean tunneling
rate (inverse dwell time in the dot) G. It turns out that,
in this limit, a is reduced much stronger than found
experimentally. Thus, they concluded that in the experi-
ment [4] Gin , G. However, as noted in Refs. [4,5], the
lack of a quantitative theory of the crossover regime,
Gin ' G, prevents a full analysis of the experimental
results.

In this Letter, we study theoretically the effect of arbi-
trary inelastic scattering on the conductance of a closed
quantum dot. We develop an analytical approach that al-
lows one to evaluate a [Eq. (1)] and compare the results to
the numerical solution. The approximate results are found
to reasonably describe the behavior in the experimentally
relevant temperature regime. Our calculations allow one,
for the first time, to extract dephasing times of low lying
(thermally excited) states in closed quantum dots. We ob-
serve a clear enhancement of the dephasing times relative
to earlier results for open quantum dots [7]. Moreover,
contrary to the analysis of open quantum dots [7] which
showed a dependence on temperature alone, we find a de-
pendence on both T and D. From our analysis it follows
that the measurements of Folk et al. [4] are not inconsistent
with a vanishing dephasing rate for low excitation energies
[2]. A more detailed presentation of the calculation will be
given in [14].

In the experimentally relevant regime h̄Gin, h̄G ,
kBT , D, each state of the quantum dot is determined by
a tuple (ni) of occupation numbers for the single particle
eigenstates with energies Ei and spins Si . The electrons
can tunnel between the dot and the two leads. The left "L#
and right "R# leads differ due to the applied voltage V . The
elctrons in the leads are thermalized and distributed ac-
cording to the Fermi function fFD"E# ! *1 1 eE!"kBT#+21.
The probability PN "(ni)# to find a given set of occupation
numbers (ni) with a total of N electrons (restricted to
N [ (N , N 1 1) due to the Coulomb blockade) obeys
the following master equation [15]:
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a constant C̄ !
P

j fj!1 2 fj"C! j"#$
P

j fj!1 2 fj"% in
Eqs. (7) and (2) This leads to a self-consistent solution of
the master equation with the result [14]

G !
e2

kBT
Peq!N"

øø

GL
i ttot

i

µ

GR
i 1

G!
in&&GR

j ttot
j ''

&&!GL
j 1 GR

j "ttot
j ''

∂¿¿

,

(8)

where ttot
i ! !GL

i 1 GR
i 1 G!

in"21. One would obtain the
same form (8) but with &&· · ·'' !

PM
j!1 . . . considering M

degenerate levels filled with N [ (0, 1) electrons.
The result (8) can be interpreted in the following way:

The first term represents processes in which the elec-
tron was not scattered at all. These happen with proba-
bility !GL

i 1 GR
i "ttot

i and the resulting conductance peak
heights are proportional to !GL

i GR
i "#!GL

i 1 GR
i "; yielding

GL
i GR

i ttot
i altogether. The second term represents contribu-

tions from electrons that were inelastically scattered after
tunneling from one lead, and their contribution to the con-
ductance is &&GR

j ttot
j ''#&&!GL

j 1 GR
j "ttot

j ''.
Equation (8) is the main result of this paper. It is

based on an approximation (7) which can be justified in
the high-temperature limit. The particular advantage of
this approach is that it gives not only the correct leading
high-temperature behavior [Eq. (5)] but also reproduces
correctly the limits Gin ! 0 and Gin ! ` for all T in-
cluding a ! 1#4 at T ! 0. Below, we demonstrate that
this approach works pretty well in the intermediate regime
kBT * D.

In order to calculate G and a, one has to average Eq. (8)
with respect to the different ensembles. One could do so
numerically, but it is possible to get analytical results via
expanding Eq. (8) in powers of D#kBT [14]. The first
three terms in the D#kBT expansion [or more specifically
in 1#

P

j fj!1 2 fj", which is ~ D#kBT at large T] al-
ready give good accuracy in the relevant regime kBT . D
and are employed in the following. As we are interested
in this regime, we assumed a picket fence distribution
with spacing D between consecutive spin-degenerate lev-
els (E2j ! E2j21 ! jD; Gl

2j ! Gl
2j21; G

l
j ! G#2).

We tested the range of validity of this high-temperature
approximation against the numerical solution [18] of the
master equations (2). The latter is obtained by solving the
master equation (2) by sparse matrix inversion [18]. Fig-
ure 1 compares values of a, as calculated using the first
three terms in the D#kBT expansion, with the numerical
values. The agreement is very good for sufficiently high
temperatures, and reasonable even for low T . In the whole
temperature regime, the deviations are within current ex-
perimental accuracy.

It, thus, appears that our analytical approach provides
a reliable way to determine Gin from the experimental
measurements of a, in the whole temperature regime. For
future experiments we provide Fig. 2, which presents a as
a contour plot in the space spanned by kBT#D and Gin#G.

A direct experimental test would be provided by mea-
suring values of a in a given dot at fixed T , as a function

0.0 0.5 1.0 1.5 2.0
kBT/∆ 
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FIG. 1. Comparison of the numerical solution of the full mas-
ter equation with the high-temperature approximation. The latter
is seen to work well for kBT . D.

of G (which can be achieved by changing the contact set-
ting). The theoretical dependence of a on G involves a
single fitting parameter, i.e., the unknown total scattering
rate Gin which is assumed to be unaffected by the con-
tact setting. A first step in this direction was done in [4],
and in the inset of Fig. 3 we compare the prediction of our
high-temperature approximation with the measurements of
a for three different values of G. An excellent agreement
is obtained, though more data points are required for reli-
able conclusions.

We now use the above theory to extract dephasing times
from the data points (mean values and error bars) of Folk
et al. [4]. Figure 3 presents these estimates as symbols
and error bars, respectively, and compares them with open

1 10
∆ 

10− 1

100

101

Γ in
/Γ

α =0.20

α =0.15

α =0.10

α =0.05

kBT/

FIG. 2. A contour plot of a as a function of D#kBT and Gin#G,
based on the high-temperature approximation. The values of the
bold contours are specified. Given T , D, and a from future
experiments, one can extract Gin#G from this figure.
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FIG. 3. Dephasing times, tf , as extracted from the data points
in Ref. [4] for four different dots: D ! 28 meV (circles, long-
dashed error bars), D ! 10 meV (squares, solid error bars), D !
2.4 meV (up-triangles, dashed error bar), and D ! 0.9 meV
(dot-dashed error bar); dotted line: fit to open dot experiments
as calculated in [7]. Error bars which extend up (down) beyond
the graph should be understood as going up to infinity (down
to zero); if no corresponding point is visible, the experimental
mean value itself gives tf ! ` (or tf ! 0). In the inset, we
fit experimental measurements for different values of G [4] with
our theory. The single fitting parameter is h̄Gin ! 0.25 meV, or
tf ! 16 ns.

dot values [7]. A clear enhancement of the dephasing
times compared to open dots is observed. In addition,
dephasing times strongly depend on D (as can be seen at
T ! 45 mK). This is in contrast to open dot results [7].
An additional suppression of a for kBT , D, resulting
from level-spacing fluctuations [14,17], was not included
in our analysis, and therefore our results underestimate
the dephasing times for kBT , D. In addition, the result
for the D ! 0.9 meV quantum dot, which is consistent
with tf ! 0, should be interepreted carefully since the
result implies h̄Gin . D and the master equation is not
applicable anymore. Based on our analysis, the recent
experiment [4], measuring dephasing in closed quantum
dots is consistent with dephasing due to electron-electron
interaction alone, including the prediction of the critical
vanishing of dephasing rate. However, given the large
error bars of the current experimental data, one cannot
exclude an algebraic behavior or even a saturation of the
dephasing rates for T ! 0. Nevertheless, the behavior is
clearly different from that of open quantum dots [7] and is
D dependent.

In conclusion, we provide a theoretical approach to ex-
tract the inelastic scattering rate in closed dots based on
measurements of the weak-localization correction a. Ana-
lyzing a recent experiment by Folk et al. [4], we see a
clear enhancement of the dephasing time compared with

open dot values. There is no inconsistency with theoreti-
cal predictions for electron-electron interaction, in particu-
lar, a vanishing dephasing rate at a critical D-dependent
temperature. We note, however, that the available experi-
mental data is limited and has considerably statistical un-
certainties. Future experiments are necessary, and we offer
Fig. 2 to extract the temperature and level-spacing depen-
dence of the inelastic scattering rate and to thoroughly test
the prediction of a diverging dephasing time.

We are happy to acknowledge intensive and very helpful
discussions with Igor Aleiner, Joshua Folk, and Charles
Marcus. This work has been supported by ARO, DARPA,
and the Alexander von Humboldt foundation.
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TABLE I. Device parameters for the four quantum dots mea-
sured: dot area, A, assuming 100 nm depletion at edges; mean
spacing of spin-degenerate levels, D ! 2p h̄2!m!A, where m!

is the effective mass; number of electrons in the dot, N " nA,
where n ! 2 3 1011 cm22 is the 2DEG density; Thouless en-
ergy, Eth; charging energy Ech; and energy e!! below which
dephasing times due to e-e interactions are predicted to diverge
(see text).

Area D Eth Ec e!!

#mm2$ #meV$ N #meV$ #meV$ #meV$

0.25 28 400 250 400 75
0.7 10 1400 150 290 32
3 2.4 6000 75 110 10
8 0.9 16 000 45 65 5

balanced leads throughout the sweep. This allowed the
collection of "50 peaks in the smallest dot and hundreds
of peaks in larger dots (see Fig. 1). Additional ensembles
were then collected by making small changes to the dot
shape using other gates. Average peak heights, %go&, were
extracted from these data, collected as a function of per-
pendicular magnetic field and normalized by their averages
away from B ! 0. Figure 2(a) shows that the functional
form for the normalized average peak height, % g̃o#B$& !
%go#B$&!%go&Bfi0, calculated within random matrix theory
[15], agrees well with the experimental values. % g̃o#B$&
was measured at several temperatures in each device, and
dg̃o#Te$ was extracted for each. These are presented in
Fig. 2(b), together with the predicted temperature depen-
dences for dg̃o#Te$ when either elastic or inelastic trans-
port dominate [11]. Except where otherwise noted, the
point contacts were set to give %go&Bfi0 " 0.05, though
different dot shapes had average peak height that varied
by up to 50%. The data in Fig. 2(b) represent averages
over several ensembles at each temperature.

In the 0.25 mm2 dot at Te ! 45 mK and 70 mK, dg̃o
was consistent with 1!4 as expected since kTe ø D for
both temperatures. In this regime, one cannot distin-
guish between elastic and inelastic scattering since both
mechanisms give dg̃o ' 1!4. In the 0.7 mm2 device at
45 mK, we again find dg̃o " 0.25. In this dot, however,
45 mK corresponds to kTe!D " 0.5. For Gin ¿ Gel, a
ratio kTe!D " 0.5 gives a predicted value for the aver-
age peak height difference of dg̃o " 0.13 [see the dashed
curve in Fig. 2(b)] whereas, for Gel ¿ Gin, dg̃o ! 0.25
for all values of kTe!D [solid line in Fig. 2(b)]. We there-
fore conclude that Gin , Gel in the 0.7 mm2 device at
45 mK, when the point contact transmissions are set so
that %go& " 0.05. We can extract Gel from average peak
height %go& using the equation Gel " %go&D, valid in the
regime kTe * D [16]. For %go& " 0.05 in the 0.7 mm2

device, this gives Gel " 0.5 meV, and we therefore con-
clude Gin , 0.5 meV at 45 mK.

Similarly, we can observe for each dot (with different
values of D), at each temperature, whether transport is
principally elastic or inelastic, or whether the two rates

are comparable. Measurements of % g̃o#B$& in the 0.7 mm2

device at 45, 70, and 200 mK are shown in Fig. 3, with
the extracted values of dg̃o#T$ shown in the inset. For
the 0.7 mm2 device, we find that Gel . Gin at 45 and
70 mK, whereas by 200 mK the crossover to the lower
curve #Gel , Gin$ has begun, presumably because Gin in-
creases at higher temperature. We infer that a 0.7 mm2 de-
vice at 200 mK is in the crossover regime Gin " 0.5 meV.

We observe a similar crossover from Gel . Gin to Gel ,
Gin by changing Gel at a fixed temperature. Figure 4 shows
% g̃o#B$& in the 0.7 mm2 device at 200 mK for three differ-
ent settings of the point contacts, ranging from %go&Bfi0 !
0.016 to %go&Bfi0 ! 0.057; the extracted values for dg̃o
are shown in the inset. Despite significant statistical un-
certainty, it is clear that dg̃o decreases as Gel decreases.
We note that in the same device at 45 and 70 mK there
is no change in dg̃o over the same range of point con-
tact transmissions, within experimental uncertainty. This is
presumably because Gin is lower at these temperatures, and
Gel . Gin for all point contact transmissions measured.

One expects inelastic scattering due to electron-electron
interactions to be strongly suppressed in isolated quantum
dots for kT , e!!, where e!! " N1!4D for ballistic
chaotic dots containing N electrons [8–10]. Because
this suppression is not expected to occur in open dots,
it is useful to compare the constraints on inelastic rates
discussed above for nearly isolated dots with experimental
values of the phase coherence time tw measured in open
dots [4]. Although there may be dephasing mechanisms
that do not involve inelastic processes, the inelastic
scattering rate should provide a lower bound for the
dephasing rate t21

w . Dephasing rates extracted from weak
localization in open quantum dots are found to be well
described by the empirical relation h̄!tw#Te$ " 0.04kTe
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Statistics of Coulomb Blockade Peak Spacings
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Distributions of Coulomb blockade peak spacings are reported for large ensembles of both unbroken
(magnetic field B ! 0) and broken (B fi 0) time-reversal symmetry in GaAs quantum dots. Both
distributions are symmetric and roughly Gaussian with a width of !2% 6% of the average spacing,
with broad, non-Gaussian tails. The distribution is systematically wider at B ! 0 by a factor of
!1.2 6 0.1. No even-odd spacing correlations or bimodal structure in the spacing distribution is found,
suggesting an absence of spin degeneracy. There is no observed correlation between peak spacing and
peak height. [S0031-9007(98)06083-9]

PACS numbers: 73.23.Hk, 05.45.+b, 73.20.Dx

For some time it has been appreciated that electron
transport in mesoscopic systems exhibits quantum inter-
ference effects with universal statistical features, and that
this universality can be associated with the underlying
universality of quantum chaos [1] and its mathematical
description in terms of random matrix theory (RMT) [2].
This approach has been successful in describing transport
in open quantum systems (i.e., systems with large con-
ductance, g . e2"h, to reservoirs) where a single-particle
picture apparently provides an adequate description of
the physics. Recent application of RMT to ground state
properties of nearly isolated quantum dots—in particular,
in characterizing the distributions of Coulomb blockade
(CB) conductance peak heights [3] has also been remark-
ably successful [4].
On the other hand, experiments by Sivan et al. [5] and

Simmel et al. [6] suggest that the most basic prediction of
RMT, namely, the famous Wigner surmise for the distri-
bution of level spacings, fails to describe the fluctuations
of Coulomb blockade peak spacing, implying that fluctua-
tions in the energy separation between adjacent ground
states of a quantum dot—the so-called addition spec-
trum—appear not to be distributed according to RMT. In
particular, these experiments [5,6] found CB peak spac-
ing fluctuations of order 0.1–0.15 of the average spacing,
larger than predicted by RMT assuming constant charging
energy EC ! e2"Cdot with the total capacitance of the dot
given by Cdot. The large fluctuations observed in the ex-
periment and supporting numerics led Sivan et al. [5] to
suggest that classical charging energy fluctuations propor-
tional to EC not included in RMT dominate peak spacing
fluctuations. On the other hand, recent random phase ap-
proximation (RPA) calculations led to the opposite conclu-
sion, that fluctuations due to charge rearrangement should
be smaller than [7] or of order [8] the mean single-particle

level spacing D, much smaller than EC . However, one
should use caution in applying these theories to semicon-
ductor quantum dots, since RPA breaks down at low elec-
tron densities where single-particle kinetic energies and
interparticle potential energies are comparable.
In this Letter, we present an extensive experimental

study of the spacings of CB peaks in GaAs quantum dots,
for both zero and nonzero magnetic field, including over
20 000 CB peaks measured in seven devices. We find that
the distributions of CB peak spacing fluctuations are not
well described by single-particle, spin-degenerate RMT
(SDRMT); the main discrepancy being the absence of bi-
modal structure in the measured distributions. Both B ! 0
and B fi 0 peak spacing distributions are roughly Gauss-
ian with non-Gaussian tails, in qualitative agreement with
[5,6]. In contrast to previous experiments, however, we
find that the width of the peak spacing distribution is nar-
row, comparable (once scaled) to the mean level spacing,
and shows the effects of time-reversal symmetry breaking
comparable to RMT predictions, suggesting that quantum
effects play a role in determining the distributions. We
also find no correlation between CB peak heights (reflect-
ing eigenfunction properties) and peak spacings (reflecting
eigenvalue properties).
Ground state energy fluctuations are measured using

the Coulomb blockade, which appears in quantum dots
with tunneling leads (left, right lead conductance gl , gr ,
2e2"h), when temperature T and source-drain voltage Vsd
are less than EC [9,10]. In this regime, dot conductance
is suppressed except when the #N 1 1$ and N electron
ground state energies of the dot differ by the chemical po-
tential of the leads; this degeneracy condition, when tuned
by a gate voltage Vg, produces a series of narrow conduc-
tance peaks nearly periodic in Vg. At very low temperature
and bias, #kBT , eVsd$ & D (we define D ! 2p h̄2"m!A

4522 0031-9007"98"80(20)"4522(4)$15.00 © 1998 The American Physical Society
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measurements were made using two-wire ac lock-in tech-

niques with a voltage bias of 5 mV at 11 Hz. The electron

base temperature, determined by fitting peak width ver-

sus temperature [10], was !100 mK for all devices. En-
semble statistics were collected by sweeping one gate volt-

age Vg over !20 peaks then incrementing magnetic field
or a second gate voltage to yield a new ensemble of peaks.

All data are based on relatively small CB peaks, in the

range "0.01 0.1#e2$h.
A typical scan of CB peaks is shown in Fig. 1(a). To

extract peak spacing, each peak is fit by a cosh22 form

[10] and spacing is determined from the centers of the fits

[Fig. 1(b)]. Since the average spacing decreases with in-

creasing N (reflecting an increasing Cdot), a running av-

erage %DVi
g& is found from the best fit line [dashed in

Fig. 1(b)] and used to define n ! "DVi
g 2 %DVi

g&#$%DVi
g&.

Experimental noise in the spacing distribution (for in-

stance, due to charge rearrangement in the doping layer),

given as snoise"n# in Table I, can be separated from real

spacing fluctuations by comparing measurements at op-

posite magnetic fields [Fig. 1(c)]. The noise snoise"n# is
defined as the distribution width of fluctuations antisym-

FIG. 1. (a) Coulomb blockade peaks (diamonds) at B !
30 mT as a function of gate voltage Vg for device 1 with
DSR ! 14 meV and EC ! 460 meV. Solid curve shows fits
to cosh22 line shape. Left inset: Detailed view of data and
fit on log-linear scale. Right inset: Micrograph of device 1;
other devices are similar. (b) Peak spacings extracted from
data in (a) at B ! 130 mT (diamonds) and B ! 230 mT
(open circles). Dashed line is best fit (to 130 mT data),
corresponding to %DVi

g&. (c) Dimensionless peak spacing

fluctuations, n ! "DVi
g 2 %DVi

g&#$%DVi
g&, as a function of gate

voltage Vg for data in (b). Differences between 630 mT data
indicated experimental noise. Normalized (spin-resolved) mean
level spacing DSR$EC indicated by vertical bar (see Table I).

metric in B and so would not include field independent

gate voltage induced charge rearrangement. While the

heights of nearby CB peaks show considerable correlation

[Fig. 1(a)], peak spacings appear uncorrelated [Figs. 1(b)

and 1(c)]. We estimate the number of “independent” peak

spacings, ni in Table I, as the number of peaks measured

in each scan of Vg multiplied by the number of peak scans

with characteristically different heights.

Histograms of peak spacings from three dots with

similar device parameters (dots 3, 4, and 5) are shown in

Fig. 2. Both the B ! 0 and B fi 0 histograms are roughly
symmetric and Gaussian. A Gaussian fit to the B ! 0
histogram gives a standard deviation sB!0"n#f ! 0.019
(the subscript f indicates “Gaussian fit”) whereas a direct
evaluation of the second moment of the spacing data

set yields sB!0"n# ! 0.027. This difference results

from broad non-Gaussian tails, which can be seen on a

logarithmic plot (right insets, Fig. 2). All B fi 0 data are
taken between 3 15w0 through the device, where w0 !
h$e ! 4.14 mTmm2. The B fi 0 distribution width

from a Gaussian fit yields sBfi0"n#f ! 0.015 and the

second moment of the data gives sBfi0"n# ! 0.022. By

FIG. 2. Histograms of normalized peak spacing n (bars) for
(a) B ! 0 and (b) B fi 0 for devices 3, 4, and 5. Solid curves
show best fit to normalized Gaussian of width 0.019 (0.015) for
B ! 0 "B fi 0#. The B ! 0 histogram is wider by a factor of
!1.2 than the B fi 0 histogram. Data represent 4300 (10 800)
CB peaks from the devices with !720 (1600) statistically
independent for B ! 0 "B fi 0#. Horizontal bar indicates (spin-
resolved) mean level spacing DSR$EC averaged over the three
devices. Right insets: Plots of histogram (diamonds) and best
fit Gaussian (solid curve) on log-linear scale. Dashed curve is
Gaussian of width 0.13 from Ref. [5]. Left insets: Dotted
curves are CI 1 SDRMT peak spacing distributions; solid
curves correspond to CI 1 SDRMT distributions convolved
with Gaussian of width snoise"n# ! 0.009 averaged over the
three dots (see Table I).
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Quantum Shot Noise
Fluctuations in the flow of electrons signal the transition

from particle to wave behavior.
Published in revised form in Physics Today, May 2003, page 37.

Carlo Beenakker & Christian Schönenberger∗

“The noise is the signal” was a saying of Rolf Landauer,
one of the founding fathers of mesoscopic physics. What
he meant is that fluctuations in time of a measurement
can be a source of information that is not present in the
time-averaged value. A physicist may actually delight in
noise.

Noise plays a uniquely informative role in connection
with the particle-wave duality. It was Albert Einstein
who first realized (in 1909) that electromagnetic fluctu-
ations are different if the energy is carried by waves or
by particles. The magnitude of energy fluctuations scales
linearly with the mean energy for classical waves, but it
scales with the square root of the mean energy for clas-
sical particles. Since a photon is neither a classical wave
nor a classical particle, the linear and square-root con-
tributions coexist. Typically, the square-root (particle)
contribution dominates at optical frequencies, while the
linear (wave) contribution takes over at radio frequen-
cies. If Newton could have measured noise, he would
have been able to settle his dispute with Huygens on the
corpuscular nature of light — without actually needing
to observe an individual photon. Such is the power of
noise.

The diagnostic property of photon noise was further
developed in the 1960’s, when it was discovered that
fluctuations can tell the difference between the radiation
from a laser and from a black body: For a laser the wave
contribution to the fluctuations is entirely absent, while
it is merely small for a black body. Noise measurements
are now a routine technique in quantum optics and the
quantum mechanical theory of photon statistics (due to
Roy Glauber) is textbook material.

Since electrons share the particle-wave duality with
photons, one might expect fluctuations in the electrical
current to play a similar diagnostic role. Current fluctu-
ations due to the discreteness of the electrical charge are
known as “shot noise”. Although the first observations
of shot noise date from work in the 1920’s on vacuum
tubes, our quantum mechanical understanding of elec-
tronic shot noise has progressed more slowly than for
photons. Much of the physical information it contains
has been appreciated only recently, from experiments on
nanoscale conductors.1

Types of electrical noise

Not all types of electrical noise are informative. The fluc-
tuating voltage over a conductor in thermal equilibrium
is just noise. It tells us only the value of the temperature
T . To get more out of noise one has to bring the electrons
out of thermal equilibrium. Before getting into that, let
us say a bit more about thermal noise — also known
as “Johnson-Nyquist noise” after the two physicists who
first studied it in a quantitative way.

Thermal noise extends over all frequencies up to the
quantum limit at kT/h. In a typical experiment one fil-
ters the fluctuations in a band width ∆f around some
frequency f . Thermal noise then has an electrical power
of 4kT∆f , independent of f (“white” noise). One can
measure this noise power directly by the amount of heat
that it dissipates in a cold reservoir. Alternatively, and
this is how it is usually done, one measures the (spec-
trally filtered) voltage fluctuations themselves. Their
mean squared is the product 4kTR∆f of the dissipated
power and the resistance R.

Theoretically, it is easiest to describe electrical noise in
terms of frequency-dependent current fluctuations δI(f)
in a conductor with a fixed, nonfluctuating voltage V be-
tween the contacts. The equilibrium thermal noise then
corresponds to V = 0, or a short-circuited conductor.
The spectral density S of the noise is the mean-squared
current fluctuation per unit band width:

S(f) = 〈δI(f)2〉/∆f. (1)

In equilibrium S = 4kTG, independent of frequency. If
a voltage V #= 0 is applied over the conductor, the noise
rises above that equilibrium value and becomes frequency
dependent.

At low frequencies (typically below 10 kHz) the noise
is dominated by time-dependent fluctuations in the con-
ductance, arising from random motion of impurities. It
is called “flicker noise”, or “1/f noise” because of the
characteristic frequency dependence. Its spectral density
varies quadratically with the mean current Ī. At higher
frequencies the spectral density becomes frequency inde-
pendent and linearly proportional to the current. These
are the characteristics of shot noise.

The term “shot noise” draws an analogy between elec-
trons and the small pellets of lead that hunters use for
a single charge of a gun. The analogy is due to Wal-
ter Schottky, who predicted in 1918 that a vacuum tube
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power spectral density of current fluctuations

In thermal equilibrium, zero current flowing

temperature conductance

Shot noise:
Signature of discrete charges

evident in tunneling processes

2

would have two intrinsic sources of time-dependent cur-
rent fluctuations: Noise from the thermal agitation of
electrons (thermal noise) and noise from the discreteness
of the electrical charge (shot noise).

In a vacuum tube, electrons are emitted by the cath-
ode randomly and independently. Such a Poisson process
has the property that the mean squared fluctuation of the
number of emission events is equal to the average count.
The corresponding spectral density equals S = 2eĪ. The
factor of 2 appears because positive and negative frequen-
cies contribute identically.

Measuring the unit of transferred charge

Schottky proposed to measure the value of the elemen-
tary charge from the shot noise power, perhaps more ac-
curately than in the oil drop measurements which Robert
Millikan had published a few years earlier. Later experi-
ments showed that the accuracy is not better than a few
percent, mainly because the repulsion of electrons in the
space around the cathode invalidates the assumption of
independent emission events.

It may happen that the granularity of the current is
not the elementary charge. The mean current can not
tell the difference, but the noise can: S = 2qĪ if charge
is transferred in independent units of q. The ratio F =
S/2eĪ, which measures the unit of transferred charge, is
called the “Fano factor”, after Ugo Fano’s 1947 theory of
the statistics of ionization.

A first example of q != e is the shot noise at a tunnel
junction between a normal metal and a superconductor.
Charge is added to the superconductor in Cooper pairs,
so one expects q = 2e and F = 2. This doubling of the
Poisson noise has been measured very recently.2 (Earlier
experiments3 in a disordered system will be discussed
later on.)

A second example is offered by the fractional quan-
tum Hall effect. It is a non-trivial implication of Robert
Laughlin’s theory that tunneling from one edge of a Hall
bar to the opposite edge proceeds in units of a fraction
q = e/(2p + 1) of the elementary charge.4 The integer
p is determined by the filling fraction p/(2p + 1) of the
lowest Landau level. Christian Glattli and collaborators
of the Centre d’Études de Saclay in France and Michael
Reznikov and collaborators of the Weizmann Institute
in Israel independently measured F = 1/3 in the frac-
tional quantum Hall effect5 (see figure 1). More recently,
the Weizmann group extended the noise measurements
to p = 2 and p = 3. The experiments at p = 2 show that
the charge inferred from the noise may be a multiple of
e/(2p+1) at the lowest temperatures, as if the quasipar-
ticles tunnel in bunches. How to explain this bunching is
still unknown.
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FIG. 1: Current noise for tunneling across a Hall bar on
the 1/3 plateau of the fractional quantum Hall effect. The
slopes for e/3 charge quasiparticles and charge e electrons
are indicated. The data points with error bars (from the
experiment of Saminadayar et al.5) are the measured values
at 25 mK, the open circles include a correction for finite tunnel
probability. The inset shows schematically the setup of the
experiment. Most of the current flows along the lower edge of
the Hall bar from contact 1 to contact 2 (solid red line), but
some quasiparticles tunnel to the upper edge and end up at
contact 3 (dashed). The tunneling occurs predominantly at
a narrow constriction, created in the Hall bar by means of a
split gate electrode (shown in green). The current at contact
3 is first spectrally filtered, then amplified, and finally the
mean squared fluctuation (the noise power) is measured.

Quiet electrons

Correlations reduce the noise below the value

SPoisson = 2eĪ (2)

expected for a Poisson process of uncorrelated current
pulses of charge q = e. Coulomb repulsion is one source
of correlations, but it is strongly screened in a metal and
ineffective. The dominant source of correlations is the
Pauli principle, which prevents double occupancy of an
electronic state and leads to Fermi statistics in thermal
equilibrium. In a vacuum tube or tunnel junction the
mean occupation of a state is so small that the Pauli
principle is inoperative (and Fermi statistics is indistin-
guishable from Boltzmann statistics), but this is not so
in a metal.

An efficient way of accounting for the correlations
uses Landauer’s description of electrical conduction as a
transmission problem. According to the Landauer for-
mula, the time-averaged current Ī equals the conduc-

Out of equilibrium (current flowing) at zero temperature
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FIG. 1. (a) Linear conductance (g ! dI!dV , around Vsd " 0)
versus gate voltage, Vg , at B ! 0 for several temperatures. The
extra plateau at "0.7#2e2!h$ appears with increasing tempera-
ture while the plateaus at multiples of 2e2!h become less visible
due to thermal smearing. (b) Linear g versus Vg, for in-plane
field B from 0 to 8 T in 1 T steps, showing spin-resolved
plateaus at odd multiples of e2!h at high fields. (c) Micrograph
of the device reported. (d)–(f ) Nonlinear differential conduc-
tance g ! dI!dV as a function of dc source-drain bias voltage,
Vsd, with each trace taken at a fixed gate voltage. Plateaus
in g#Vg$ appear as accumulation of traces. (d) Nonlinear g at
80 mK, B ! 0, at Vg intervals of 1.25 mV. Plateaus at multiples
of 2e2!h around Vsd " 0 and half-plateaus at odd multiples of
e2!h at high bias [20] are visible. A zero-bias anomaly (ZBA) is
present only at low magnetic field and low temperatures. At high
bias, an extra plateau appears at g " 0.8#2e2!h$. (e) Nonlinear
g at 600 mK, B ! 0, at Vg intervals of 1.0 mV. Note absence
of a ZBA and accumulation of traces at g " 0.7#2e2!h$ around
Vsd " 0 that merges with the high-bias plateau at 0.8#2e2!h$.
(f) Nonlinear g at 80 mK, B ! 8 T, at Vg intervals of 1.2 mV.
Spin-resolved plateaus at odd multiples of e2!h around Vsd " 0
merge with high-bias plateaus at 0.8#2e2!h$, and 2.8#2e2!h$.
The high-bias feature at 0.8#2e2!h$ looks similar to that in the
B ! 0 data.

B, and dc source-drain bias, Vsd, using a small ac bias
voltage, jV j , 10 mV [19].

The linear-response conductance (i.e., g around
Vsd " 0) exhibits a characteristic evolution from spin-
degenerate plateaus at B ! 0, at integer multiples of
2e2!h, into spin-resolved plateaus at integer multiples
of e2!h in high field [Fig. 1(b)]. A remnant of the
spin-resolved plateau remains at B ! 0 and T ! 80 mK
as a barely visible shoulder below the 2e2!h plateau. As
the temperature is increased, conductance at this shoulder
decreases and a plateau near 0.7#2e2!h$ forms [Fig. 1(a)].
Note that while the 0.7 structure becomes stronger at
elevated temperatures, the plateaus at multiples of 2e2!h
become more washed out. Stated another way, as the
temperature is lowered, the plateaus at multiples of 2e2!h

sharpen up, while the plateau at 0.7#2e2!h$ rises to the
“unitary limit” of 2e2!h, and thus disappears.

Nonlinear transport data in Figs. 1(d)–1(f ) emphasize
the similarity between the spin-resolved plateaus at
B ! 8 T and the 0.7 structure at B ! 0. In this represen-
tation, plateaus in g#Vg$ appear as accumulations of traces,
seen for instance in the (well-understood) “half-plateaus”
[20,21] at higher bias #Vsd . "0.5 mV$ at g " 1!2, 3!2,
and 5!2 (in units of 2e2!h). The linear-response plateaus
appear as accumulated traces around zero bias at multiples
of 2e2!h and, in the B ! 8T data [Fig. 1(f)], also at odd
multiples of e2!h. Note the distinctive wing shape of the
spin-resolved plateaus, rising with increased bias from
"0.5 to "0.8 of the distance between the spin-degenerate
plateaus, with a transition around jVsdj " 0.2 mV. This
width is consistent with the Zeeman splitting at 8T
(g!mBB " 25 mV!T using jg!j ! 0.44).

Within the first subband #g , 2e2!h$ the nonlinear data
for B ! 0 look strikingly similar to the B ! 8T data
[compare lower region of Figs. 1(e), 1(f)], including the
wing shape of the extra plateau that extends out from the
0.7 feature. Higher subbands at B ! 0 [upper region of
Fig. 1(e)] do not show extra plateaus. Overall, comparing
Figs. 1(e) and 1(f) suggests that the zero-field plateau at
"0.7#2e2!h$, which extends to "0.8#2e2!h$ at high bias,
results from a splitting of spin bands, leading to transport
signatures in the lowest mode that greatly resemble the
situation at 8T , where spin degeneracy is explicitly lifted
in all modes by the applied field.

The nonlinear data at low temperature [Fig. 1(d)] show
an additional feature compared to the higher temperature
data [Fig. 1(e)]: a narrow peak in conductance around
Vsd ! 0 for the whole range 0 , g , 2e2!h. This zero-
bias anomaly (ZBA) forms as the temperature is lowered
[Fig. 2(a)] and is closely linked to the disappearance of the
0.7 structure at low temperature. Comparing Figs. 1(d) and
1(e), one sees that it is precisely this ZBA peak that lifts
the 0.7 plateau toward 2e2!h.

The formation of a zero-bias conductance peak, and the
associated enhancement of the linear conductance up to the
unitary limit #2e2!h$ at low temperature are reminiscent of
the Kondo effect seen in quantum dots containing an odd
number of electrons [13–17,22,23]. Guided by this simi-
larity, we consider a scaling of the temperature dependence
of the conductance using a single scaling parameter which
we designate the Kondo temperature, TK . Experimentally,
we find that this single parameter allows data from a broad
range of gate voltages [Fig. 2(b), inset] to be scaled onto
a single curve as a function of scaled temperature T!TK
[Fig. 2(b)]. Moreover, this scaled curve appears well de-
scribed by a modified expression for the Kondo conduc-
tance,

g ! 2e2!h%1!2f#T!TK $ 1 1!2& , (1)

where f#T!TK $ is a universal function for the Kondo con-
ductance [normalized to f#0$ ! 1] [24] well approximated
by

226805-2 226805-2
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tance quantum 2e2/h (including a factor of two for spin),
times the applied voltage V , times the sum over trans-
mission probabilities Tn:

Ī =
2e2

h
V

N∑

n=1

Tn. (3)

The conductor can be viewed as a parallel circuit of
N independent transmission channels with a channel-
dependent transmission probability Tn. Formally, the
Tn’s are defined as the eigenvalues of the product t · t† of
the N ×N transmission matrix t and its Hermitian con-
jugate. In a one-dimensional conductor, which by defini-
tion has one channel, one would have simply T1 = |t|2,
with t the transmission amplitude.

The number of channels N is a large number in a typ-
ical metal wire. One has N " A/λ2

F
up to a numeri-

cal coefficient for a wire with cross-sectional area A and
Fermi wave length λF . Due to the small Fermi wave
length λF " 1 Å of a metal, N is of order 107 for a typ-
ical metal wire of width 1 µm and thickness 100 nm. In
a semiconductor typical values of N are smaller but still
# 1.

At zero temperature the noise is related to the trans-
mission probabilities by6

S = 2e
2e2

h
V

N∑

n=1

Tn(1 − Tn). (4)

The factor 1−Tn describes the reduction of noise due to
the Pauli principle. Without it, one would have simply
S = SPoisson.

The shot noise formula (4) has an instructive statistical
interpretation.7 Consider first a one-dimensional conduc-
tor. Electrons in a range eV above the Fermi level enter
the conductor at a rate eV/h. In a time τ the number
of attempted transmissions is τeV/h. There are no fluc-
tuations in this number at zero temperature, since each
occupied state contains exactly one electron (Pauli prin-
ciple). Fluctuations in the transmitted charge Q arise
because the transmission attempts are succesful with a
probability T1 which is different from 0 or 1. The statis-
tics of Q is binomial, just as the statistics of the number
of heads when tossing a coin. The mean-squared fluctu-
ation 〈δQ2〉 of the charge for binomial statistics is given
by

〈δQ2〉 = e2(τeV/h)T1(1 − T1). (5)

The relation S = (2/τ)〈δQ2〉 between the mean-squared
fluctuation of the current and of the transmitted charge
brings us to eq. (4) for a single channel. Since fluctuations
in different channels are independent, the multi-channel
version is simply a sum over channels.

The quantum shot noise formula (4) has been tested
experimentally in a variety of systems. The groups of
Reznikov and Glattli used a quantum point contact: A
narrow constriction in a two-dimensional electron gas

with a quantized conductance. The quantization occurs
because the transmission probabilities are either close to
0 or close to 1. Eq. (4) predicts that the shot noise
should vanish when the conductance is quantized, and
this was indeed observed. (The experiment was reviewed
by Henk van Houten and Beenakker in Physics Today,
July 1996, page 22.)

A more stringent test used a single-atom junction, ob-
tained by the controlled breaking of a thin aluminum
wire.8 The junction is so narrow that the entire current
is carried by only three channels (N = 3). The trans-
mission probabilities T1, T2, T3 could be measured inde-
pendently from the current–voltage characteristic in the
superconducting state of aluminum. By inserting these
three numbers (the “pin code” of the junction) into eq.
(4), a theoretical prediction is obtained for the shot noise
power — which turned out to be in good agreement with
the measured value.

Detecting open transmission channels

The analogy between an electron emitted by a cathode
and a bullet shot by a gun works well for a vacuum tube
or a point contact, but seems a rather naive description
of the electrical current in a disordered metal or semi-
conductor. There is no identifiable emission event when
current flows through a metal and one might question
the very existence of shot noise. Indeed, for three quar-
ters of a century after the first vacuum tube experiments
there did not exist a single measurement of shot noise in
a metal. A macroscopic conductor (say, a piece of copper
wire) shows thermal noise, but no shot noise.

We now understand that the basic requirement on
length scale and temperature is that the length L of the
wire should be short compared to the inelastic electron-
phonon scattering length lin, which becomes longer and
longer as one lowers the temperature. For L > lin each
segment of the wire of length lin generates independent
voltage fluctuations, and the net result is that the shot
noise power is reduced by a factor lin/L. Thermal fluc-
tuations, in contrast, are not reduced by inelastic scat-
tering (which can only help the establishment of ther-
mal equilibrium). This explains why only thermal noise
could be observed in macroscopic conductors. (As an
aside, we mention that inelastic electron-electron scatter-
ing, which persists until much lower temperatures than
electron-phonon scattering, does not suppress shot noise,
but rather enhances the noise power a little bit.9)

Early experiments10 on mesoscopic semiconducting
wires observed the linear relation between noise power
and current that is the signature of shot noise, but could
not accurately measure the slope. The first quantitative
measurement was performed in a thin-film silver wire by
Andrew Steinbach and John Martinis at the US National
Institute of Standards and Technology in Boulder, collab-
orating with Michel Devoret from Saclay.11

The data shown in figure 2 (from a more recent exper-
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current flows through a metal and one might question
the very existence of shot noise. Indeed, for three quar-
ters of a century after the first vacuum tube experiments
there did not exist a single measurement of shot noise in
a metal. A macroscopic conductor (say, a piece of copper
wire) shows thermal noise, but no shot noise.

We now understand that the basic requirement on
length scale and temperature is that the length L of the
wire should be short compared to the inelastic electron-
phonon scattering length lin, which becomes longer and
longer as one lowers the temperature. For L > lin each
segment of the wire of length lin generates independent
voltage fluctuations, and the net result is that the shot
noise power is reduced by a factor lin/L. Thermal fluc-
tuations, in contrast, are not reduced by inelastic scat-
tering (which can only help the establishment of ther-
mal equilibrium). This explains why only thermal noise
could be observed in macroscopic conductors. (As an
aside, we mention that inelastic electron-electron scatter-
ing, which persists until much lower temperatures than
electron-phonon scattering, does not suppress shot noise,
but rather enhances the noise power a little bit.9)

Early experiments10 on mesoscopic semiconducting
wires observed the linear relation between noise power
and current that is the signature of shot noise, but could
not accurately measure the slope. The first quantitative
measurement was performed in a thin-film silver wire by
Andrew Steinbach and John Martinis at the US National
Institute of Standards and Technology in Boulder, collab-
orating with Michel Devoret from Saclay.11

The data shown in figure 2 (from a more recent exper-
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FIG. 1. (a) Linear conductance (g ! dI!dV , around Vsd " 0)
versus gate voltage, Vg , at B ! 0 for several temperatures. The
extra plateau at "0.7#2e2!h$ appears with increasing tempera-
ture while the plateaus at multiples of 2e2!h become less visible
due to thermal smearing. (b) Linear g versus Vg, for in-plane
field B from 0 to 8 T in 1 T steps, showing spin-resolved
plateaus at odd multiples of e2!h at high fields. (c) Micrograph
of the device reported. (d)–(f ) Nonlinear differential conduc-
tance g ! dI!dV as a function of dc source-drain bias voltage,
Vsd, with each trace taken at a fixed gate voltage. Plateaus
in g#Vg$ appear as accumulation of traces. (d) Nonlinear g at
80 mK, B ! 0, at Vg intervals of 1.25 mV. Plateaus at multiples
of 2e2!h around Vsd " 0 and half-plateaus at odd multiples of
e2!h at high bias [20] are visible. A zero-bias anomaly (ZBA) is
present only at low magnetic field and low temperatures. At high
bias, an extra plateau appears at g " 0.8#2e2!h$. (e) Nonlinear
g at 600 mK, B ! 0, at Vg intervals of 1.0 mV. Note absence
of a ZBA and accumulation of traces at g " 0.7#2e2!h$ around
Vsd " 0 that merges with the high-bias plateau at 0.8#2e2!h$.
(f) Nonlinear g at 80 mK, B ! 8 T, at Vg intervals of 1.2 mV.
Spin-resolved plateaus at odd multiples of e2!h around Vsd " 0
merge with high-bias plateaus at 0.8#2e2!h$, and 2.8#2e2!h$.
The high-bias feature at 0.8#2e2!h$ looks similar to that in the
B ! 0 data.

B, and dc source-drain bias, Vsd, using a small ac bias
voltage, jV j , 10 mV [19].

The linear-response conductance (i.e., g around
Vsd " 0) exhibits a characteristic evolution from spin-
degenerate plateaus at B ! 0, at integer multiples of
2e2!h, into spin-resolved plateaus at integer multiples
of e2!h in high field [Fig. 1(b)]. A remnant of the
spin-resolved plateau remains at B ! 0 and T ! 80 mK
as a barely visible shoulder below the 2e2!h plateau. As
the temperature is increased, conductance at this shoulder
decreases and a plateau near 0.7#2e2!h$ forms [Fig. 1(a)].
Note that while the 0.7 structure becomes stronger at
elevated temperatures, the plateaus at multiples of 2e2!h
become more washed out. Stated another way, as the
temperature is lowered, the plateaus at multiples of 2e2!h

sharpen up, while the plateau at 0.7#2e2!h$ rises to the
“unitary limit” of 2e2!h, and thus disappears.

Nonlinear transport data in Figs. 1(d)–1(f ) emphasize
the similarity between the spin-resolved plateaus at
B ! 8 T and the 0.7 structure at B ! 0. In this represen-
tation, plateaus in g#Vg$ appear as accumulations of traces,
seen for instance in the (well-understood) “half-plateaus”
[20,21] at higher bias #Vsd . "0.5 mV$ at g " 1!2, 3!2,
and 5!2 (in units of 2e2!h). The linear-response plateaus
appear as accumulated traces around zero bias at multiples
of 2e2!h and, in the B ! 8T data [Fig. 1(f)], also at odd
multiples of e2!h. Note the distinctive wing shape of the
spin-resolved plateaus, rising with increased bias from
"0.5 to "0.8 of the distance between the spin-degenerate
plateaus, with a transition around jVsdj " 0.2 mV. This
width is consistent with the Zeeman splitting at 8T
(g!mBB " 25 mV!T using jg!j ! 0.44).

Within the first subband #g , 2e2!h$ the nonlinear data
for B ! 0 look strikingly similar to the B ! 8T data
[compare lower region of Figs. 1(e), 1(f)], including the
wing shape of the extra plateau that extends out from the
0.7 feature. Higher subbands at B ! 0 [upper region of
Fig. 1(e)] do not show extra plateaus. Overall, comparing
Figs. 1(e) and 1(f) suggests that the zero-field plateau at
"0.7#2e2!h$, which extends to "0.8#2e2!h$ at high bias,
results from a splitting of spin bands, leading to transport
signatures in the lowest mode that greatly resemble the
situation at 8T , where spin degeneracy is explicitly lifted
in all modes by the applied field.

The nonlinear data at low temperature [Fig. 1(d)] show
an additional feature compared to the higher temperature
data [Fig. 1(e)]: a narrow peak in conductance around
Vsd ! 0 for the whole range 0 , g , 2e2!h. This zero-
bias anomaly (ZBA) forms as the temperature is lowered
[Fig. 2(a)] and is closely linked to the disappearance of the
0.7 structure at low temperature. Comparing Figs. 1(d) and
1(e), one sees that it is precisely this ZBA peak that lifts
the 0.7 plateau toward 2e2!h.

The formation of a zero-bias conductance peak, and the
associated enhancement of the linear conductance up to the
unitary limit #2e2!h$ at low temperature are reminiscent of
the Kondo effect seen in quantum dots containing an odd
number of electrons [13–17,22,23]. Guided by this simi-
larity, we consider a scaling of the temperature dependence
of the conductance using a single scaling parameter which
we designate the Kondo temperature, TK . Experimentally,
we find that this single parameter allows data from a broad
range of gate voltages [Fig. 2(b), inset] to be scaled onto
a single curve as a function of scaled temperature T!TK
[Fig. 2(b)]. Moreover, this scaled curve appears well de-
scribed by a modified expression for the Kondo conduc-
tance,

g ! 2e2!h%1!2f#T!TK $ 1 1!2& , (1)

where f#T!TK $ is a universal function for the Kondo con-
ductance [normalized to f#0$ ! 1] [24] well approximated
by
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FIG. 2: Sub-Poissonian shot noise in a disordered gold wire
(dimensions 940 nm × 100 nm). At low currents the noise sat-
urates at the level set by the temperature of 0.3 K. [Adapted
from M. Henny et al.11 ]

iment) presents a puzzle: If we calculate the slope, we
find a Fano factor of 1/3 rather than 1. Surely there are
no fractional charges in a normal metal conductor?

A one-third Fano factor in a disordered conductor had
actually been predicted prior to the experiments. The
prediction was made independently by Kirill Nagaev of
the Institute of Radio-Engineering and Electronics in
Moscow and by one of the authors (Beenakker) with
Markus Büttiker of the University of Geneva.12 To un-
derstand the experimental finding we recall the general
shot noise formula (4), which tells us that sub-Poissonian
noise (F < 1) occurs when some channels are not weakly
transmitted. These socalled “open channels” have Tn

close to 1 and therefore contribute less to the noise than
expected for a Poisson process.

The appearance of open channels in a disordered con-
ductor is surprising. Oleg Dorokhov of the Landau Insti-
tute in Moscow first noticed the existence of open chan-
nels in 1984, but the physical implications were only un-
derstood some years later, notably through the work of
Yoseph Imry of the Weizmann Institute. The one-third
Fano factor follows directly from the probability distri-
bution of the transmission eigenvalues, see figure 3.

We conclude this section by referring to the experimen-
tal demonstrations3 of the interplay between the dou-
bling of shot noise due to superconductivity and the 1/3
reduction due to open channels, resulting in a 2/3 Fano
factor. These experiments show that open channels are
a general and universal property of disordered systems.
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FIG. 3: Bimodal probability distribution of the transmis-
sion eigenvalues, with a peak at 0 (closed channels) and a
peak at 1 (open channels). The functional form of the dis-
tribution (derived by Dorokhov) is P (T ) ∝ T−1(1 − T )−1/2,
with a mean-free-path dependent cutoff at exponentially small
T . The one-third Fano factor follows directly from the ratio∫

T 2P (T )dT/
∫

TP (T )dT = 2/3. The cutoff affects only the
normalization of P (T ) and drops out of this ratio, which takes
on a universal value.

Distinguishing particles from waves

So far we have encountered two diagnostic properties of
shot noise: It measures the unit of transferred charge in
a tunnel junction and it detects open transmission chan-
nels in a disordered wire. A third diagnostic appears
in semiconductor microcavities known as quantum dots
or electron billiards. These are small confined regions
in a two-dimensional electron gas, free of disorder, with
two narrow openings through which a current is passed.
If the shape of the confining potential is sufficiently ir-
regular (which it typically is), the classical dynamics is
chaotic and one can search for traces of this chaos in
the quantum mechanical properties. This is the field of
quantum chaos.

Here is the third diagnostic: Shot noise in an electron
billiard can distinguish deterministic scattering, charac-
teristic for particles, from stochastic scattering, charac-
teristic for waves. Particle dynamics is deterministic: A
given initial position and momentum fixes the entire tra-
jectory. In particular, it fixes whether the particle will be
transmitted or reflected, so the scattering is noiseless on
all time scales. Wave dynamics is stochastic: The quan-
tum uncertainty in position and momentum introduces
a probabilistic element into the dynamics, so it becomes
noisy on sufficiently long time scales.

The suppression of shot noise in a conductor with de-
terministic scattering was predicted many years ago13

from this qualitative argument. A better understand-
ing, and a quantitative description, of how shot noise
measures the transition from particle to wave dynamics
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FIG. 2: Sub-Poissonian shot noise in a disordered gold wire
(dimensions 940 nm × 100 nm). At low currents the noise sat-
urates at the level set by the temperature of 0.3 K. [Adapted
from M. Henny et al.11 ]

iment) presents a puzzle: If we calculate the slope, we
find a Fano factor of 1/3 rather than 1. Surely there are
no fractional charges in a normal metal conductor?

A one-third Fano factor in a disordered conductor had
actually been predicted prior to the experiments. The
prediction was made independently by Kirill Nagaev of
the Institute of Radio-Engineering and Electronics in
Moscow and by one of the authors (Beenakker) with
Markus Büttiker of the University of Geneva.12 To un-
derstand the experimental finding we recall the general
shot noise formula (4), which tells us that sub-Poissonian
noise (F < 1) occurs when some channels are not weakly
transmitted. These socalled “open channels” have Tn

close to 1 and therefore contribute less to the noise than
expected for a Poisson process.

The appearance of open channels in a disordered con-
ductor is surprising. Oleg Dorokhov of the Landau Insti-
tute in Moscow first noticed the existence of open chan-
nels in 1984, but the physical implications were only un-
derstood some years later, notably through the work of
Yoseph Imry of the Weizmann Institute. The one-third
Fano factor follows directly from the probability distri-
bution of the transmission eigenvalues, see figure 3.

We conclude this section by referring to the experimen-
tal demonstrations3 of the interplay between the dou-
bling of shot noise due to superconductivity and the 1/3
reduction due to open channels, resulting in a 2/3 Fano
factor. These experiments show that open channels are
a general and universal property of disordered systems.
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sion eigenvalues, with a peak at 0 (closed channels) and a
peak at 1 (open channels). The functional form of the dis-
tribution (derived by Dorokhov) is P (T ) ∝ T−1(1 − T )−1/2,
with a mean-free-path dependent cutoff at exponentially small
T . The one-third Fano factor follows directly from the ratio∫

T 2P (T )dT/
∫

TP (T )dT = 2/3. The cutoff affects only the
normalization of P (T ) and drops out of this ratio, which takes
on a universal value.

Distinguishing particles from waves

So far we have encountered two diagnostic properties of
shot noise: It measures the unit of transferred charge in
a tunnel junction and it detects open transmission chan-
nels in a disordered wire. A third diagnostic appears
in semiconductor microcavities known as quantum dots
or electron billiards. These are small confined regions
in a two-dimensional electron gas, free of disorder, with
two narrow openings through which a current is passed.
If the shape of the confining potential is sufficiently ir-
regular (which it typically is), the classical dynamics is
chaotic and one can search for traces of this chaos in
the quantum mechanical properties. This is the field of
quantum chaos.

Here is the third diagnostic: Shot noise in an electron
billiard can distinguish deterministic scattering, charac-
teristic for particles, from stochastic scattering, charac-
teristic for waves. Particle dynamics is deterministic: A
given initial position and momentum fixes the entire tra-
jectory. In particular, it fixes whether the particle will be
transmitted or reflected, so the scattering is noiseless on
all time scales. Wave dynamics is stochastic: The quan-
tum uncertainty in position and momentum introduces
a probabilistic element into the dynamics, so it becomes
noisy on sufficiently long time scales.

The suppression of shot noise in a conductor with de-
terministic scattering was predicted many years ago13

from this qualitative argument. A better understand-
ing, and a quantitative description, of how shot noise
measures the transition from particle to wave dynamics
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FIG. 2: Sub-Poissonian shot noise in a disordered gold wire
(dimensions 940 nm × 100 nm). At low currents the noise sat-
urates at the level set by the temperature of 0.3 K. [Adapted
from M. Henny et al.11 ]

iment) presents a puzzle: If we calculate the slope, we
find a Fano factor of 1/3 rather than 1. Surely there are
no fractional charges in a normal metal conductor?

A one-third Fano factor in a disordered conductor had
actually been predicted prior to the experiments. The
prediction was made independently by Kirill Nagaev of
the Institute of Radio-Engineering and Electronics in
Moscow and by one of the authors (Beenakker) with
Markus Büttiker of the University of Geneva.12 To un-
derstand the experimental finding we recall the general
shot noise formula (4), which tells us that sub-Poissonian
noise (F < 1) occurs when some channels are not weakly
transmitted. These socalled “open channels” have Tn

close to 1 and therefore contribute less to the noise than
expected for a Poisson process.

The appearance of open channels in a disordered con-
ductor is surprising. Oleg Dorokhov of the Landau Insti-
tute in Moscow first noticed the existence of open chan-
nels in 1984, but the physical implications were only un-
derstood some years later, notably through the work of
Yoseph Imry of the Weizmann Institute. The one-third
Fano factor follows directly from the probability distri-
bution of the transmission eigenvalues, see figure 3.

We conclude this section by referring to the experimen-
tal demonstrations3 of the interplay between the dou-
bling of shot noise due to superconductivity and the 1/3
reduction due to open channels, resulting in a 2/3 Fano
factor. These experiments show that open channels are
a general and universal property of disordered systems.
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peak at 1 (open channels). The functional form of the dis-
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normalization of P (T ) and drops out of this ratio, which takes
on a universal value.

Distinguishing particles from waves

So far we have encountered two diagnostic properties of
shot noise: It measures the unit of transferred charge in
a tunnel junction and it detects open transmission chan-
nels in a disordered wire. A third diagnostic appears
in semiconductor microcavities known as quantum dots
or electron billiards. These are small confined regions
in a two-dimensional electron gas, free of disorder, with
two narrow openings through which a current is passed.
If the shape of the confining potential is sufficiently ir-
regular (which it typically is), the classical dynamics is
chaotic and one can search for traces of this chaos in
the quantum mechanical properties. This is the field of
quantum chaos.

Here is the third diagnostic: Shot noise in an electron
billiard can distinguish deterministic scattering, charac-
teristic for particles, from stochastic scattering, charac-
teristic for waves. Particle dynamics is deterministic: A
given initial position and momentum fixes the entire tra-
jectory. In particular, it fixes whether the particle will be
transmitted or reflected, so the scattering is noiseless on
all time scales. Wave dynamics is stochastic: The quan-
tum uncertainty in position and momentum introduces
a probabilistic element into the dynamics, so it becomes
noisy on sufficiently long time scales.

The suppression of shot noise in a conductor with de-
terministic scattering was predicted many years ago13

from this qualitative argument. A better understand-
ing, and a quantitative description, of how shot noise
measures the transition from particle to wave dynamics
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FIG. 2: Sub-Poissonian shot noise in a disordered gold wire
(dimensions 940 nm × 100 nm). At low currents the noise sat-
urates at the level set by the temperature of 0.3 K. [Adapted
from M. Henny et al.11 ]

iment) presents a puzzle: If we calculate the slope, we
find a Fano factor of 1/3 rather than 1. Surely there are
no fractional charges in a normal metal conductor?

A one-third Fano factor in a disordered conductor had
actually been predicted prior to the experiments. The
prediction was made independently by Kirill Nagaev of
the Institute of Radio-Engineering and Electronics in
Moscow and by one of the authors (Beenakker) with
Markus Büttiker of the University of Geneva.12 To un-
derstand the experimental finding we recall the general
shot noise formula (4), which tells us that sub-Poissonian
noise (F < 1) occurs when some channels are not weakly
transmitted. These socalled “open channels” have Tn

close to 1 and therefore contribute less to the noise than
expected for a Poisson process.

The appearance of open channels in a disordered con-
ductor is surprising. Oleg Dorokhov of the Landau Insti-
tute in Moscow first noticed the existence of open chan-
nels in 1984, but the physical implications were only un-
derstood some years later, notably through the work of
Yoseph Imry of the Weizmann Institute. The one-third
Fano factor follows directly from the probability distri-
bution of the transmission eigenvalues, see figure 3.

We conclude this section by referring to the experimen-
tal demonstrations3 of the interplay between the dou-
bling of shot noise due to superconductivity and the 1/3
reduction due to open channels, resulting in a 2/3 Fano
factor. These experiments show that open channels are
a general and universal property of disordered systems.

0 1transmission eigenvalue, T

open

channels

closed

channels

p
ro

b
a

b
ili

ty
 d

is
tr

ib
u

ti
o

n
, 

 P
( 

T
 )

0

<T(1-T)>
F= =

<T>
1
3

FIG. 3: Bimodal probability distribution of the transmis-
sion eigenvalues, with a peak at 0 (closed channels) and a
peak at 1 (open channels). The functional form of the dis-
tribution (derived by Dorokhov) is P (T ) ∝ T−1(1 − T )−1/2,
with a mean-free-path dependent cutoff at exponentially small
T . The one-third Fano factor follows directly from the ratio∫

T 2P (T )dT/
∫

TP (T )dT = 2/3. The cutoff affects only the
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Distinguishing particles from waves

So far we have encountered two diagnostic properties of
shot noise: It measures the unit of transferred charge in
a tunnel junction and it detects open transmission chan-
nels in a disordered wire. A third diagnostic appears
in semiconductor microcavities known as quantum dots
or electron billiards. These are small confined regions
in a two-dimensional electron gas, free of disorder, with
two narrow openings through which a current is passed.
If the shape of the confining potential is sufficiently ir-
regular (which it typically is), the classical dynamics is
chaotic and one can search for traces of this chaos in
the quantum mechanical properties. This is the field of
quantum chaos.

Here is the third diagnostic: Shot noise in an electron
billiard can distinguish deterministic scattering, charac-
teristic for particles, from stochastic scattering, charac-
teristic for waves. Particle dynamics is deterministic: A
given initial position and momentum fixes the entire tra-
jectory. In particular, it fixes whether the particle will be
transmitted or reflected, so the scattering is noiseless on
all time scales. Wave dynamics is stochastic: The quan-
tum uncertainty in position and momentum introduces
a probabilistic element into the dynamics, so it becomes
noisy on sufficiently long time scales.

The suppression of shot noise in a conductor with de-
terministic scattering was predicted many years ago13

from this qualitative argument. A better understand-
ing, and a quantitative description, of how shot noise
measures the transition from particle to wave dynamics
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FIG. 2: Sub-Poissonian shot noise in a disordered gold wire
(dimensions 940 nm × 100 nm). At low currents the noise sat-
urates at the level set by the temperature of 0.3 K. [Adapted
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find a Fano factor of 1/3 rather than 1. Surely there are
no fractional charges in a normal metal conductor?
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shot noise formula (4), which tells us that sub-Poissonian
noise (F < 1) occurs when some channels are not weakly
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close to 1 and therefore contribute less to the noise than
expected for a Poisson process.
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nels in 1984, but the physical implications were only un-
derstood some years later, notably through the work of
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We conclude this section by referring to the experimen-
tal demonstrations3 of the interplay between the dou-
bling of shot noise due to superconductivity and the 1/3
reduction due to open channels, resulting in a 2/3 Fano
factor. These experiments show that open channels are
a general and universal property of disordered systems.
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Distinguishing particles from waves

So far we have encountered two diagnostic properties of
shot noise: It measures the unit of transferred charge in
a tunnel junction and it detects open transmission chan-
nels in a disordered wire. A third diagnostic appears
in semiconductor microcavities known as quantum dots
or electron billiards. These are small confined regions
in a two-dimensional electron gas, free of disorder, with
two narrow openings through which a current is passed.
If the shape of the confining potential is sufficiently ir-
regular (which it typically is), the classical dynamics is
chaotic and one can search for traces of this chaos in
the quantum mechanical properties. This is the field of
quantum chaos.

Here is the third diagnostic: Shot noise in an electron
billiard can distinguish deterministic scattering, charac-
teristic for particles, from stochastic scattering, charac-
teristic for waves. Particle dynamics is deterministic: A
given initial position and momentum fixes the entire tra-
jectory. In particular, it fixes whether the particle will be
transmitted or reflected, so the scattering is noiseless on
all time scales. Wave dynamics is stochastic: The quan-
tum uncertainty in position and momentum introduces
a probabilistic element into the dynamics, so it becomes
noisy on sufficiently long time scales.

The suppression of shot noise in a conductor with de-
terministic scattering was predicted many years ago13

from this qualitative argument. A better understand-
ing, and a quantitative description, of how shot noise
measures the transition from particle to wave dynamics
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sistor !HEMT" operating at 4.2 K converts these voltage
fluctuations into current fluctuations in a 50 ! coaxial line
extending from 4.2 K to room temperature. A 50 ! amplifier
with 60 dB of gain completes the amplification chain. The
resulting signals V1 and V2 are simultaneously sampled at
10 MS/s by a two-channel digitizer !National Instruments
PCI-5122" in a 3.4 GHz PC !Dell Optiplex GX280". The
computer takes the FFT of each signal and computes the
power spectral density of each channel and the cross spectral
density.

III. AMPLIFIER

A. Design objectives

A number of objectives have guided the design of the
amplification lines. These include !1" low amplifier input-
referred voltage noise and current noise, !2" simultaneous
measurement of both noise at megahertz and transport near
dc, !3" low thermal load, !4" small size, allowing two ampli-
fication lines within the 52 mm bore cryostat, !5" maximum
use of commercial components, and !6" compatibility with
high magnetic fields.

B. Overview of circuit

Each amplification line consists of four circuit boards
interconnected by coaxial cable, as shown in the circuit sche-

matic in Fig. 2!a". Three of the boards are located inside the
3He cryostat. The resonant circuit board #labeled RES in Fig.
2!a"$ is mounted on the sample holder at the end of the
30 cm long coldfinger that extends from the 3He pot to the
center of the superconducting solenoid. The heat-sink board
!SINK" anchored to the 3He pot is a meandering line that
thermalizes the inner conductor of the coaxial cable. The
CRYOAMP board at the 4.2 K plate contains the only active
element operating cryogenically, an Agilent ATF-34143
HEMT. The four-way SPLITTER board operating at room
temperature separates low- and high-frequency signals and
biases the HEMT. Each line amplifies in two frequency
ranges, a low-frequency range below %3 kHz and a high-
frequency range around 2 MHz.

The low-frequency equivalent circuit is shown in Fig.
3!a": a resistor !R1=5 k!" to ground, shunted by a capacitor
!C1=10 nF", converts an input current i to a voltage on the
HEMT gate. The HEMT amplifies this gate voltage by %
−5 V/V on its drain, which connects to a room temperature
voltage amplifier at the low-frequency port of the SPLITTER
board. The low-frequency voltage amplifier !Stanford Re-
search Systems model SR560" is operated in single-ended
mode with ac coupling, 100 V/V gain and bandpass filtering
!30 Hz to 10 kHz". The bandwidth in this low-frequency re-
gime is set by the input time constant.

The high-frequency equivalent circuit is shown in Fig.
3!b". The inductor L1=66 "H dominates over C1 and forms
a parallel RLC tank with R1 and the capacitance C%96 pF
of the coaxial line connecting to the CRYOAMP board. Re-
sistor R4 is shunted by C2 to enhance the transconductance at
the CRYOAMP board. The coaxial line extending from
4.2 K to room temperature is terminated on both sides by
50 !. At room temperature, the signal passes through the
high-frequency port of the SPLITTER board to a 50 ! am-
plifier !MITEQ AU-1447" with a gain of 60 dB and a noise
temperature of 100 K in the range of 0.01−200 MHz.

FIG. 2. !a" Schematic diagram of each amplification
line. Values of all passive components are listed in the
accompanying table. Transistor Q1 is an Agilent ATF-
34143 HEMT. !b" Layout of the CRYOAMP circuit
board. Metal !black regions" is patterned by etching of
thermally evaporated Cr/Au on sapphire substrate. !c"
Photograph of a CRYOAMP board. The scale bar ap-
plies to both !b" and !c".

FIG. 1. Block diagram of the two-channel noise detection system, config-
ured to measure the power spectral densities and cross spectral density of
current fluctuations in a multiterminal electronic device.
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We describe the construction and operation of a two-channel noise detection system for measuring
power and cross spectral densities of current fluctuations near 2 MHz in electronic devices at low
temperatures. The system employs cryogenic amplification and fast Fourier transform based spectral
measurement. The gain and electron temperature are calibrated using Johnson noise thermometry.
Full shot noise of 100 pA can be resolved with an integration time of 10 s. We report a
demonstration measurement of bias-dependent current noise in a gate defined GaAs/AlGaAs
quantum point contact. © 2006 American Institute of Physics. #DOI: 10.1063/1.2221541$

I. INTRODUCTION

Over the last decade, measurement of electronic noise in
mesoscopic conductors has successfully probed quantum sta-
tistics, chaotic scattering, and many-body effects.1,2 Suppres-
sion of shot noise below the Poissonian limit has been ob-
served in a wide range of devices, including quantum point
contacts,3–5 diffusive wires,6,7 and quantum dots,8 with good
agreement between experiment and theory. Shot noise has
been used to measure quasiparticle charge in strongly corre-
lated systems, including the fractional quantum hall
regime9,10 and normal-superconductor interfaces,11 and to in-
vestigate regimes where Coulomb interactions are strong, in-
cluding coupled localized states in mesoscopic tunnel
junctions12 and quantum dots in the sequential tunneling13

and cotunneling14 regimes. Two-particle interference not evi-
dent in dc transport has been investigated using noise in an
electronic beam splitter.5

Recent theoretical work15–18 proposes the detection of
electron entanglement via violations of Bell-type inequalities
using cross correlations of current noise between different
leads. Most noise measurements have investigated either
noise autocorrelation3,5,6,9,14,19,20 or cross correlation of noise
in a common current,4,7,8,12,21,22 with only a few
experiments23–25 investigating cross correlation between two
distinct currents. Henny et al.23 and Oberholzer et al.24 mea-
sured noise cross correlation in the acoustic frequency range
!low kilohertz" using room temperature amplification and a
commercial fast Fourier transform !FFT"-based spectrum
analyzer. Oliver et al.25 measured cross correlation in the low
megahertz using cryogenic amplifiers and analog power de-
tection with hybrid mixers and envelope detectors.

In this article, we describe a two-channel noise detection
system for simultaneously measuring power spectral densi-
ties and cross spectral density of current fluctuations in elec-
tronic devices at low temperatures. Our approach combines

elements of the two methods described above: cryogenic am-
plification at low megahertz frequencies and FFT-based spec-
tral measurement.

Several factors make low-megahertz frequencies a prac-
tical range for low-temperature current noise measurement.
This frequency range is high compared to the 1/ f noise cor-
ner in typical mesoscopic devices. Yet, it is low enough that
FFT-based spectral measurement can be performed effi-
ciently with a personal computer !PC" equipped with a com-
mercial digitizer. Key features of this FFT-based spectral
measurement are near real-time operation and sufficient fre-
quency resolution to detect spectral features of interest. Spe-
cifically, the fine frequency resolution provides information
about the measurement circuit and amplifier noise at mega-
hertz, and enables extraneous interference pickup to be iden-
tified and eliminated. These two features constitute a signifi-
cant advantage over both wideband analog detection of total
noise power, which sacrifices resolution for speed, and
swept-sine measurement, which sacrifices speed for resolu-
tion.

The article is divided as follows. A block diagram of the
system is presented in Sec. II. The amplification circuit is
discussed in Sec. III. Section IV describes the data analysis
procedure, including digitization and FFT processing. A
demonstration measurement of current noise in a quantum
point contact is presented in Sec. V. System performance is
discussed in Sec. VI.

II. OVERVIEW OF THE SYSTEM

Figure 1 shows a block diagram of the two-channel
noise detection system, which is integrated with a commer-
cial 3He cryostat !Oxford Intruments Heliox 2VL". The sys-
tem takes two input currents and amplifies their fluctuations
in several stages. First, a parallel resistor-inductor-capacitor
!RLC" circuit performs current-to-voltage conversion at fre-
quencies close to its resonance at fo= !2!%LC"−1&2 MHz.
Through its transconductance, a high electron mobility tran-a"Contributed equally to this work.
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sistor !HEMT" operating at 4.2 K converts these voltage
fluctuations into current fluctuations in a 50 ! coaxial line
extending from 4.2 K to room temperature. A 50 ! amplifier
with 60 dB of gain completes the amplification chain. The
resulting signals V1 and V2 are simultaneously sampled at
10 MS/s by a two-channel digitizer !National Instruments
PCI-5122" in a 3.4 GHz PC !Dell Optiplex GX280". The
computer takes the FFT of each signal and computes the
power spectral density of each channel and the cross spectral
density.

III. AMPLIFIER

A. Design objectives

A number of objectives have guided the design of the
amplification lines. These include !1" low amplifier input-
referred voltage noise and current noise, !2" simultaneous
measurement of both noise at megahertz and transport near
dc, !3" low thermal load, !4" small size, allowing two ampli-
fication lines within the 52 mm bore cryostat, !5" maximum
use of commercial components, and !6" compatibility with
high magnetic fields.

B. Overview of circuit

Each amplification line consists of four circuit boards
interconnected by coaxial cable, as shown in the circuit sche-

matic in Fig. 2!a". Three of the boards are located inside the
3He cryostat. The resonant circuit board #labeled RES in Fig.
2!a"$ is mounted on the sample holder at the end of the
30 cm long coldfinger that extends from the 3He pot to the
center of the superconducting solenoid. The heat-sink board
!SINK" anchored to the 3He pot is a meandering line that
thermalizes the inner conductor of the coaxial cable. The
CRYOAMP board at the 4.2 K plate contains the only active
element operating cryogenically, an Agilent ATF-34143
HEMT. The four-way SPLITTER board operating at room
temperature separates low- and high-frequency signals and
biases the HEMT. Each line amplifies in two frequency
ranges, a low-frequency range below %3 kHz and a high-
frequency range around 2 MHz.

The low-frequency equivalent circuit is shown in Fig.
3!a": a resistor !R1=5 k!" to ground, shunted by a capacitor
!C1=10 nF", converts an input current i to a voltage on the
HEMT gate. The HEMT amplifies this gate voltage by %
−5 V/V on its drain, which connects to a room temperature
voltage amplifier at the low-frequency port of the SPLITTER
board. The low-frequency voltage amplifier !Stanford Re-
search Systems model SR560" is operated in single-ended
mode with ac coupling, 100 V/V gain and bandpass filtering
!30 Hz to 10 kHz". The bandwidth in this low-frequency re-
gime is set by the input time constant.

The high-frequency equivalent circuit is shown in Fig.
3!b". The inductor L1=66 "H dominates over C1 and forms
a parallel RLC tank with R1 and the capacitance C%96 pF
of the coaxial line connecting to the CRYOAMP board. Re-
sistor R4 is shunted by C2 to enhance the transconductance at
the CRYOAMP board. The coaxial line extending from
4.2 K to room temperature is terminated on both sides by
50 !. At room temperature, the signal passes through the
high-frequency port of the SPLITTER board to a 50 ! am-
plifier !MITEQ AU-1447" with a gain of 60 dB and a noise
temperature of 100 K in the range of 0.01−200 MHz.

FIG. 2. !a" Schematic diagram of each amplification
line. Values of all passive components are listed in the
accompanying table. Transistor Q1 is an Agilent ATF-
34143 HEMT. !b" Layout of the CRYOAMP circuit
board. Metal !black regions" is patterned by etching of
thermally evaporated Cr/Au on sapphire substrate. !c"
Photograph of a CRYOAMP board. The scale bar ap-
plies to both !b" and !c".

FIG. 1. Block diagram of the two-channel noise detection system, config-
ured to measure the power spectral densities and cross spectral density of
current fluctuations in a multiterminal electronic device.
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C. Operating point

The HEMT must be biased in saturation to provide volt-
age !transconductance" gain in the low !high" frequency
range. R4, R5+R6 and supply voltage Vdac determine the
HEMT operating point !R1 grounds the HEMT gate at dc". A
notable difference in this design compared to similar pub-
lished ones regards the placement of R4. In previous imple-
mentations of similar circuits,26–28 R4 is a variable resistor
placed outside the refrigerator and connected to the source
lead of Q1 via a second coaxial line or low-frequency wire.
Here, R4 is located on the CRYOAMP board to simplify
assembly and save space, at the expense of having full con-
trol of the bias point in Q1 !R4 fixes the saturation value of
the HEMT current Ih". Using the I-V curves in Ref. 28 for a
cryogenically cooled ATF-34143, we choose R4=150 ! to
give a saturation current of a few mA. This value of satura-
tion current reflects a compromise between noise perfor-
mance and power dissipation. As shown in Fig. 4, Q1 is
biased by varying the supply voltage Vdac fed at the SPLIT-
TER board. At the bias point indicated by a cross, the total
power dissipation in the HEMT board is IhVh,ds+ Ih

2R4
=1.8 mW, and the input-referred voltage noise of the HEMT
is #0.4 nV/$Hz.

D. Passive components

Passive components were selected based on temperature
stability, size, and magnetic field compatibility. All resistors
!Vishay TNPW thin film" are 0805-size surface mount. Their
variation in resistance between room temperature and
300 mK is "0.5%. Inductor L1 !two 33 #H Coilcraft
1812CS ceramic chip inductors in series" does not have a
magnetic core and is suited for operation at high magnetic
fields. The dc resistance of L1 is 26!0.3" ! at 300!4.2" K.
With the exception of C1, all capacitors are 0805-size surface
mount !Murata COG GRM21". C1 !two 5 nF American
Technical Ceramics 700B NPO capacitors in parallel" is cer-
tified nonmagnetic.

E. Thermalization

To achieve a low device electron temperature, circuit
board substrates must handle the heat load from the coaxial
line. The CRYOAMP board must also handle the power dis-
sipated by the HEMT and R4. Sapphire, having good thermal
conductivity at low temperatures29 and excellent electrical
insulation, is used for the substrate in the RES, SINK, and
CRYOAMP boards. Polished blanks, 0.02 in. thick and

0.25 in. wide, were cut to lengths of 0.6 in. !RES and
CRYOAMP" or 0.8 in. !SINK" using a diamond saw. Both
planar surfaces were metallized with thermally evaporated
Cr/Au !30/300 nm". Circuit traces were then defined on one
surface using a Pulsar toner transfer mask and wet etching
with Au and Cr etchants !Transene types TFA and 1020".
Surface mount components were directly soldered.

The RES board is thermally anchored to the sample
holder with silver epoxy !Epoxy Technology 410E". The
CRYOAMP !SINK" board is thermalized to the 4.2 K plate
!3He pot" by a copper braid soldered to the back plane.

Semirigid stainless steel coaxial cable !Uniform Tube
UT-85 SS-SS" is used between the SINK and CRYOAMP
boards, and between the CRYOAMP board and room tem-
perature. Between the RES and SINK boards, smaller co-
axial cable !Uniform Tube UT-34 C" is used to conserve
space.

With this approach to thermalization, the base tempera-
ture of the 3He refrigerator is 290 mK with a hold time of
#45 h. As demonstrated in Sec. V, the electron base tem-
perature in the device is also 290 mK.

IV. DIGITIZATION AND FFT PROCESSING

The amplifier outputs V1 and V2 !see Fig. 1" are sampled
simultaneously using a commercial digitizer !National In-
struments PCI-5122" with 14-bit resolution at a rate fs
=10 MS/s. To avoid aliasing30 from the broadband amplifier

FIG. 3. Equivalent effective circuits characterizing the
amplification line in the !a" low-frequency regime !up
to #3 kHz", where it is used for differential conduc-
tance measurements, and in the !b" high-frequency re-
gime !few megahertz", where it is used for noise mea-
surement.

FIG. 4. Drain current Ih as a function of HEMT drain-source voltage Vh,ds,
with the HEMT board at temperatures of 300 K !dashed" and 4.2 K !solid".
These curves were obtained by sweeping the supply voltage Vdac and mea-
suring drain voltage Vh,d with an HP34401A digital multimeter %see Fig.
3!a"&. From Vh,d and Vdac, Ih and Vh,ds were then extracted. Dotted curves are
contours of constant power dissipation in the HEMT board. The HEMT is
biased in saturation !cross".
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C. Operating point

The HEMT must be biased in saturation to provide volt-
age !transconductance" gain in the low !high" frequency
range. R4, R5+R6 and supply voltage Vdac determine the
HEMT operating point !R1 grounds the HEMT gate at dc". A
notable difference in this design compared to similar pub-
lished ones regards the placement of R4. In previous imple-
mentations of similar circuits,26–28 R4 is a variable resistor
placed outside the refrigerator and connected to the source
lead of Q1 via a second coaxial line or low-frequency wire.
Here, R4 is located on the CRYOAMP board to simplify
assembly and save space, at the expense of having full con-
trol of the bias point in Q1 !R4 fixes the saturation value of
the HEMT current Ih". Using the I-V curves in Ref. 28 for a
cryogenically cooled ATF-34143, we choose R4=150 ! to
give a saturation current of a few mA. This value of satura-
tion current reflects a compromise between noise perfor-
mance and power dissipation. As shown in Fig. 4, Q1 is
biased by varying the supply voltage Vdac fed at the SPLIT-
TER board. At the bias point indicated by a cross, the total
power dissipation in the HEMT board is IhVh,ds+ Ih

2R4
=1.8 mW, and the input-referred voltage noise of the HEMT
is #0.4 nV/$Hz.

D. Passive components

Passive components were selected based on temperature
stability, size, and magnetic field compatibility. All resistors
!Vishay TNPW thin film" are 0805-size surface mount. Their
variation in resistance between room temperature and
300 mK is "0.5%. Inductor L1 !two 33 #H Coilcraft
1812CS ceramic chip inductors in series" does not have a
magnetic core and is suited for operation at high magnetic
fields. The dc resistance of L1 is 26!0.3" ! at 300!4.2" K.
With the exception of C1, all capacitors are 0805-size surface
mount !Murata COG GRM21". C1 !two 5 nF American
Technical Ceramics 700B NPO capacitors in parallel" is cer-
tified nonmagnetic.

E. Thermalization

To achieve a low device electron temperature, circuit
board substrates must handle the heat load from the coaxial
line. The CRYOAMP board must also handle the power dis-
sipated by the HEMT and R4. Sapphire, having good thermal
conductivity at low temperatures29 and excellent electrical
insulation, is used for the substrate in the RES, SINK, and
CRYOAMP boards. Polished blanks, 0.02 in. thick and

0.25 in. wide, were cut to lengths of 0.6 in. !RES and
CRYOAMP" or 0.8 in. !SINK" using a diamond saw. Both
planar surfaces were metallized with thermally evaporated
Cr/Au !30/300 nm". Circuit traces were then defined on one
surface using a Pulsar toner transfer mask and wet etching
with Au and Cr etchants !Transene types TFA and 1020".
Surface mount components were directly soldered.

The RES board is thermally anchored to the sample
holder with silver epoxy !Epoxy Technology 410E". The
CRYOAMP !SINK" board is thermalized to the 4.2 K plate
!3He pot" by a copper braid soldered to the back plane.

Semirigid stainless steel coaxial cable !Uniform Tube
UT-85 SS-SS" is used between the SINK and CRYOAMP
boards, and between the CRYOAMP board and room tem-
perature. Between the RES and SINK boards, smaller co-
axial cable !Uniform Tube UT-34 C" is used to conserve
space.

With this approach to thermalization, the base tempera-
ture of the 3He refrigerator is 290 mK with a hold time of
#45 h. As demonstrated in Sec. V, the electron base tem-
perature in the device is also 290 mK.

IV. DIGITIZATION AND FFT PROCESSING

The amplifier outputs V1 and V2 !see Fig. 1" are sampled
simultaneously using a commercial digitizer !National In-
struments PCI-5122" with 14-bit resolution at a rate fs
=10 MS/s. To avoid aliasing30 from the broadband amplifier

FIG. 3. Equivalent effective circuits characterizing the
amplification line in the !a" low-frequency regime !up
to #3 kHz", where it is used for differential conduc-
tance measurements, and in the !b" high-frequency re-
gime !few megahertz", where it is used for noise mea-
surement.

FIG. 4. Drain current Ih as a function of HEMT drain-source voltage Vh,ds,
with the HEMT board at temperatures of 300 K !dashed" and 4.2 K !solid".
These curves were obtained by sweeping the supply voltage Vdac and mea-
suring drain voltage Vh,d with an HP34401A digital multimeter %see Fig.
3!a"&. From Vh,d and Vdac, Ih and Vh,ds were then extracted. Dotted curves are
contours of constant power dissipation in the HEMT board. The HEMT is
biased in saturation !cross".
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grounds. The inset zooms in on XR near the resonant fre-
quency. The solid curve is a best fit to the form

XR!f" =
XR

0

1 + !f2 − fo
2"2/!f!f3dB"2 , !3"

corresponding to the lineshape of white noise bandpass fil-
tered by the RLC tank. The fit parameters are the peak height
XR

0 , the half power bandwidth !f3dB and the peak frequency
fo. Power spectral densities P1!2" can be fit to a similar form
including a fitted background term,

P1!2"!f" = P1!2"
B +

P1!2"
0

1 + !f2 − fo
2"2/!f!f3dB"2 . !4"

C. Noise measurement calibration

In order to extract SI
P from XR!f", the noise measurement

system must be calibrated in situ. An effective circuit with
noise sources is defined for this purpose and shown in Fig. 7.
Within this circuit model, SI

P is given by

SI
P = # XR

0

GX
2 − 4kBTeReff$#1 + gRs

Reff
$2

. !5"

Here, GX=%G1G2 is the cross-correlation gain and Reff
=2"fo

2L! /!f3dB is the total effective resistance parallel to the
tank.33

Calibration requires assigning values for Rs, Te, and GX.
While the value Rs=430 # is known from the conductance

measurement, GX and Te are calibrated from thermal noise
measurements. The procedure demonstrated in Fig. 8 stems
from the relation XR

0 =4kBTeReffGX
2 !Ref. 34" valid at Vsd=0.

First, XR!f" is measured over $int=30 s for various Vg2
settings at each of three elevated fridge temperatures
!Tfridge=3.1, 4.2, and 5.3 K". XR

0 and Reff are extracted from
fits to XR!f" using Eq. !3" and plotted parametrically &open
markers in Fig. 8!a"'. A linear fit !constrained to pass through
the origin" to each parametric plot gives the slope dXR

0 /dReff
at each temperature, equal to 4kBTeGX

2 . Assuming Te=Tfridge
at these temperatures, GX=790 V/V is extracted from a lin-
ear fit to dXR

0 /dReff!Tfridge", shown in Fig. 8!b".
Next, the base electron temperature is calibrated from a

parametric plot of XR
0 as a function of Reff obtained from

similar measurements at base temperature &solid circles in
Fig. 8!a"'. From the fitted slope dXR

0 /dReff &black marker in
Fig. 8!b"' and using the calibrated GX, a value Te=290 mK is
obtained. This suggests that electrons are well thermalized to
the fridge.

D. QPC partition noise

Following the calibration, SI
P!Vsd" is extracted as fol-

lows. XR!f" and g are simultaneously measured !$int=60 s" at
fixed Vg2 as a function of Vsd between −150 and +150 %V.
At each Vsd setting, XR

0 and Reff are obtained from fits of
XR!f" to Eq. !3", and used with the measured g to extract
SI

P!Vsd" from Eq. !5".
Demonstration measurements of SI

P!Vsd" are shown in
Fig. 9. Open markers superimposed on the linear conduc-
tance trace in Fig. 9!a" indicate Vg2 settings giving g!Vsd

FIG. 6. Power spectral densities P1 and P2, and real and imaginary parts XR
and XI of the cross spectral density, at base temperature and with the QPC
pinched off !g=0", obtained from noise data acquired for $int=20 s. Inset:
expanded view of XR near resonance, along with a fit using Eq. !3" over the
range 1.7 to 2.3 MHz.

FIG. 7. Circuit model used for extraction of the QPC partition noise SI
P.

G1!2" is the voltage gain of amplification line 1!2" between HEMT gate and
digitizer input.

FIG. 8. Calibration by noise thermometry of the electron temperature Te at
base fridge temperature and the cross-correlation gain GX. !a" XR

0 as function
of Reff &both from fits to XR!f" using Eq. !3"' at base !solid circles" and at
three elevated fridge temperatures !open markers". Solid lines are linear fits
constrained to the origin. !b" Slope dXR

0 /dReff &from fits in !a"' as a function
of Tfridge. Solid line is a linear fit !constrained to the origin" of dXR

0 /dReff at
the three elevated temperatures !open markers".
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corresponding to the lineshape of white noise bandpass fil-
tered by the RLC tank. The fit parameters are the peak height
XR

0 , the half power bandwidth !f3dB and the peak frequency
fo. Power spectral densities P1!2" can be fit to a similar form
including a fitted background term,
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B +
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C. Noise measurement calibration

In order to extract SI
P from XR!f", the noise measurement

system must be calibrated in situ. An effective circuit with
noise sources is defined for this purpose and shown in Fig. 7.
Within this circuit model, SI

P is given by

SI
P = # XR

0

GX
2 − 4kBTeReff$#1 + gRs

Reff
$2

. !5"

Here, GX=%G1G2 is the cross-correlation gain and Reff
=2"fo

2L! /!f3dB is the total effective resistance parallel to the
tank.33

Calibration requires assigning values for Rs, Te, and GX.
While the value Rs=430 # is known from the conductance

measurement, GX and Te are calibrated from thermal noise
measurements. The procedure demonstrated in Fig. 8 stems
from the relation XR

0 =4kBTeReffGX
2 !Ref. 34" valid at Vsd=0.

First, XR!f" is measured over $int=30 s for various Vg2
settings at each of three elevated fridge temperatures
!Tfridge=3.1, 4.2, and 5.3 K". XR

0 and Reff are extracted from
fits to XR!f" using Eq. !3" and plotted parametrically &open
markers in Fig. 8!a"'. A linear fit !constrained to pass through
the origin" to each parametric plot gives the slope dXR

0 /dReff
at each temperature, equal to 4kBTeGX

2 . Assuming Te=Tfridge
at these temperatures, GX=790 V/V is extracted from a lin-
ear fit to dXR

0 /dReff!Tfridge", shown in Fig. 8!b".
Next, the base electron temperature is calibrated from a

parametric plot of XR
0 as a function of Reff obtained from
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FIG. 7. Circuit model used for extraction of the QPC partition noise SI
P.
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digitizer input.

FIG. 8. Calibration by noise thermometry of the electron temperature Te at
base fridge temperature and the cross-correlation gain GX. !a" XR

0 as function
of Reff &both from fits to XR!f" using Eq. !3"' at base !solid circles" and at
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constrained to the origin. !b" Slope dXR
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of Tfridge. Solid line is a linear fit !constrained to the origin" of dXR

0 /dReff at
the three elevated temperatures !open markers".
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grounds. The inset zooms in on XR near the resonant fre-
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0 , the half power bandwidth !f3dB and the peak frequency
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In order to extract SI
P from XR!f", the noise measurement

system must be calibrated in situ. An effective circuit with
noise sources is defined for this purpose and shown in Fig. 7.
Within this circuit model, SI

P is given by
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Here, GX=%G1G2 is the cross-correlation gain and Reff
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While the value Rs=430 # is known from the conductance
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measurements. The procedure demonstrated in Fig. 8 stems
from the relation XR
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2L! /!f3dB is the total effective resistance parallel to the
tank.33
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While the value Rs=430 # is known from the conductance

measurement, GX and Te are calibrated from thermal noise
measurements. The procedure demonstrated in Fig. 8 stems
from the relation XR
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2 !Ref. 34" valid at Vsd=0.
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SI

P!Vsd" from Eq. !5".
Demonstration measurements of SI

P!Vsd" are shown in
Fig. 9. Open markers superimposed on the linear conduc-
tance trace in Fig. 9!a" indicate Vg2 settings giving g!Vsd

FIG. 6. Power spectral densities P1 and P2, and real and imaginary parts XR
and XI of the cross spectral density, at base temperature and with the QPC
pinched off !g=0", obtained from noise data acquired for $int=20 s. Inset:
expanded view of XR near resonance, along with a fit using Eq. !3" over the
range 1.7 to 2.3 MHz.

FIG. 7. Circuit model used for extraction of the QPC partition noise SI
P.

G1!2" is the voltage gain of amplification line 1!2" between HEMT gate and
digitizer input.

FIG. 8. Calibration by noise thermometry of the electron temperature Te at
base fridge temperature and the cross-correlation gain GX. !a" XR

0 as function
of Reff &both from fits to XR!f" using Eq. !3"' at base !solid circles" and at
three elevated fridge temperatures !open markers". Solid lines are linear fits
constrained to the origin. !b" Slope dXR

0 /dReff &from fits in !a"' as a function
of Tfridge. Solid line is a linear fit !constrained to the origin" of dXR

0 /dReff at
the three elevated temperatures !open markers".

073906-5 Current noise measurement system Rev. Sci. Instrum. 77, 073906 !2006"

Downloaded 15 Aug 2006 to 128.103.60.225. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp

19Tuesday, September 18, 2007



=0!"0, 0.5, 1, 1.5, and 2!2e2 /h. The corresponding noise
data are shown in Fig. 9#b!. At 0, 1, and 2!2e2 /h, where the
QPC is either pinched off or on a linear conductance plateau,
SI

P shows little dependence on bias, in contrast with the $Vsd$
dependence observed when g"0.5 and 1.5!2e2 /h. This be-
havior is consistent with earlier experiments3,4 and
theory35,36 of shot noise in a QPC.

Within mesoscopic scattering theory,1,2 where transport
is described by transmission coefficients "n,# #n is the sub-
band index and # denotes spin!, SI

P is given by

SI
P#Vsd! = 2

2e2

h
N %eVsd coth& eVsd

2kBTe
' − 2kBTe( , #6!

with a noise factor N= 1
2 )"n,##1−"n,#!. This equation is

strictly valid for constant transmission coefficients across the
bias window. At low temperatures and for the spin-
degenerate case, N is zero at multiples of 2e2 /h and reaches
a maximum value of 0.25 at odd multiples of 0.5!2e2 /h.
Fits to the SI

P#Vsd! data in Fig. 9#b! using the form of Eq. #6!
are shown as solid curves, with Te=290 mK and best-fit N
values of 0.00, 0.20, 0.00, 0.19, and 0.03 for g"0, 0.5, 1,
1.5, and 2!2e2 /h, respectively. The deviation of the best-fit
N from 0.25 near 0.5 and 1.5!2e2 /h is discussed in detail in
Ref. 37.

A measurement of SI
P as a function of I with the QPC

barely open *solid marker in Fig. 9#a!+ is shown in Fig. 9#c!.
In this regime, full shot noise SI

P=2e$I$ is observed. This is
consistent with scattering theory and with recent measure-
ments on mesoscopic tunnel barriers free of impurities, lo-
calized states and 1/ f noise.38

VI. SYSTEM PERFORMANCE

The resolution in the estimation of current noise spectral
density from one-channel and two-channel measurements is
determined experimentally in this final section. Noise data
are first sampled over a total time "tot=1 h, with the QPC at
base temperature and pinched off. Dividing the data in seg-
ments of time length "int, calculating the power and cross
spectral densities for each segment, and fitting with Eqs. #3!
and #4! gives a sequence of "tot /"int peak heights for each of

P1, P2, and XR. Shown in open #solid! circles in Fig. 10#a! is
XR

0 as a function of time t for "int=10#100! s. The standard
deviation #R of XR

0 is 1#0.3!!10−16 V2/Hz. The resolution
$SI in current noise spectral density is given by #R / #GX

2Reff
2 !

*see Eq. #5!+. For "int=10 s, $SI=2.8!10−29 A2/Hz, which
corresponds to full shot noise 2eI of I,100 pA.

The effect of integration time on the resolution is deter-
mined by repeating the analysis for different values of "int.
Figure 10#b! shows the standard deviation #1 ##R! of P1

0 #XR
0!

as a function of "int. The standard deviation #2 of P2
0, not

shown, overlaps closely with #1. All three standard devia-
tions scale as 1/-"int, consistent with the Dicke radiometer
formula39 which applies when measurement error results
only from finite integration time, i.e., it is purely statistical.
This suggests that, even for the longest segment length of
"int=10 min, the measurement error is dominated by statisti-
cal error and not by instrumentation drift on the scale of 1 h.

Figure 10#c! shows #R /-#1#2 as a function of "int. This
ratio gives the fraction by which, in the present measurement
configuration, the statistical error in current noise spectral
density estimation from XR

0 is lower than the error in the
estimation from either P1

0 or P2
0 alone. The geometric mean

in the denominator accounts for any small mismatch in the
gains G1 and G2. In theory, and in the absence of drift, this
ratio is independent of "int and equal to 1/-2 when the un-
correlated amplifier voltage noise *SV,1#2!+ dominates over the
noise common to both amplification lines. The ratio would
be unity when the correlated noise dominates over SV,1#2!.

FIG. 9. #a! Linear conductance g#Vsd=0! as a function of Vg2. Open and
solid markers indicate Vg2 settings for the noise measurements shown in #b!
and #c!, respectively. #b! QPC partition noise SI

P as a function of Vsd, for
conductances near 0, 0.5, 1, 1.5, and 2!2e2 /h. Solid lines are fits to Eq. #6!
using N as the only fitting parameter. #c! SI

P as a function of dc current I
with the QPC near pinchoff. The dotted line represents full shot noise SI

P

=2e$I$.

FIG. 10. #a! XR
0 as a function of time t for "int of 10 s #open circles! and

100 s #solid circles!. #b! Standard deviations #1 and #R as a function of "int.
The solid line is a fit to #R of the form C"int

−1/2, with best-fit value C=0.30
!10−15 s1/2 V2/Hz. #c! #R /-#1#2 as a function of "int. The dashed line is a
constant 1 /-2.
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QPC is either pinched off or on a linear conductance plateau,
SI

P shows little dependence on bias, in contrast with the $Vsd$
dependence observed when g"0.5 and 1.5!2e2 /h. This be-
havior is consistent with earlier experiments3,4 and
theory35,36 of shot noise in a QPC.

Within mesoscopic scattering theory,1,2 where transport
is described by transmission coefficients "n,# #n is the sub-
band index and # denotes spin!, SI

P is given by

SI
P#Vsd! = 2

2e2
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N %eVsd coth& eVsd

2kBTe
' − 2kBTe( , #6!

with a noise factor N= 1
2 )"n,##1−"n,#!. This equation is

strictly valid for constant transmission coefficients across the
bias window. At low temperatures and for the spin-
degenerate case, N is zero at multiples of 2e2 /h and reaches
a maximum value of 0.25 at odd multiples of 0.5!2e2 /h.
Fits to the SI

P#Vsd! data in Fig. 9#b! using the form of Eq. #6!
are shown as solid curves, with Te=290 mK and best-fit N
values of 0.00, 0.20, 0.00, 0.19, and 0.03 for g"0, 0.5, 1,
1.5, and 2!2e2 /h, respectively. The deviation of the best-fit
N from 0.25 near 0.5 and 1.5!2e2 /h is discussed in detail in
Ref. 37.

A measurement of SI
P as a function of I with the QPC

barely open *solid marker in Fig. 9#a!+ is shown in Fig. 9#c!.
In this regime, full shot noise SI

P=2e$I$ is observed. This is
consistent with scattering theory and with recent measure-
ments on mesoscopic tunnel barriers free of impurities, lo-
calized states and 1/ f noise.38

VI. SYSTEM PERFORMANCE

The resolution in the estimation of current noise spectral
density from one-channel and two-channel measurements is
determined experimentally in this final section. Noise data
are first sampled over a total time "tot=1 h, with the QPC at
base temperature and pinched off. Dividing the data in seg-
ments of time length "int, calculating the power and cross
spectral densities for each segment, and fitting with Eqs. #3!
and #4! gives a sequence of "tot /"int peak heights for each of

P1, P2, and XR. Shown in open #solid! circles in Fig. 10#a! is
XR

0 as a function of time t for "int=10#100! s. The standard
deviation #R of XR

0 is 1#0.3!!10−16 V2/Hz. The resolution
$SI in current noise spectral density is given by #R / #GX
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*see Eq. #5!+. For "int=10 s, $SI=2.8!10−29 A2/Hz, which
corresponds to full shot noise 2eI of I,100 pA.

The effect of integration time on the resolution is deter-
mined by repeating the analysis for different values of "int.
Figure 10#b! shows the standard deviation #1 ##R! of P1

0 #XR
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as a function of "int. The standard deviation #2 of P2
0, not

shown, overlaps closely with #1. All three standard devia-
tions scale as 1/-"int, consistent with the Dicke radiometer
formula39 which applies when measurement error results
only from finite integration time, i.e., it is purely statistical.
This suggests that, even for the longest segment length of
"int=10 min, the measurement error is dominated by statisti-
cal error and not by instrumentation drift on the scale of 1 h.

Figure 10#c! shows #R /-#1#2 as a function of "int. This
ratio gives the fraction by which, in the present measurement
configuration, the statistical error in current noise spectral
density estimation from XR

0 is lower than the error in the
estimation from either P1

0 or P2
0 alone. The geometric mean

in the denominator accounts for any small mismatch in the
gains G1 and G2. In theory, and in the absence of drift, this
ratio is independent of "int and equal to 1/-2 when the un-
correlated amplifier voltage noise *SV,1#2!+ dominates over the
noise common to both amplification lines. The ratio would
be unity when the correlated noise dominates over SV,1#2!.

FIG. 9. #a! Linear conductance g#Vsd=0! as a function of Vg2. Open and
solid markers indicate Vg2 settings for the noise measurements shown in #b!
and #c!, respectively. #b! QPC partition noise SI

P as a function of Vsd, for
conductances near 0, 0.5, 1, 1.5, and 2!2e2 /h. Solid lines are fits to Eq. #6!
using N as the only fitting parameter. #c! SI

P as a function of dc current I
with the QPC near pinchoff. The dotted line represents full shot noise SI

P
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FIG. 10. #a! XR
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100 s #solid circles!. #b! Standard deviations #1 and #R as a function of "int.
The solid line is a fit to #R of the form C"int

−1/2, with best-fit value C=0.30
!10−15 s1/2 V2/Hz. #c! #R /-#1#2 as a function of "int. The dashed line is a
constant 1 /-2.
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background, V1 and V2 are frequency limited to below the
Nyquist frequency of 5 MHz using five-pole Chebyshev
low-pass filters, built in-house from axial inductors and ca-
pacitors with values specified by the design recipe in Ref. 31.
The filters have a measured half power frequency of
3.8 MHz, 39 dB suppression at 8 MHz and a passband ripple
of 0.03 dB.

While the digitizer continuously stores acquired data
into its memory buffer !32 MB per channel", a software pro-
gram processes the data from the buffer in blocks of M
=10 368 points per channel. M is chosen to yield a resolution
bandwidth fs /M #1 kHz, and to be factorizable into powers
of two and three to maximize the efficiency of the FFT al-
gorithm.

Each block of data is processed as follows. First, V1 and
V2 are multiplied by a Hanning window WH$m%=&2/3$1
−cos!2!m /M"% to avoid end effects.30 Second, using the
FFTW package,32 their FFTs are calculated:

Ṽ1!2"$fn% = '
m=0

M−1

WH$m%V1!2"!tm"e−i2!fntm,

where tm=m / fs, fn= !n /M"fs, and n=0,1 , . . . ,M /2. Third,
the power spectral densities P1,2=2(Ṽ1,2(2 / !Mfs" and the
cross spectral density X=2!Ṽ1

*Ṽ2" / !Mfs"=XR+ iXI are com-
puted.

As blocks are processed, running averages of P1, P2, and
X are computed until the desired integration time "int is
reached. With the 3.4 GHz computer and the FFTW algo-
rithm, these computations are carried out in nearly real time:
it takes 10.8 s to acquire and process 10 s of data.

V. MEASUREMENT: QUANTUM POINT CONTACT
CURRENT NOISE

In this section, the system is demonstrated with measure-
ments of current noise in a quantum point contact !QPC".
Specifically, the partition noise SI

P is measured as a function
of QPC source-drain bias Vsd:

SI
P!Vsd" = SI!Vsd" − 4kBTeg!Vsd" . !1"

Here, SI is the total QPC current noise spectral density with-
out extraneous noise !1/ f , random telegraph, pickup", kB is
the Boltzmann constant, Te is the electron temperature,
g!Vsd"=dI /dVsd is the bias-dependent QPC differential con-
ductance, and I is the current through the QPC.

A. Device and setup

The QPC is defined by two electrostatic gates on the
surface of a GaAs/Al0.3Ga0.7As heterostructure grown by
molecular beam epitaxy. The two-dimensional electron gas
!2DEG" 190 nm below the surface has a density 1.7
#1011 cm−2 and mobility 5.6#106 cm2/V s. The QPC con-
ductance is controlled by negative voltages Vg1 and Vg2 ap-
plied to the electrostatic gates.

The QPC is connected to the system as shown in the
inset of Fig. 5. The two amplification lines are connected to
the same reservoir of the QPC. In this case, the two input
RLC tanks effectively become a single tank with resistance
R!)2.5 k$, inductance L!)33 %H and capacitance C!

)192 pF. The QPC current noise couples to both amplifica-
tion lines and thus can be extracted from either the single
channel power spectral densities or the cross spectral density.
The latter has the technical advantage of rejecting any noise
not common to both amplification lines. It is used to extract
SI

P in the remainder of this section.
A 25 %Vrms, 430 Hz excitation Vac is applied to the other

QPC reservoir and used for lock-in measurement of g. A dc
bias voltage Vdc is also applied to generate a finite Vsd. Vsd
deviates from Vdc due to the resistance in-line with the QPC,
which is equal to the sum of R1 /2 and Ohmic contact resis-
tance Rs. Vsd could in principle be measured by the tradi-
tional four-wire technique. This would require additional
low-frequency wiring, as well as filtering to prevent extrane-
ous pickup and room temperature amplifier noise from cou-
pling to the noise measurement circuit. For technical simplic-
ity, here Vsd is obtained by numerical integration of the
measured bias-dependent g:

Vsd = *
0

Vdc dV

1 + !R1/2 + Rs"g!V"
. !2"

B. Measurement

Figure 5 shows linear conductance g!Vsd=0" as a func-
tion of Vg2 at a fridge temperature Tfridge=290 mK !base tem-
perature". Here, g was extracted from lock-in measurements
using amplification line 1. As neither the low-frequency gain
of amplifier 1 nor Rs were known precisely beforehand, these
parameters were calibrated by aligning the observed conduc-
tance plateaus to the expected multiples of 2e2 /h. This
method yielded a low-frequency gain −4.6 V/V and Rs
=430 $.

Figure 6 shows P1, P2, XR, and XI as a function of fre-
quency f , at base temperature and with the QPC pinched off
!g=0". P1!2" shows a peak at the resonant frequency of the
RLC tank, on top of a background of approximately 85!78"
#10−15 V2/Hz. The background in P1!2" is due to the voltage
noise SV,1!2" of amplification line 1!2" !#0.4 nV/&Hz". The
peak results from thermal noise of the resonator resistance
and current noise !SI,1+SI,2" from the amplifiers. XR picks
out this peak and rejects the amplifier voltage noise back-

FIG. 5. Inset: setup for detection of QPC current noise and electron micro-
graph of a device identical in design to the one used. The QPC is defined by
negative voltages Vg1 and Vg2 applied on two facing gates. All other gates in
the device are grounded. Main: linear conductance g!Vsd=0" as a function of
Vg2 at 290 mK, measured using amplification line 1. Vg1=−3.2 V.
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in the context of a single-particle picture [12,15]. These
features are related to the 0.7 structure around Vsd ! 0 and
resemble the spin-resolved finite bias plateaus at "0:8#
2e2=h for Bk ! 7:5 T [12].

Turning now to noise measurements, we consider the
QPC noise in excess of thermal noise 4kBTeg$Vsd%. When
1=f and telegraph noise as well as bias-dependent heating
are negligible (as shown to be the case in these data) the
excess noise is dominated by noise arising from the parti-
tioning of electrons at the QPC, which we denote as
partition noise, SPI $Vsd% ! SI$Vsd% & 4kBTeg$Vsd%, where
SI is the total QPC current noise spectral density. Note
that SPI is noise in excess of 4kBTeg$Vsd% rather than
4kBTeg$0% as considered in Refs. [3,14].

We measure SPI near 2 MHz using the cross-correlation
technique shown schematically in Fig. 1 to suppress am-
plifier voltage noise [4,17]. Two parallel channels amplify
the voltage fluctuations across a resistor-inductor-capacitor
resonator that performs current-to-voltage conversion.
Each channel consists of a transconductance stage using

a high electron mobility transistor (HEMT) cooled to
4.2 K, followed by 50 ! amplification at room tempera-
ture. The amplified noise signals from both channels are
sampled simultaneously by a digitizer, and their cross-
spectral density calculated by fast-Fourier-transform.

The cross-spectral density is maximal at resonance, with
a value

 X0
R ! G2

X

!
SPI

" Reff

1' gRs

#
2
' 4kBTeReff

$
; (1)

where GX is the geometric mean of the voltage gain of
the amplification channels, Te is the electron temperature,
and Reff is the effective resistance (at 2 MHz) between
the HEMT gates and ground. Reff is measured from the
half-power bandwidth of the cross-spectral density [17]. SPI
is extracted from simultaneous measurements of X0

R, g,
and Reff following calibration of GX and Te using ther-
mal noise. At Vsd ! 0, where SPI vanishes, X0

R !
G2

X ( 4kBTeReff . At elevated temperatures (3 to 5 K), where
electrons are well thermalized to a calibrated thermometer,
a measurement of X0

R as a function of Reff (tuned through
Vg2) allows a calibration of GX ! 790 V=V. This gain is
then used to determine from similar measurements the base
electron temperature Te ! 290 mK.

Figure 3 shows SPI $Vsd% at Bk ! 0 and fixed Vg2 for
Vsd between &150!V and '150!V [blue regions in
Figs. 2(b) and 2(c)]. With an integration time of 60 s at
each bias point, the resolution in SPI is 1:4# 10&29 A2=Hz,
equivalent to full shot noise 2eI of I " 40 pA. Open
markers superimposed on the linear conductance trace in
Fig. 3(a) indicate Vg2 settings for which corresponding

FIG. 2 (color). (a) Linear conductance g0 as a function of Vg2
(Vg1 ! &3:2 V), for Bk ranging from 0 (red) to 7.5 T (purple) in
steps of 0.5 T. The series resistance Rs ranging from 430 ! at
Bk ! 0 to 730 ! at Bk ! 7:5 T has been subtracted to align the
plateaus at multiples of 2e2=h. (b), (c) Nonlinear differential
conductance g as a function of Vsd, at Bk ! 0 (b) and 7.5 T (c),
with Vg2 intervals of 7.5 and 5 mV, respectively. Shaded regions
indicate the bias range used for the noise measurements pre-
sented in Figs. 3(b) and 4.

FIG. 3 (color). (a) Linear conductance g0 as a function of Vg2
at Bk ! 0. Markers indicate Vg2 settings for the noise measure-
ments shown in (b) and (c). (b) Measured SPI as a function of Vsd,
for conductances near 0 (red), 0.5 (orange), 1 (green), 1.5 (blue),
and 2 #2e2=h (purple). Solid lines are best fits to Eq. (2) using
N as the only fitting parameter. In order of increasing con-
ductance, best-fit N values are 0.00, 0.20, 0.00, 0.19, and 0.03.
(c) SPI as a function of dc current I with the QPC near pinch off.
The dotted line indicates full shot noise SPI ! 2ejIj, comparable
to results in Ref. [22].

PRL 97, 036810 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JULY 2006

036810-2 20Tuesday, September 18, 2007



Shot-Noise Signatures of 0.7 Structure and Spin in a Quantum Point Contact

L. DiCarlo,1,* Y. Zhang,1,* D. T. McClure,1,* D. J. Reilly,1 C. M. Marcus,1 L. N. Pfeiffer,2 and K. W. West2
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

2Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
(Received 2 April 2006; published 21 July 2006)

We report simultaneous measurement of shot noise and dc transport in a quantum point contact as a
function of source-drain bias, gate voltage, and in-plane magnetic field. Shot noise at zero field exhibits an
asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the
symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomeno-
logical model with density-dependent level splitting yields good quantitative agreement.
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Shot noise, the temporal fluctuation of current resulting
from the quantization of charge, is sensitive to quantum
statistics, scattering, and many-body effects [1,2]. Pioneer-
ing measurements [3–5] of shot noise in quantum point
contacts (QPCs) observed the predicted [6] suppression of
shot noise below the Poisson value due to Fermi statistics.
In regimes where many-body effects are strong, shot-noise
measurements have been exploited to directly observe
quasiparticle charge in strongly correlated systems [7–9]
as well as to study coupled localized states in mesoscopic
tunnel junctions [10] and cotunneling in nanotube-based
quantum dots [11].

Paralleling these developments, a large literature has
emerged concerning the surprising appearance of an addi-
tional plateau in transport through a QPC at zero magnetic
field, termed 0.7 structure. Experiment [12–14] and theory
[15,16] suggest that 0.7 structure is a many-body spin
effect. Its underlying microscopic origin, however, remains
an outstanding problem in mesoscopic physics. This per-
sistently unresolved issue is remarkable given the simplic-
ity of the device.

In this Letter, we report simultaneous measurements of
the shot noise at 2 MHz and dc transport in a QPC,
exploring the noise signature of the 0.7 structure and its
evolution with in-plane magnetic field Bk. A suppression of
the noise relative to that predicted by theory for spin-
degenerate transport [6] is observed near 0:7" 2e2=h at
Bk # 0, in agreement with results from Roche et al. [14]
obtained at kHz frequencies. This suppression evolves
smoothly with increasing Bk into the signature of spin-
resolved transmission. We find quantitative agreement be-
tween noise data and a phenomenological model for a
density-dependent level splitting [16], with model parame-
ters extracted solely from conductance.

Measurements are performed on a gate-defined QPC
fabricated on the surface of a GaAs=Al0:3Ga0:7As hetero-
structure grown by molecular beam epitaxy (see micro-
graph in Fig. 1). The two-dimensional electron gas 190 nm
below the surface has a density of 1:7" 1011 cm!2 and
mobility 5:6" 106 cm2=V s. All data reported here were
taken at 290 mK, the base temperature of a 3He cryostat.

The differential conductance g # dI=dVsd (where I is
the current and Vsd is the source-drain bias) is measured by
lock-in technique with an applied 25 !Vrms excitation at
430 Hz [17]. The resistance Rs in series with the QPC is
subtracted at every applied Bk [see Fig. 2(a)] [18].

The QPC is first characterized at zero and finite Bk using
dc conductance measurements. Figure 2(a) shows linear-
response conductance g0 # g$Vsd % 0& as a function of
gate voltage Vg2, for Bk # 0 to 7.5 T in steps of 0.5 T.
The QPC shows the characteristic quantization of conduc-
tance in units of 2e2=h at Bk # 0, and the appearance of
spin-resolved plateaus at multiples of 0:5" 2e2=h at Bk #
7:5 T. Additionally, at Bk # 0, a shoulderlike 0.7 structure
is evident, which evolves smoothly into the 0:5" 2e2=h
spin-resolved plateau at high Bk.

Figures 2(b) and 2(c) show g as a function of Vsd for
evenly spaced Vg2 settings at Bk # 0 and 7.5 T, respec-
tively. In this representation, linear-response plateaus in
Fig. 2(a) appear as accumulated traces around Vsd # 0 at
multiples of 2e2=h for Bk # 0, and at multiples of 0:5"
2e2=h for Bk # 7:5 T. At finite Vsd, additional plateaus
occur when a sub-band edge lies between the source and
drain chemical potentials [19]. The features near 0:8"
2e2=h (Vsd ' (750 !V) at Bk # 0 cannot be explained
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Cross
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FIG. 1. Equivalent circuit near 2 MHz of the noise detection
system measuring QPC noise by cross correlation on two am-
plification channels [17]. The scanning electron micrograph
shows a device of identical design to the one measured. The
QPC is formed by negative voltages Vg1 and Vg2 applied on two
facing electrostatic gates. All other gates on the device are
grounded.
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Shot noise, the temporal fluctuation of current resulting
from the quantization of charge, is sensitive to quantum
statistics, scattering, and many-body effects [1,2]. Pioneer-
ing measurements [3–5] of shot noise in quantum point
contacts (QPCs) observed the predicted [6] suppression of
shot noise below the Poisson value due to Fermi statistics.
In regimes where many-body effects are strong, shot-noise
measurements have been exploited to directly observe
quasiparticle charge in strongly correlated systems [7–9]
as well as to study coupled localized states in mesoscopic
tunnel junctions [10] and cotunneling in nanotube-based
quantum dots [11].

Paralleling these developments, a large literature has
emerged concerning the surprising appearance of an addi-
tional plateau in transport through a QPC at zero magnetic
field, termed 0.7 structure. Experiment [12–14] and theory
[15,16] suggest that 0.7 structure is a many-body spin
effect. Its underlying microscopic origin, however, remains
an outstanding problem in mesoscopic physics. This per-
sistently unresolved issue is remarkable given the simplic-
ity of the device.

In this Letter, we report simultaneous measurements of
the shot noise at 2 MHz and dc transport in a QPC,
exploring the noise signature of the 0.7 structure and its
evolution with in-plane magnetic field Bk. A suppression of
the noise relative to that predicted by theory for spin-
degenerate transport [6] is observed near 0:7" 2e2=h at
Bk # 0, in agreement with results from Roche et al. [14]
obtained at kHz frequencies. This suppression evolves
smoothly with increasing Bk into the signature of spin-
resolved transmission. We find quantitative agreement be-
tween noise data and a phenomenological model for a
density-dependent level splitting [16], with model parame-
ters extracted solely from conductance.

Measurements are performed on a gate-defined QPC
fabricated on the surface of a GaAs=Al0:3Ga0:7As hetero-
structure grown by molecular beam epitaxy (see micro-
graph in Fig. 1). The two-dimensional electron gas 190 nm
below the surface has a density of 1:7" 1011 cm!2 and
mobility 5:6" 106 cm2=V s. All data reported here were
taken at 290 mK, the base temperature of a 3He cryostat.

The differential conductance g # dI=dVsd (where I is
the current and Vsd is the source-drain bias) is measured by
lock-in technique with an applied 25 !Vrms excitation at
430 Hz [17]. The resistance Rs in series with the QPC is
subtracted at every applied Bk [see Fig. 2(a)] [18].

The QPC is first characterized at zero and finite Bk using
dc conductance measurements. Figure 2(a) shows linear-
response conductance g0 # g$Vsd % 0& as a function of
gate voltage Vg2, for Bk # 0 to 7.5 T in steps of 0.5 T.
The QPC shows the characteristic quantization of conduc-
tance in units of 2e2=h at Bk # 0, and the appearance of
spin-resolved plateaus at multiples of 0:5" 2e2=h at Bk #
7:5 T. Additionally, at Bk # 0, a shoulderlike 0.7 structure
is evident, which evolves smoothly into the 0:5" 2e2=h
spin-resolved plateau at high Bk.

Figures 2(b) and 2(c) show g as a function of Vsd for
evenly spaced Vg2 settings at Bk # 0 and 7.5 T, respec-
tively. In this representation, linear-response plateaus in
Fig. 2(a) appear as accumulated traces around Vsd # 0 at
multiples of 2e2=h for Bk # 0, and at multiples of 0:5"
2e2=h for Bk # 7:5 T. At finite Vsd, additional plateaus
occur when a sub-band edge lies between the source and
drain chemical potentials [19]. The features near 0:8"
2e2=h (Vsd ' (750 !V) at Bk # 0 cannot be explained
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FIG. 1. Equivalent circuit near 2 MHz of the noise detection
system measuring QPC noise by cross correlation on two am-
plification channels [17]. The scanning electron micrograph
shows a device of identical design to the one measured. The
QPC is formed by negative voltages Vg1 and Vg2 applied on two
facing electrostatic gates. All other gates on the device are
grounded.
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in the context of a single-particle picture [12,15]. These
features are related to the 0.7 structure around Vsd ! 0 and
resemble the spin-resolved finite bias plateaus at "0:8#
2e2=h for Bk ! 7:5 T [12].

Turning now to noise measurements, we consider the
QPC noise in excess of thermal noise 4kBTeg$Vsd%. When
1=f and telegraph noise as well as bias-dependent heating
are negligible (as shown to be the case in these data) the
excess noise is dominated by noise arising from the parti-
tioning of electrons at the QPC, which we denote as
partition noise, SPI $Vsd% ! SI$Vsd% & 4kBTeg$Vsd%, where
SI is the total QPC current noise spectral density. Note
that SPI is noise in excess of 4kBTeg$Vsd% rather than
4kBTeg$0% as considered in Refs. [3,14].

We measure SPI near 2 MHz using the cross-correlation
technique shown schematically in Fig. 1 to suppress am-
plifier voltage noise [4,17]. Two parallel channels amplify
the voltage fluctuations across a resistor-inductor-capacitor
resonator that performs current-to-voltage conversion.
Each channel consists of a transconductance stage using

a high electron mobility transistor (HEMT) cooled to
4.2 K, followed by 50 ! amplification at room tempera-
ture. The amplified noise signals from both channels are
sampled simultaneously by a digitizer, and their cross-
spectral density calculated by fast-Fourier-transform.

The cross-spectral density is maximal at resonance, with
a value

 X0
R ! G2

X

!
SPI

" Reff

1' gRs

#
2
' 4kBTeReff

$
; (1)

where GX is the geometric mean of the voltage gain of
the amplification channels, Te is the electron temperature,
and Reff is the effective resistance (at 2 MHz) between
the HEMT gates and ground. Reff is measured from the
half-power bandwidth of the cross-spectral density [17]. SPI
is extracted from simultaneous measurements of X0

R, g,
and Reff following calibration of GX and Te using ther-
mal noise. At Vsd ! 0, where SPI vanishes, X0

R !
G2

X ( 4kBTeReff . At elevated temperatures (3 to 5 K), where
electrons are well thermalized to a calibrated thermometer,
a measurement of X0

R as a function of Reff (tuned through
Vg2) allows a calibration of GX ! 790 V=V. This gain is
then used to determine from similar measurements the base
electron temperature Te ! 290 mK.

Figure 3 shows SPI $Vsd% at Bk ! 0 and fixed Vg2 for
Vsd between &150!V and '150!V [blue regions in
Figs. 2(b) and 2(c)]. With an integration time of 60 s at
each bias point, the resolution in SPI is 1:4# 10&29 A2=Hz,
equivalent to full shot noise 2eI of I " 40 pA. Open
markers superimposed on the linear conductance trace in
Fig. 3(a) indicate Vg2 settings for which corresponding

FIG. 2 (color). (a) Linear conductance g0 as a function of Vg2
(Vg1 ! &3:2 V), for Bk ranging from 0 (red) to 7.5 T (purple) in
steps of 0.5 T. The series resistance Rs ranging from 430 ! at
Bk ! 0 to 730 ! at Bk ! 7:5 T has been subtracted to align the
plateaus at multiples of 2e2=h. (b), (c) Nonlinear differential
conductance g as a function of Vsd, at Bk ! 0 (b) and 7.5 T (c),
with Vg2 intervals of 7.5 and 5 mV, respectively. Shaded regions
indicate the bias range used for the noise measurements pre-
sented in Figs. 3(b) and 4.

FIG. 3 (color). (a) Linear conductance g0 as a function of Vg2
at Bk ! 0. Markers indicate Vg2 settings for the noise measure-
ments shown in (b) and (c). (b) Measured SPI as a function of Vsd,
for conductances near 0 (red), 0.5 (orange), 1 (green), 1.5 (blue),
and 2 #2e2=h (purple). Solid lines are best fits to Eq. (2) using
N as the only fitting parameter. In order of increasing con-
ductance, best-fit N values are 0.00, 0.20, 0.00, 0.19, and 0.03.
(c) SPI as a function of dc current I with the QPC near pinch off.
The dotted line indicates full shot noise SPI ! 2ejIj, comparable
to results in Ref. [22].
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noise data are shown in Fig. 3(b). SPI vanishes with the
QPC pinched off [g!Vsd" # 0], or on linear conductance
plateaus, which shows that bias-dependent electron heating
is not significant [4]. In contrast, for g $ 0:5 and 1:5%
2e2=h, SPI grows with jVsdj and shows a transition from
quadratic to linear dependence [3–5], demonstrating the
absence of noise from resistance fluctuations.

Solid curves superimposed on the SPI !Vsd" data in
Fig. 3(b) are fits to the form

 SPI !Vsd" # 2
2e2

h
N

!
eVsd coth

"
eVsd

2kBTe

#
& 2kBTe

$
; (2)

with the noise factor N as the only free fitting parameter.
Note that N relates SPI to Vsd, in contrast to the Fano
factor, which relates SPI to I [1,2]. The form of this fitting
function is motivated by mesoscopic scattering theory
[1,2,6], where transport is described by transmission co-
efficients !n;" (n is the transverse mode index and "
denotes spin) and partition noise originates from the partial
transmission of incident electrons. Within scattering the-
ory, the full expression for SPI is

 SPI !Vsd" #
2e2

h

Z X
n;"

!n;"!""'1& !n;"!""(!fs & fd"2d";

(3)

where fs!d" is the Fermi function in the source (drain) lead.
Equation (2) follows from Eq. (3) only for the case of
constant transmission across the energy window of trans-
port, with N # 1

2

P
!n;"!1& !n;"". For spin-degenerate

transmission, N vanishes at multiples of 2e2=h and
reaches the maximal value 0.25 at odd multiples of 0:5%
2e2=h.

We emphasize that while Eq. (2) is motivated by scat-
tering theory, the value of N extracted from fitting with
Eq. (2) simply provides a way to quantify the SPI !Vsd" for
each Vg2. We have chosen the bias range ejVsdj & 5kBTe

for fitting N to minimize the effects of nonlinear transport
while extending beyond the quadratic-to-linear crossover
in noise that occurs on the scale ejVsdj) 2kBTe.

The dependence of noise factor on QPC conductance at
Bk # 0 is shown in Fig. 4(a), where N is extracted from
measured SPI !Vsd" at 90 values of Vg2. The horizontal axis,
gavg, is the average of the differential conductance over the
bias points where noise was measured. N has the shape
of a dome, reaching a maximum near odd multiples of
0:5% 2e2=h and vanishing at multiples of 2e2=h. The
observed N !gavg" deviates from the spin-degenerate,
energy-independent scattering theory in two ways. First,
there is a reduction in the maximum amplitude of N
below 0.25. Second, there is an asymmetry in N with
respect to 0:5% 2e2=h, resulting from a noise reduction
near the 0.7 feature. A similar but weaker asymmetry is
observed about 1:5% 2e2=h.

The dependence of N !gavg" on Bk is shown in Fig. 4(d).
N is seen to evolve smoothly from a single asymmetric

dome at Bk # 0 to a symmetric double dome at 7.5 T, the
latter a signature of spin-resolved electron transmission.
Notably, near 0:7% 2e2=h, N appears insensitive to Bk, in
contrast to the dependence of N near 0:3% 2e2=h.

We find that all features in noise data are well accounted
for within a simple phenomenological model in which the
twofold degeneracy of QPC mode n is lifted by a split-
ting !"n;" # "#n$n, that grows linearly with 1D den-

300

FIG. 4 (color). (a) Experimental N as a function of gavg at
Bk # 0 (red circles) along with model curves for nonzero (solid
line) and zero (dashed line) proportionality of splitting, $n (see
text). (b) Transconductance dg=dVg2 as a function of bias
voltage Vsd and gate voltage Vg2. Blue lines trace the alignment
of sub-band edges with source and drain chemical potentials;
their slope and intersection give the conversion from Vg2 to
energy and the energy spacing between modes, respectively
[23,24]. (c) Measured linear conductance (red) as a function of
Vg2 at Bk # 0, and linear conductance calculated with the model
(black solid) with best-fit values for !x and $n. Single-particle
conductance model takes $n # 0 (black dashed line). (d) Experi-
mental N as a function of gavg in the range 0–1% 2e2=h, at
Bk # 0 T (red), 2 T (orange), 3 T (green), 4 T (cyan), 6 T (blue),
and 7.5 T (purple). (e) Model curves for N !gavg" (see text).
Dashed curves in (d) and (e) show the single-particle model
($n # 0) at zero field for comparison.
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noise data are shown in Fig. 3(b). SPI vanishes with the
QPC pinched off [g!Vsd" # 0], or on linear conductance
plateaus, which shows that bias-dependent electron heating
is not significant [4]. In contrast, for g $ 0:5 and 1:5%
2e2=h, SPI grows with jVsdj and shows a transition from
quadratic to linear dependence [3–5], demonstrating the
absence of noise from resistance fluctuations.

Solid curves superimposed on the SPI !Vsd" data in
Fig. 3(b) are fits to the form

 SPI !Vsd" # 2
2e2

h
N

!
eVsd coth

"
eVsd

2kBTe

#
& 2kBTe

$
; (2)

with the noise factor N as the only free fitting parameter.
Note that N relates SPI to Vsd, in contrast to the Fano
factor, which relates SPI to I [1,2]. The form of this fitting
function is motivated by mesoscopic scattering theory
[1,2,6], where transport is described by transmission co-
efficients !n;" (n is the transverse mode index and "
denotes spin) and partition noise originates from the partial
transmission of incident electrons. Within scattering the-
ory, the full expression for SPI is

 SPI !Vsd" #
2e2

h

Z X
n;"

!n;"!""'1& !n;"!""(!fs & fd"2d";

(3)

where fs!d" is the Fermi function in the source (drain) lead.
Equation (2) follows from Eq. (3) only for the case of
constant transmission across the energy window of trans-
port, with N # 1

2

P
!n;"!1& !n;"". For spin-degenerate

transmission, N vanishes at multiples of 2e2=h and
reaches the maximal value 0.25 at odd multiples of 0:5%
2e2=h.

We emphasize that while Eq. (2) is motivated by scat-
tering theory, the value of N extracted from fitting with
Eq. (2) simply provides a way to quantify the SPI !Vsd" for
each Vg2. We have chosen the bias range ejVsdj & 5kBTe

for fitting N to minimize the effects of nonlinear transport
while extending beyond the quadratic-to-linear crossover
in noise that occurs on the scale ejVsdj) 2kBTe.

The dependence of noise factor on QPC conductance at
Bk # 0 is shown in Fig. 4(a), where N is extracted from
measured SPI !Vsd" at 90 values of Vg2. The horizontal axis,
gavg, is the average of the differential conductance over the
bias points where noise was measured. N has the shape
of a dome, reaching a maximum near odd multiples of
0:5% 2e2=h and vanishing at multiples of 2e2=h. The
observed N !gavg" deviates from the spin-degenerate,
energy-independent scattering theory in two ways. First,
there is a reduction in the maximum amplitude of N
below 0.25. Second, there is an asymmetry in N with
respect to 0:5% 2e2=h, resulting from a noise reduction
near the 0.7 feature. A similar but weaker asymmetry is
observed about 1:5% 2e2=h.

The dependence of N !gavg" on Bk is shown in Fig. 4(d).
N is seen to evolve smoothly from a single asymmetric

dome at Bk # 0 to a symmetric double dome at 7.5 T, the
latter a signature of spin-resolved electron transmission.
Notably, near 0:7% 2e2=h, N appears insensitive to Bk, in
contrast to the dependence of N near 0:3% 2e2=h.

We find that all features in noise data are well accounted
for within a simple phenomenological model in which the
twofold degeneracy of QPC mode n is lifted by a split-
ting !"n;" # "#n$n, that grows linearly with 1D den-

300

FIG. 4 (color). (a) Experimental N as a function of gavg at
Bk # 0 (red circles) along with model curves for nonzero (solid
line) and zero (dashed line) proportionality of splitting, $n (see
text). (b) Transconductance dg=dVg2 as a function of bias
voltage Vsd and gate voltage Vg2. Blue lines trace the alignment
of sub-band edges with source and drain chemical potentials;
their slope and intersection give the conversion from Vg2 to
energy and the energy spacing between modes, respectively
[23,24]. (c) Measured linear conductance (red) as a function of
Vg2 at Bk # 0, and linear conductance calculated with the model
(black solid) with best-fit values for !x and $n. Single-particle
conductance model takes $n # 0 (black dashed line). (d) Experi-
mental N as a function of gavg in the range 0–1% 2e2=h, at
Bk # 0 T (red), 2 T (orange), 3 T (green), 4 T (cyan), 6 T (blue),
and 7.5 T (purple). (e) Model curves for N !gavg" (see text).
Dashed curves in (d) and (e) show the single-particle model
($n # 0) at zero field for comparison.
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quadratic to linear dependence [3–5], demonstrating the
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gavg, is the average of the differential conductance over the
bias points where noise was measured. N has the shape
of a dome, reaching a maximum near odd multiples of
0:5% 2e2=h and vanishing at multiples of 2e2=h. The
observed N !gavg" deviates from the spin-degenerate,
energy-independent scattering theory in two ways. First,
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latter a signature of spin-resolved electron transmission.
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contrast to the dependence of N near 0:3% 2e2=h.
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(black solid) with best-fit values for !x and $n. Single-particle
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in the context of a single-particle picture [12,15]. These
features are related to the 0.7 structure around Vsd ! 0 and
resemble the spin-resolved finite bias plateaus at "0:8#
2e2=h for Bk ! 7:5 T [12].

Turning now to noise measurements, we consider the
QPC noise in excess of thermal noise 4kBTeg$Vsd%. When
1=f and telegraph noise as well as bias-dependent heating
are negligible (as shown to be the case in these data) the
excess noise is dominated by noise arising from the parti-
tioning of electrons at the QPC, which we denote as
partition noise, SPI $Vsd% ! SI$Vsd% & 4kBTeg$Vsd%, where
SI is the total QPC current noise spectral density. Note
that SPI is noise in excess of 4kBTeg$Vsd% rather than
4kBTeg$0% as considered in Refs. [3,14].

We measure SPI near 2 MHz using the cross-correlation
technique shown schematically in Fig. 1 to suppress am-
plifier voltage noise [4,17]. Two parallel channels amplify
the voltage fluctuations across a resistor-inductor-capacitor
resonator that performs current-to-voltage conversion.
Each channel consists of a transconductance stage using

a high electron mobility transistor (HEMT) cooled to
4.2 K, followed by 50 ! amplification at room tempera-
ture. The amplified noise signals from both channels are
sampled simultaneously by a digitizer, and their cross-
spectral density calculated by fast-Fourier-transform.

The cross-spectral density is maximal at resonance, with
a value

 X0
R ! G2

X

!
SPI

" Reff

1' gRs

#
2
' 4kBTeReff

$
; (1)

where GX is the geometric mean of the voltage gain of
the amplification channels, Te is the electron temperature,
and Reff is the effective resistance (at 2 MHz) between
the HEMT gates and ground. Reff is measured from the
half-power bandwidth of the cross-spectral density [17]. SPI
is extracted from simultaneous measurements of X0

R, g,
and Reff following calibration of GX and Te using ther-
mal noise. At Vsd ! 0, where SPI vanishes, X0

R !
G2

X ( 4kBTeReff . At elevated temperatures (3 to 5 K), where
electrons are well thermalized to a calibrated thermometer,
a measurement of X0

R as a function of Reff (tuned through
Vg2) allows a calibration of GX ! 790 V=V. This gain is
then used to determine from similar measurements the base
electron temperature Te ! 290 mK.

Figure 3 shows SPI $Vsd% at Bk ! 0 and fixed Vg2 for
Vsd between &150!V and '150!V [blue regions in
Figs. 2(b) and 2(c)]. With an integration time of 60 s at
each bias point, the resolution in SPI is 1:4# 10&29 A2=Hz,
equivalent to full shot noise 2eI of I " 40 pA. Open
markers superimposed on the linear conductance trace in
Fig. 3(a) indicate Vg2 settings for which corresponding

FIG. 2 (color). (a) Linear conductance g0 as a function of Vg2
(Vg1 ! &3:2 V), for Bk ranging from 0 (red) to 7.5 T (purple) in
steps of 0.5 T. The series resistance Rs ranging from 430 ! at
Bk ! 0 to 730 ! at Bk ! 7:5 T has been subtracted to align the
plateaus at multiples of 2e2=h. (b), (c) Nonlinear differential
conductance g as a function of Vsd, at Bk ! 0 (b) and 7.5 T (c),
with Vg2 intervals of 7.5 and 5 mV, respectively. Shaded regions
indicate the bias range used for the noise measurements pre-
sented in Figs. 3(b) and 4.

FIG. 3 (color). (a) Linear conductance g0 as a function of Vg2
at Bk ! 0. Markers indicate Vg2 settings for the noise measure-
ments shown in (b) and (c). (b) Measured SPI as a function of Vsd,
for conductances near 0 (red), 0.5 (orange), 1 (green), 1.5 (blue),
and 2 #2e2=h (purple). Solid lines are best fits to Eq. (2) using
N as the only fitting parameter. In order of increasing con-
ductance, best-fit N values are 0.00, 0.20, 0.00, 0.19, and 0.03.
(c) SPI as a function of dc current I with the QPC near pinch off.
The dotted line indicates full shot noise SPI ! 2ejIj, comparable
to results in Ref. [22].
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4

voltage. The ratio of g2
2/g2

1 was assumed small (= 0.01)
in the spirit of the model, and the curves for 3 values
of magnetic field, in the ratio 0 : 3 : 8 as those used in
the experiment, are depicted with good agreement with
experiment. The data of Ref.[15] allow an even more
quantitative comparison with experiment, as we used the
actual values of magnetic field, voltage and temperature
reported to the experiment. To get the best fit with ex-
periment we used a g-factor of 0.35, indicating either the
inaccuracy of the theory or the estimate of temperature
in the experiment. Interestingly, the zero-field dip in the
noise is quite small, even though the bare contribution
of the second channel to the conductamce is negligible.
This is due to the contributions of higher order processes,
discussed below Eq.8).

0T
3T
8T

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0T
2T
3T
4T
6T
7.5T

0 0.2 0.4 0.6 0.8 1

conductance [2e
2
/h]

0

0.1

0.2

Fano factor, theory Fano factor, data

Noise, dataNoise, theory

(b)(a)

(c) (d)

FIG. 1: (a) The Fano factor, calculated from the the-
ory, versus zero-bias conductance at different magnetic fields,
gµBB/kBT = 0, 4.5, 12, compared to the experimental results
of Ref.[14] (b), for B=0, 3 and 8 Tesla. The parameters used

in the theory were eV = kBT, V (1)2/2π = 1, V (2)2/2π = 0.01.
In (c) the noise is calculated for the same parameters as those
corresponding to the data of Ref.[15], depicted at (d), with the
magnetic field values denoted in the legend, kbT = 280mK

and V = 240µV . The values of V (i)2 are the same as in (a).
In order to get the best comparison to the experiment a value
of g-factor of 0.35 was used.

While the experiments were carried out outside the
Kondo regime, due to the relative high voltage applied,
the theory predicts that, for temperatures and voltages
smaller than the Kondo temperature, the dip in the noise
will disappear at zero field, due to the unitary limit of
the Kondo effect.

It is interesting to note that a perhaps related dip ap-
pears in the measurement of dephasing in a quantum
dot [23], as measured by a nearby quantum point con-

tact, when the point contact is in the ”0.7” regime. The
present theory suggests a simple explanation of this ef-
fect: as the dephasing in the quantum dot is by the cur-
rent noise in the point contact [24], a dip in the noise
will be associated with a dip in the dephasing rate in the
quantum dot. A detailed calculation of this effect will be
presented elsewhere [25].

This research has been funded by the Israel Science
Foundation, and by the US-Israel Binational Science
Foundation. We thank the authors of Ref. [15] for pro-
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Suppression of Shot Noise in Quantum Point Contacts in the ‘‘0.7 Regime’’
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Experimental investigations of current shot noise in quantum point contacts show a reduction of the
noise near the 0.7 anomaly. It is demonstrated that such a reduction naturally arises in a model proposed
recently to explain the characteristics of the 0.7 anomaly in quantum point contacts in terms of a
quasibound state, due to the emergence of two conducting channels. We calculate the shot noise as a
function of temperature, applied voltage, and magnetic field, and demonstrate an excellent agreement with
experiments. It is predicted that, with decreasing temperature, voltage, and magnetic field, the dip in the
shot noise is suppressed due to the Kondo effect.

DOI: 10.1103/PhysRevLett.97.186801 PACS numbers: 73.61.!r, 71.70.Ej, 73.50.Td, 75.75.+a

The conductance of quantum point contacts (QPCs) is
quantized in units of 2e2=h [1,2]. In addition to these
integer conductance steps, an extra conductance plateau
around 0:7"2e2=h# has been experimentally observed [3–
7]. Recently, a generalized single-impurity Anderson
model has been invoked to describe transport through
QPCs [8]. According to this model, motivated by
density-functional calculations that reveal the formation
of a quasibound state at the QPC [9], the tunneling of a
second electron through that state is suppressed by
Coulomb interactions, and is enhanced at low temperatures
by the Kondo effect [10]. Thus, at temperatures larger than
the Kondo temperature TK, the conductance will be domi-
nated by transport through the singly occupied level (G $
e2=h), growing at lower temperature towards the unitarity
limit, G % 2e2=h. Kondo physics has indeed been ob-
served at low temperature and voltage bias [7]. The fact
that there are effectively two conductance channels affects
not only the conductance but also the current shot noise.
Around conductance of G& e2=h, the model predicts one
highly transmitting channel (T1 ’ 1) and one poorly trans-
mitting channel (T2 ’ 0). Thus, as the noise is expected to
be proportional to the sum of Ti"1! Ti# over all channels,
it should exhibit a dip near that value of the conductance
[11], in contrast with the traditional view which associates
a conductance of G& e2=h with T1 ’ T2 ’ 1=2 and maxi-
mal noise. A reduction in the noise through a QPC near
G& e2=h has indeed been observed experimentally [12–
14]. The dip was observed to be quite sensitive to magnetic
fields. In this Letter, we present a detailed calculation of
the noise based on the above model and demonstrate that it
reproduces the experimental data. The magnetic field de-
pendence arises from two factors: the dependence of the
splitting of the two channels on the field, and the quenching
of the Kondo effect. Specific predictions on the disappear-
ance of the dip in the current noise at low temperature,

voltage bias, and magnetic field, due to the unitarity limit
of the Anderson model, are made.

The main theoretical difficulty with calculating the noise
is that the limit of perfect conductance through a given
channel is not accessible via traditional perturbation theory
for this interacting problem. Thus, an earlier calculation of
the noise through a Kondo impurity [15] had to rely on
more elaborate methods in order to be extended to lower
temperatures. Because of the additional complexity of the
generalized Anderson model, employed to describe QPCs
(see below), these methods are not directly applicable. In
this work we employ a new type of perturbation theory,
starting from the high magnetic field B limit. In this limit
spin-flip processes are suppressed, and the current and
noise can be exactly (and trivially) calculated, to all orders
in the tunneling, giving rise to two separate channels.
Perturbation in 1=B allows us to follow the contributions
and mixing of the two channels. By comparing to the
traditional perturbation theory, around zero B, we are
able to interpolate the noise between the two regimes
[see Eq. (8) below]. This formula, which reduces in the
known limits to the obtained perturbative results, allows us
to compare to experiment in the whole magnetic field
regime, yielding excellent agreement with experiment
(Fig. 2) and allowing specific predictions.

Model Hamiltonian.—The extended Anderson
Hamiltonian, invoked in [8] to model the QPC, differs
from the usual single-impurity Anderson model in two
aspects: (i) the tunneling amplitude of the first electron
into the quasibound state V"1# is larger than that of the
second electron V"2# (see also [16]), and (ii) both couplings
increase exponentially as the energy of the incoming elec-
tron rises above the QPC barrier, Eqpc, defined to be the
zero of energy. This Anderson model can be transformed
into a Kondo Hamiltonian by performing a Schrieffer-
Wolff transformation [17]:
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Tunable Noise Cross Correlations in a Double Quantum Dot
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We report measurements of the cross correlation between temporal current fluctuations in two
capacitively coupled quantum dots in the Coulomb blockade regime. The sign of the cross-spectral
density is found to be tunable by gate voltage and source-drain bias. We find good agreement with the data
by including an interdot Coulomb interaction in a sequential-tunneling model.
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Current noise cross correlation in mesoscopic elec-
tronics, the fermionic counterpart of intensity-intensity
correlation in quantum optics, is sensitive to quantum
indistinguishability as well as many-body interactions
[1–5]. A distinctive feature of fermionic systems is that
in the absence of interactions, noise cross correlation is
expected to always be negative [6]. Experimentally, nega-
tive correlations have been observed in several solid-state
Hanbury Brown–Twiss–type noise measurements [7–9].
Since no sign constraint exists for interacting systems, a
positive noise cross correlation in a Fermi system is a
characteristic signature of interactions.

Sign reversal of noise cross correlation has been the
focus of recent theory and experiment [10–18]. Theory
indicates that positive cross correlations can arise in the
presence of BCS-like interaction [10], dynamical screen-
ing [11,12], dynamical channel blockade [13], and strong
inelastic scattering [12,14–16]. Experimentally, sign re-
versal of noise cross correlation has been realized using a
voltage probe to induce inelastic scattering [17], and in a
beam-splitter geometry, where the sign reversal was linked
to a crossover from sub- to super-Poissonian noise in a
tunnel-barrier source [18]. This crossover was attributed to
Coulomb interaction between naturally occurring localized
states in the tunnel barrier [19], as has been done in experi-
ments on GaAs MESFETs [20] and stacked, self-
assembled quantum dots [21].

In this Letter, we investigate gate-controlled sign rever-
sal of noise cross correlation in a simple four-terminal
device. The structure consists of a parallel, capacitively
coupled double quantum dot operated in the Coulomb
blockade regime. In this configuration, the double dot
acts as a pair of tunable interacting localized states, en-
abling a systematic study of Coulomb-induced correlation.
Turning off interdot tunneling by electrically depleting the
connection between dots ensures that indistinguishability
(i.e., Fermi statistics) alone cannot induce any cross corre-
lation; any cross correlation, positive or negative, requires
interdot Coulomb interaction. We find good agreement

between the experimental results and a sequential-
tunneling model of capacitively coupled single-level dots.

The four-terminal double-dot device [see Fig. 1(a)] is
defined by top gates on a GaAs=Al0:3Ga0:7As heterostruc-
ture grown by molecular beam epitaxy. The two-
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FIG. 1 (color). (a) Scanning electron micrograph of the
double-dot device, and equivalent circuit at 2 MHz of the noise
detection system measuring the power spectral densities and
cross-spectral density of fluctuations in currents It and Ib.
(b) Differential conductances gt (yellow) and gb (magenta) as
a function of Vtc and Vbc over a few Coulomb blockade peaks in
each dot, at Vt ! Vb ! 0. Black regions correspond to well-
defined charge states in the double-dot system. Superimposed
white lines indicate the honeycomb structure resulting from the
finite interdot capacitive coupling. (c) Zero-bias (thermal) noise
Sb (black dots, right axis), conductance gb (magenta curve, left
axis), and calculated 4kBTegb (magenta curve, right axis) as a
function of gate voltage Vbc, with Vtc ! "852:2 mV.
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Current noise cross correlation in mesoscopic elec-
tronics, the fermionic counterpart of intensity-intensity
correlation in quantum optics, is sensitive to quantum
indistinguishability as well as many-body interactions
[1–5]. A distinctive feature of fermionic systems is that
in the absence of interactions, noise cross correlation is
expected to always be negative [6]. Experimentally, nega-
tive correlations have been observed in several solid-state
Hanbury Brown–Twiss–type noise measurements [7–9].
Since no sign constraint exists for interacting systems, a
positive noise cross correlation in a Fermi system is a
characteristic signature of interactions.

Sign reversal of noise cross correlation has been the
focus of recent theory and experiment [10–18]. Theory
indicates that positive cross correlations can arise in the
presence of BCS-like interaction [10], dynamical screen-
ing [11,12], dynamical channel blockade [13], and strong
inelastic scattering [12,14–16]. Experimentally, sign re-
versal of noise cross correlation has been realized using a
voltage probe to induce inelastic scattering [17], and in a
beam-splitter geometry, where the sign reversal was linked
to a crossover from sub- to super-Poissonian noise in a
tunnel-barrier source [18]. This crossover was attributed to
Coulomb interaction between naturally occurring localized
states in the tunnel barrier [19], as has been done in experi-
ments on GaAs MESFETs [20] and stacked, self-
assembled quantum dots [21].

In this Letter, we investigate gate-controlled sign rever-
sal of noise cross correlation in a simple four-terminal
device. The structure consists of a parallel, capacitively
coupled double quantum dot operated in the Coulomb
blockade regime. In this configuration, the double dot
acts as a pair of tunable interacting localized states, en-
abling a systematic study of Coulomb-induced correlation.
Turning off interdot tunneling by electrically depleting the
connection between dots ensures that indistinguishability
(i.e., Fermi statistics) alone cannot induce any cross corre-
lation; any cross correlation, positive or negative, requires
interdot Coulomb interaction. We find good agreement

between the experimental results and a sequential-
tunneling model of capacitively coupled single-level dots.

The four-terminal double-dot device [see Fig. 1(a)] is
defined by top gates on a GaAs=Al0:3Ga0:7As heterostruc-
ture grown by molecular beam epitaxy. The two-

 

280 mK  4.2 K

Digitize &
Analyze

R L C

60 dB

R L 60 dB

Vtl Vtc Vtr

Vbl

Vr

Vt

Vl

(a)

It

IbVb

500 nm

gb

Vbc Vbr

Stb

St

Sb

50Ω

50Ω

50Ω

50Ω

gt

(M,
N)

(M,
N+1)

(M+1,
N+1)

(M+1,
N)

FIG. 1 (color). (a) Scanning electron micrograph of the
double-dot device, and equivalent circuit at 2 MHz of the noise
detection system measuring the power spectral densities and
cross-spectral density of fluctuations in currents It and Ib.
(b) Differential conductances gt (yellow) and gb (magenta) as
a function of Vtc and Vbc over a few Coulomb blockade peaks in
each dot, at Vt ! Vb ! 0. Black regions correspond to well-
defined charge states in the double-dot system. Superimposed
white lines indicate the honeycomb structure resulting from the
finite interdot capacitive coupling. (c) Zero-bias (thermal) noise
Sb (black dots, right axis), conductance gb (magenta curve, left
axis), and calculated 4kBTegb (magenta curve, right axis) as a
function of gate voltage Vbc, with Vtc ! "852:2 mV.
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Current noise cross correlation in mesoscopic elec-
tronics, the fermionic counterpart of intensity-intensity
correlation in quantum optics, is sensitive to quantum
indistinguishability as well as many-body interactions
[1–5]. A distinctive feature of fermionic systems is that
in the absence of interactions, noise cross correlation is
expected to always be negative [6]. Experimentally, nega-
tive correlations have been observed in several solid-state
Hanbury Brown–Twiss–type noise measurements [7–9].
Since no sign constraint exists for interacting systems, a
positive noise cross correlation in a Fermi system is a
characteristic signature of interactions.

Sign reversal of noise cross correlation has been the
focus of recent theory and experiment [10–18]. Theory
indicates that positive cross correlations can arise in the
presence of BCS-like interaction [10], dynamical screen-
ing [11,12], dynamical channel blockade [13], and strong
inelastic scattering [12,14–16]. Experimentally, sign re-
versal of noise cross correlation has been realized using a
voltage probe to induce inelastic scattering [17], and in a
beam-splitter geometry, where the sign reversal was linked
to a crossover from sub- to super-Poissonian noise in a
tunnel-barrier source [18]. This crossover was attributed to
Coulomb interaction between naturally occurring localized
states in the tunnel barrier [19], as has been done in experi-
ments on GaAs MESFETs [20] and stacked, self-
assembled quantum dots [21].

In this Letter, we investigate gate-controlled sign rever-
sal of noise cross correlation in a simple four-terminal
device. The structure consists of a parallel, capacitively
coupled double quantum dot operated in the Coulomb
blockade regime. In this configuration, the double dot
acts as a pair of tunable interacting localized states, en-
abling a systematic study of Coulomb-induced correlation.
Turning off interdot tunneling by electrically depleting the
connection between dots ensures that indistinguishability
(i.e., Fermi statistics) alone cannot induce any cross corre-
lation; any cross correlation, positive or negative, requires
interdot Coulomb interaction. We find good agreement

between the experimental results and a sequential-
tunneling model of capacitively coupled single-level dots.

The four-terminal double-dot device [see Fig. 1(a)] is
defined by top gates on a GaAs=Al0:3Ga0:7As heterostruc-
ture grown by molecular beam epitaxy. The two-
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double-dot device, and equivalent circuit at 2 MHz of the noise
detection system measuring the power spectral densities and
cross-spectral density of fluctuations in currents It and Ib.
(b) Differential conductances gt (yellow) and gb (magenta) as
a function of Vtc and Vbc over a few Coulomb blockade peaks in
each dot, at Vt ! Vb ! 0. Black regions correspond to well-
defined charge states in the double-dot system. Superimposed
white lines indicate the honeycomb structure resulting from the
finite interdot capacitive coupling. (c) Zero-bias (thermal) noise
Sb (black dots, right axis), conductance gb (magenta curve, left
axis), and calculated 4kBTegb (magenta curve, right axis) as a
function of gate voltage Vbc, with Vtc ! "852:2 mV.
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Current noise cross correlation in mesoscopic elec-
tronics, the fermionic counterpart of intensity-intensity
correlation in quantum optics, is sensitive to quantum
indistinguishability as well as many-body interactions
[1–5]. A distinctive feature of fermionic systems is that
in the absence of interactions, noise cross correlation is
expected to always be negative [6]. Experimentally, nega-
tive correlations have been observed in several solid-state
Hanbury Brown–Twiss–type noise measurements [7–9].
Since no sign constraint exists for interacting systems, a
positive noise cross correlation in a Fermi system is a
characteristic signature of interactions.

Sign reversal of noise cross correlation has been the
focus of recent theory and experiment [10–18]. Theory
indicates that positive cross correlations can arise in the
presence of BCS-like interaction [10], dynamical screen-
ing [11,12], dynamical channel blockade [13], and strong
inelastic scattering [12,14–16]. Experimentally, sign re-
versal of noise cross correlation has been realized using a
voltage probe to induce inelastic scattering [17], and in a
beam-splitter geometry, where the sign reversal was linked
to a crossover from sub- to super-Poissonian noise in a
tunnel-barrier source [18]. This crossover was attributed to
Coulomb interaction between naturally occurring localized
states in the tunnel barrier [19], as has been done in experi-
ments on GaAs MESFETs [20] and stacked, self-
assembled quantum dots [21].

In this Letter, we investigate gate-controlled sign rever-
sal of noise cross correlation in a simple four-terminal
device. The structure consists of a parallel, capacitively
coupled double quantum dot operated in the Coulomb
blockade regime. In this configuration, the double dot
acts as a pair of tunable interacting localized states, en-
abling a systematic study of Coulomb-induced correlation.
Turning off interdot tunneling by electrically depleting the
connection between dots ensures that indistinguishability
(i.e., Fermi statistics) alone cannot induce any cross corre-
lation; any cross correlation, positive or negative, requires
interdot Coulomb interaction. We find good agreement

between the experimental results and a sequential-
tunneling model of capacitively coupled single-level dots.

The four-terminal double-dot device [see Fig. 1(a)] is
defined by top gates on a GaAs=Al0:3Ga0:7As heterostruc-
ture grown by molecular beam epitaxy. The two-
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FIG. 1 (color). (a) Scanning electron micrograph of the
double-dot device, and equivalent circuit at 2 MHz of the noise
detection system measuring the power spectral densities and
cross-spectral density of fluctuations in currents It and Ib.
(b) Differential conductances gt (yellow) and gb (magenta) as
a function of Vtc and Vbc over a few Coulomb blockade peaks in
each dot, at Vt ! Vb ! 0. Black regions correspond to well-
defined charge states in the double-dot system. Superimposed
white lines indicate the honeycomb structure resulting from the
finite interdot capacitive coupling. (c) Zero-bias (thermal) noise
Sb (black dots, right axis), conductance gb (magenta curve, left
axis), and calculated 4kBTegb (magenta curve, right axis) as a
function of gate voltage Vbc, with Vtc ! "852:2 mV.

PRL 98, 056801 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
2 FEBRUARY 2007

0031-9007=07=98(5)=056801(4) 056801-1  2007 The American Physical Society

24Tuesday, September 18, 2007



Tunable Noise Cross Correlations in a Double Quantum Dot

D. T. McClure, L. DiCarlo, Y. Zhang, H.-A. Engel, and C. M. Marcus
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

M. P. Hanson and A. C. Gossard
Department of Materials, University of California, Santa Barbara, California 93106, USA

(Received 11 July 2006; published 29 January 2007)

We report measurements of the cross correlation between temporal current fluctuations in two
capacitively coupled quantum dots in the Coulomb blockade regime. The sign of the cross-spectral
density is found to be tunable by gate voltage and source-drain bias. We find good agreement with the data
by including an interdot Coulomb interaction in a sequential-tunneling model.

DOI: 10.1103/PhysRevLett.98.056801 PACS numbers: 73.50.Td, 05.40.Ca, 73.23.Hk, 73.63.Kv

Current noise cross correlation in mesoscopic elec-
tronics, the fermionic counterpart of intensity-intensity
correlation in quantum optics, is sensitive to quantum
indistinguishability as well as many-body interactions
[1–5]. A distinctive feature of fermionic systems is that
in the absence of interactions, noise cross correlation is
expected to always be negative [6]. Experimentally, nega-
tive correlations have been observed in several solid-state
Hanbury Brown–Twiss–type noise measurements [7–9].
Since no sign constraint exists for interacting systems, a
positive noise cross correlation in a Fermi system is a
characteristic signature of interactions.

Sign reversal of noise cross correlation has been the
focus of recent theory and experiment [10–18]. Theory
indicates that positive cross correlations can arise in the
presence of BCS-like interaction [10], dynamical screen-
ing [11,12], dynamical channel blockade [13], and strong
inelastic scattering [12,14–16]. Experimentally, sign re-
versal of noise cross correlation has been realized using a
voltage probe to induce inelastic scattering [17], and in a
beam-splitter geometry, where the sign reversal was linked
to a crossover from sub- to super-Poissonian noise in a
tunnel-barrier source [18]. This crossover was attributed to
Coulomb interaction between naturally occurring localized
states in the tunnel barrier [19], as has been done in experi-
ments on GaAs MESFETs [20] and stacked, self-
assembled quantum dots [21].

In this Letter, we investigate gate-controlled sign rever-
sal of noise cross correlation in a simple four-terminal
device. The structure consists of a parallel, capacitively
coupled double quantum dot operated in the Coulomb
blockade regime. In this configuration, the double dot
acts as a pair of tunable interacting localized states, en-
abling a systematic study of Coulomb-induced correlation.
Turning off interdot tunneling by electrically depleting the
connection between dots ensures that indistinguishability
(i.e., Fermi statistics) alone cannot induce any cross corre-
lation; any cross correlation, positive or negative, requires
interdot Coulomb interaction. We find good agreement

between the experimental results and a sequential-
tunneling model of capacitively coupled single-level dots.

The four-terminal double-dot device [see Fig. 1(a)] is
defined by top gates on a GaAs=Al0:3Ga0:7As heterostruc-
ture grown by molecular beam epitaxy. The two-
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detection system measuring the power spectral densities and
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a function of Vtc and Vbc over a few Coulomb blockade peaks in
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defined charge states in the double-dot system. Superimposed
white lines indicate the honeycomb structure resulting from the
finite interdot capacitive coupling. (c) Zero-bias (thermal) noise
Sb (black dots, right axis), conductance gb (magenta curve, left
axis), and calculated 4kBTegb (magenta curve, right axis) as a
function of gate voltage Vbc, with Vtc ! "852:2 mV.
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dimensional electron gas 100 nm below the surface has
density 2! 1011 cm"2 and mobility 2! 105 cm2=Vs.
Gate voltages Vl # Vr # "1420 mV fully deplete the
central point contact, preventing interdot tunneling. Gate
voltages Vtl (Vbl) and Vtr (Vbr) control the tunnel barrier
between the top (bottom) dot and its left and right leads.
Plunger gate voltage Vtc (Vbc) controls the electron number
M (N) in the top (bottom) dot; for this experiment M$
N $ 100. The lithographic area of each dot is 0:15 !m2.
We estimate level spacing !t%b& ' 70 !eV in each dot, for
$100 nm depletion around the gates.

Measurements are performed in a 3He cryostat using a
two-channel noise measurement system [Fig. 1(a)] [22]. A
voltage bias Vt (Vb) is applied to the left lead of the top
(bottom) dot, with right leads grounded. Separate resistor-
inductor-capacitor resonators (R # 5 k", L # 66 !H,
C # 96 pF) convert fluctuations in currents It and Ib
through the top and bottom dots around 2 MHz into voltage
fluctuations on gates of high electron mobility transistors at
4.2 K, which in turn produce current fluctuations in two
50 " coaxial lines extending to room temperature, where
further amplification is performed. These signals are then
simultaneously digitized at 10 MHz, their fast Fourier
transforms calculated, and the current noise power spectral
densities St, Sb and cross-spectral density Stb extracted fol-
lowing 15 s of integration, except for the data in Fig. 1(c),
which was averaged for 50 s per point. The total gain of
each amplification line and the base electron temperature
Te # 280 mK are calibrated in situ using Johnson-noise
thermometry at base temperature and 1.6 K with the device
configured as two point contacts [22]. Differential conduc-
tance gt (gb) through the top (bottom) dot is measured
using standard lock-in techniques with an excitation of
25 %30& !Vrms at 677 (1000) Hz. Ohmic contact resistan-
ces of roughly a few k", much less than the dot resistan-
ces, are not subtracted.

Superposed top- and bottom-dot conductances gt and gb
as a function of plunger voltages Vtc and Vbc form the
characteristic double-dot honeycomb pattern [23,24], with
dark regions corresponding to well-defined electron num-
ber in each dot, denoted (M, N) (first index for top dot), as
shown in Fig. 1(b). Horizontal (vertical) features in gt (gb)
are Coulomb blockade (CB) conductance peaks [25],
across which M (N) increases by one as Vtc (Vbc) is raised.
The distance between triple points, i.e., the length of the
short edge of the hexagon, provides a measure of the
mutual charging energy U due to interdot capacitive cou-
pling. By comparing this distance to the CB peak spacing,
and using the single-dot charging energy EC # 600 !eV
extracted from finite-bias CB diamonds (not shown), we
estimate U ' 60 !eV [24]. We refer to the midpoint of the
short edge of a hexagon, midway between triple points, as a
‘‘honeycomb vertex.’’ Current noise Sb and conductance
gb, measured simultaneously at zero dc bias, over a CB
peak in the bottom dot (with the top dot in a CB valley) are
shown in Fig. 1(c). Agreement between the measured Sb

and the Johnson-Nyquist thermal noise value 4kBTegb is
observed.

Turning now to finite-bias noise measurements, Fig. 2(a)
shows the measured cross correlation, Stb, as a function of
plunger gate voltages Vtc and Vbc, in the vicinity of a
honeycomb vertex, with voltage bias of "100 !V applied
to both dots. The plot reveals a characteristic quadrupole
pattern of cross correlation centered on the honeycomb
vertex, comprising regions of both negative and positive
cross correlation. Similar patterns are observed at all other
honeycomb vertices. The precise symmetry of the pattern
is found to depend rather sensitively on the relative trans-
parency of each dot’s left and right tunnel barriers. Away
from the vertices, noise cross correlation vanishes.

To better understand this experimental result, we model
the system as single-level dots capacitively coupled by a
mutual charging energy U, each with weak tunneling to the
leads. The energy needed to add electron M( 1 to the top
dot depends on the two plunger gate voltages as well as the
electron number n 2 fN;N ( 1g on the bottom dot: Et #
"tVtc ( #tVbc (Un( const, where lever arms "t and #t
are obtained from the honeycomb plot in Fig. 1(b) [23] and
the measured EC. The energy Eb to add electron N ( 1 to

 

FIG. 2 (color). Measured (a) and simulated (b) cross-spectral
density Stb near a honeycomb vertex, with applied bias Vt #
Vb # "100 !V (ejVt%b&j ' 4kBTe ' EC=6). Blue regions
(lower-left and upper-right) indicate negative Stb, whereas red
regions indicate positive Stb.
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the bottom dot is given by an analogous formula.
Occupation probabilities for charge states (M, N), (M!
1, N), (M, N ! 1), and (M! 1, N ! 1) are given by the
diagonal elements of the density matrix, ! "
#!00;!10;!01;!11$T . The time evolution of ! is given by
a master equation d!=dt " M!, where

 M "
%Wout

00 W00 10 W00 01 0
W10 00 %Wout

10 0 W01 11

W01 00 0 %Wout
01 W10 11

0 W11 10 W11 01 %Wout
11

0
BBB@

1
CCCA: (1)

Each diagonal term of M gives the total loss rate for the
corresponding state: Wout

" " P
#W# ". Off-diagonal terms

give total rates for transitions between two states. For
example, W10 00 " Wl

10 00 !Wr
10 00 is the total tunnel-

ing rate into (M! 1, N) from (M, N), combining contri-
butions from the top-left and top-right leads.

Rates for tunneling between a dot and either of its leads
i 2 ftl; tr; bl; brg depend on both the transparency !i of the
tunnel barrier to lead i and the Fermi function fi#$$ "
&1! expf#$%%i$=kBTeg'%1 evaluated at $ " Et#b$, where
%i is the chemical potential in lead i. For example, the rates
for tunneling into and out of the top dot via the left tunnel
barrier are given by Wl

10 00 " !ltflt#Et$ and Wl
00 10 "

!lt&1% flt#Et$', respectively. As Et is lowered across %lt,
Wl

10 00 increases from 0 to !lt over a range of a few kBTe,
while Wl

00 10 does the opposite.
We obtain the steady-state value of !, denoted "!, by

solving M "! " 0. Using techniques described in
Refs. [26–28], we define current matrices Jtr and Jbr for
the top- and bottom-right leads and apply them to "! to
obtain average currents hIt#b$i and correlator hIt#&$Ib#0$i
[29]. The cross-spectral density in the low-frequency limit
is then given by Stb " 2

R1
%1&hIt#&$Ib#0$i% hItihIbi'd&.

Simulation results for Stb as a function of plunger gate
voltages are shown in Fig. 2(b), with all parameters of the
model extracted from experiment: U " 60 %eV, Te "
280 mK, !tl " !tr " 1:5( 1010 s%1, and !bl " !br "
7:2( 109 s%1. The !i were estimated from the zero-bias
conductance peak height using Eq. 6.3 of Ref. [30], taking
left and right barriers equal. The simulation shows the
characteristic quadrupole pattern of positive and negative
cross correlation, as observed experimentally. We note that
the model underestimates Stb by roughly a factor of 2. This
may be due to transport processes not accounted for in the
model. For instance, elastic cotunneling should be present
since the !i are comparable to kBTe=@. Also, since the
voltage-bias energy ejVt#b$j is greater than the level spacing
#t#b$, transport may occur via multiple levels [13,31,32]
and inelastic cotunneling [33–35].

Intuition for how Coulomb interaction in the form of
capacitive interdot coupling can lead to the observed noise
cross-correlation pattern can be gained by examining en-
ergy levels in both dots in the space of plunger gate
voltages, as shown in Fig. 3. With both dots tuned near
Coulomb blockade peaks, the fluctuations by one in the

electron number of each dot, caused by the sequential
tunneling of electrons through that dot, cause the energy
level of the other dot to fluctuate between two values
separated by U. These fluctuations can raise and lower
the level across the chemical potential in one of the leads
of the dot, strongly affecting either the tunnel-in rate (from
the left, for the case illustrated in Fig. 3) or the tunnel-out
rate (to the right) of that dot. Specifically, the rate of the
‘‘U-sensitive’’ process in each dot fluctuates between a
slow rate (red arrow), suppressed well below !i, and a
fast rate (green arrow), comparable to !i. For balanced
right and left !i in each dot, the U-sensitive process
becomes the transport bottleneck when its rate is
suppressed.

These U-sensitive processes correlate transport through
the dots. In region (b) of Fig. 3, for instance, where Stb is
negative, the U-sensitive process in each dot is tunneling
out. Here and in (c), where the U-sensitive process in each
dot is tunneling in, the U-sensitive processes compete:
occurrence of one suppresses the other, leading to negative
Stb. Conversely, in region (a) [(d)], where Stb is positive,
the top [bottom] dot’s U-sensitive process is tunneling out,
but the bottom [top] dot’s is tunneling in. Here, the
U-sensitive processes cooperate: occurrence of one lifts
the suppression of the other, leading to positive Stb.

 

FIG. 3 (color). Energy level diagrams in the vicinity of a
honeycomb vertex, with biases Vt#b$ " %100 %V. (The various
energies are shown roughly to scale.) The solid horizontal line in
the top (bottom) dot represents the energy Et#b$ required to add
electron M! 1 (N ! 1) when the bottom (top) dot has N (M)
electrons. The dashed horizontal line, higher than the solid line
by U, represents Et#b$ when the bottom (top) dot has N ! 1 (M!
1) electrons. In each dot, the rate of either tunneling in from the
left or tunneling out to the right is significantly affected by this
difference in the energy level, taking on either a slow value (red
arrow) or a fast value (green arrow) depending on the electron
number in the other dot. In (a) and (d), where the occurrence of
each U-sensitive process enhances the rate of the other, we find
positive cross correlation. In (b) and (c), where the occurrence of
each U-sensitive process suppresses the rate of the other, we find
negative cross correlation.
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FIG. 2: (a) Excess Poissonian noise SEP
1 as a function of V0 and

Vbc. Red (blue) regions indicate super(sub)-Poissonian noise. (b,
c) Single-level (S.L.) and multi-level (M.L.) simulation of SEP

1 , re-
spectively, corresponding to the data region enclosed by the white
dashed parallelogram in (a). At the four colored dots superimposed
on (c), where SEP

1 is most positive, energy diagrams are illustrated
in the correspondingly colored frames at the bottom. In these dia-
grams, black (white) arrows indicate electron (hole) transport; the
greyscale color in the reservoirs and inside the circles on each level
indicates electron population: the darker the higher.

time as tunneling out is suppressed by the finite electron
occupation in the reservoirs at the level energy. Dur-
ing this time, transport is blocked since the large charg-
ing energy prevents more than one non-negative-indexed
level from being occupied at a time. This blockade hap-
pens dynamically during transport, leading to electron
bunching and thus to super-Poissonian noise. At the lo-
cation of the green dot on the lower-left edge in Fig. 2(c),
the transport involves transitions between the (N + 1)-
electron ground state and N -electron ground or excited
states; a similar dynamical blockade occurs in a com-
plementary hole transport picture. The hole transport
through level 0 is slowed down by the finite hole oc-
cupation in reservoir 0, modulating the hole transport
through levels -1, -2 and -3, thus leading to hole bunch-
ing and super-Poissonian noise. Transport at the blue
(orange) dot is similar to transport at the pink (green)
dot, but with the chemical potentials in reservoirs 0 and
1 swapped. One detail present in both the SEP

1 data and
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FIG. 3: (a) The device in the three-lead configuration, in which
the data for this figure and for Fig. 4 are taken. (b) S12, integrated
for 200 s, and −4kBTeg12 over a CB peak at zero bias. Left and
right axes are in different units but both apply to the data. (c)
S12 as a function of V0 and Vbc. Red (blue) regions indicate posi-
tive (negative) cross-correlation. (d, e) Single-level and multi-level
simulation of S12, respectively, corresponding to the data region
enclosed by the white dashed parallelogram in (c).

multi-level simulation is that SEP
1 is stronger along the

edges for electron transport than along the edges for hole
transport. This is due to the energy dependence of the
tunneling rates: since the positive(negative)-indexed lev-
els have higher (lower) energy and tunneling rates com-
pared to level 0, the dynamical modulation due to elec-
tron (hole) transport is enhanced (weakened).

We now turn to the three-lead configuration by open-
ing lead 2 [see Fig. 3(a)]. We first measure S12 at zero
bias, and find the expected cross-correlation from ther-
mal noise: S12 = −4kBTeg12 [29]. To minimize this ther-
mal contribution to S12 for reasons discussed below, we
tune the input and output barriers asymmetrically, with
g01 ≈ g02 ≈ 4g12. Figure 3(c) shows S12 as a function of
Vbc and V0 over a few CB diamonds. The color image of
S12 shows a pattern very similar to that of SEP

1 in the
two-lead configuration [Fig. 2(a)]: S12 is zero inside the
diamonds, negative well inside the transport triangles,
and positive along the diamond edges.
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We report measurements of current noise auto- and cross-correlation in a tunable quantum dot
with two or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the auto-
correlation evolves from super-Poissonian to sub-Poissonian in the two-lead case, and the cross-
correlation evolves from positive to negative in the three-lead case, consistent with transport through
multiple levels. In the three-lead dot, we find that for opaque output barriers, the cross-correlation
is nearly proportional to the total output current noise in excess of the Poissonian value.

The Pauli exclusion principle for electrons leads to neg-
ative correlations between single-electron current pulses
traversing a device; therefore, in the absence of interac-
tions, it suppresses current noise auto-correlation below
the uncorrelated Poissonian limit [1, 2], and makes cross-
correlation negative [1–4]. Counterintuitively, though,
the interplay between Pauli exclusion and repulsive
Coulomb interaction can lead to electron bunching and
therefore to positive correlations, i.e., super-Poissonian
auto-correlation or positive cross-correlation.

Recently, positive correlations have attracted a lot
of theoretical [5–14] and experimental [14–23] research.
Super-Poissonian noise observed in GaAs MESFETs [15],
tunnel barriers [16] and self-assembled stacked quan-
tum dots [17] has been attributed to interacting local-
ized states occurring naturally inside these devices. In
more controlled geometries, super-Poissonian noise has
been associated with inelastic cotunneling [9] in a nan-
otube quantum dot [20], and with dynamical channel
blockade [11, 12] in GaAs/AlGaAs quantum dots in
the weak tunneling limit [21] and in the quantum hall
regime [22]. Positive cross-correlation has been observed
in a capacitively-coupled double quantum dot [23], and
in beam-splitters following an inelastic voltage probe [5–
8, 19] and a super-Poissonian noise source [18]. In a
three-lead dot, positive cross-correlation is predicted [12]
but not yet observed.

In this Letter, we report observation of super-
Poissonian auto-correlation and positive cross-correlation
in a semiconductor quantum dot configured to have
two or three leads. The gate and bias voltage depen-
dence of these correlations is consistent with a multi-level
sequential-tunneling model, in which electron bunching
results from the mechanism of dynamical channel block-
ade, as predicted in Refs. [11, 12]. In our interacting
three-lead dot, we find in the limit of opaque output
barriers that the cross-correlation and the total output
noise in excess of the Poissonian value approximate the
linear relation that they obey in Hanbury Brown–Twiss
(HBT)–type experiments [3, 4, 18].
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FIG. 1: (a) Scanning electron micrograph of the quantum dot
device and equivalent circuit near 2 MHz of the noise detection
system. The equivalent circuit near dc is described in the text. For
the data in Figs. 1 and 2, the dot is connected only to reservoirs 0
and 1. (b, c) Differential conductance g01 and current noise spectral
density S1, respectively, as a function of V0 and Vbc. (d) S1 versus
|I1| data (round markers) and multi-level simulation (solid lines)
along the four cuts indicated in (b) and (c) with corresponding col-
ors. Black solid (dashed) line indicates S1 = 2e|I1| (S1 = 1e|I1|).
(e) Data (diamond markers) and multi-level simulation (solid lines)
of the modified Fano factor F along the same cuts as taken in (d).
The F data are not shown for |I1| < 20 pA, since their error bars
diverge as |I1| → 0. Inset: a zoomed-in plot of F at high |V0|.
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We report measurements of current noise auto- and cross correlation in a tunable quantum dot with two
or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the autocorrelation evolves
from super- to sub-Poissonian in the two-lead case, and the cross correlation evolves from positive to
negative in the three-lead case, consistent with transport through multiple levels. Cross correlations in the
three-lead dot are found to be proportional to the noise in excess of the Poissonian value in the limit of
weak output tunneling.

DOI: 10.1103/PhysRevLett.99.036603 PACS numbers: 72.70.+m, 73.21.La

Considered individually, Coulomb repulsion and Fermi
statistics both tend to smooth electron flow, thereby reduc-
ing shot noise below the uncorrelated Poissonian limit
[1,2]. For similar reasons, Fermi statistics without inter-
actions also induces a negative noise cross correlation in
multiterminal devices [1–4]. It is therefore surprising that,
under certain conditions, the interplay between Fermi sta-
tistics and Coulomb interaction can lead to electron bunch-
ing, i.e., super-Poissonian autocorrelation and positive
cross correlation of electronic noise.

The specific conditions under which such positive noise
correlations can arise has been the subject of numerous
theoretical [5–14] and experimental [14–23] studies in the
past few years. Super-Poissonian noise observed in metal-
semiconductor field effect transistors [15], tunnel barriers
[16], and self-assembled stacked quantum dots [17] has
been attributed to interacting localized states [10,15,24]
occurring naturally in these devices. In more controlled
geometries, super-Poissonian noise has been associated
with inelastic cotunneling [9] in a nanotube quantum dot
[20] and with dynamical channel blockade [11,12] in
GaAs=AlGaAs quantum dots in the weak-tunneling [21]
and quantum Hall regimes [22]. Positive noise cross cor-
relation has been observed in a capacitively coupled double
dot [23] as well as in electronic beam splitters following
either an inelastic voltage probe [5–8,19] or a super-
Poissonian noise source [18]. The predicted positive noise
cross correlation in a three-lead quantum dot [12] has not
been reported experimentally to our knowledge.

This Letter describes measurement of current noise
auto- and cross correlation in a Coulomb-blockaded quan-
tum dot configured to have either two or three leads. As a
function of gate voltage and bias, regions of super- and
sub-Poissonian noise, as well as positive and negative noise
cross correlation, are identified. Results are in good agree-
ment with a multilevel sequential-tunneling model in
which electron bunching arises from dynamical channel

blockade [11,12]. For weak-tunneling output leads, noise
cross correlation in the three-lead configuration is found to
be proportional to the deviation of the autocorrelation from
the Poissonian value (either positive or negative) similar to
the relation found in electronic Hanbury Brown-Twiss
(HBT)-type experiments [3,4,18].

The quantum dot is defined by gates on the surface of a
GaAs=Al0:3Ga0:7As heterostructure [Fig. 1(a)]. The two-
dimensional electron gas 100 nm below the surface has
density 2! 1011 cm"2 and mobility 2! 105 cm2=Vs.
Leads formed by gate pairs Vl-Vbl, Vr-Vbr, and Vl-Vr con-
nect the dot to three reservoirs labeled 0, 1, and 2, respec-
tively. Plunger gate voltage Vbc controls the electron
number in the dot, which we estimate to be #100. The
constriction formed by Vtl-Vl is closed.

A 3He cryostat is configured to allow simultaneous
conductance measurement near dc and noise measurement
near 2 MHz [25]. For dc measurements, the three reservoirs
are each connected to a voltage amplifier, a current source,
and a resistor to ground (r $ 5 k!). The resistor r converts
the current I! out of reservoir ! to a voltage signal mea-
sured by the voltage amplifier; it also converts the current
from the current source to a voltage excitation V! applied
at reservoir !. The nine raw differential conductance ma-
trix elements ~g!" $ dI"=dV! are measured simulta-
neously with lock-in excitations of 20 #Vrms at 44, 20,
and 36 Hz on reservoirs 0, 1, and 2, respectively.
Subtracting r from the matrix ~g yields the intrinsic con-
ductance matrix g $ %E& r~g'"1 ( ~g, where E is the iden-
tity matrix. Ohmic contact resistances (#103!) are small
compared to dot resistances (*105!) and are neglected in
the analysis. Values for the currents I! with bias V0 applied
to reservoir 0 are obtained by numerically integrating ~g0!.

Fluctuations in currents I1 and I2 are extracted from
voltage fluctuations around 2 MHz across separate
resistor-inductor-capacitor (RLC) resonators [Fig. 1(a)].
Power spectral densities SV1;2 and cross-spectral density
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We report measurements of current noise auto- and cross correlation in a tunable quantum dot with two
or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the autocorrelation evolves
from super- to sub-Poissonian in the two-lead case, and the cross correlation evolves from positive to
negative in the three-lead case, consistent with transport through multiple levels. Cross correlations in the
three-lead dot are found to be proportional to the noise in excess of the Poissonian value in the limit of
weak output tunneling.

DOI: 10.1103/PhysRevLett.99.036603 PACS numbers: 72.70.+m, 73.21.La

Considered individually, Coulomb repulsion and Fermi
statistics both tend to smooth electron flow, thereby reduc-
ing shot noise below the uncorrelated Poissonian limit
[1,2]. For similar reasons, Fermi statistics without inter-
actions also induces a negative noise cross correlation in
multiterminal devices [1–4]. It is therefore surprising that,
under certain conditions, the interplay between Fermi sta-
tistics and Coulomb interaction can lead to electron bunch-
ing, i.e., super-Poissonian autocorrelation and positive
cross correlation of electronic noise.

The specific conditions under which such positive noise
correlations can arise has been the subject of numerous
theoretical [5–14] and experimental [14–23] studies in the
past few years. Super-Poissonian noise observed in metal-
semiconductor field effect transistors [15], tunnel barriers
[16], and self-assembled stacked quantum dots [17] has
been attributed to interacting localized states [10,15,24]
occurring naturally in these devices. In more controlled
geometries, super-Poissonian noise has been associated
with inelastic cotunneling [9] in a nanotube quantum dot
[20] and with dynamical channel blockade [11,12] in
GaAs=AlGaAs quantum dots in the weak-tunneling [21]
and quantum Hall regimes [22]. Positive noise cross cor-
relation has been observed in a capacitively coupled double
dot [23] as well as in electronic beam splitters following
either an inelastic voltage probe [5–8,19] or a super-
Poissonian noise source [18]. The predicted positive noise
cross correlation in a three-lead quantum dot [12] has not
been reported experimentally to our knowledge.

This Letter describes measurement of current noise
auto- and cross correlation in a Coulomb-blockaded quan-
tum dot configured to have either two or three leads. As a
function of gate voltage and bias, regions of super- and
sub-Poissonian noise, as well as positive and negative noise
cross correlation, are identified. Results are in good agree-
ment with a multilevel sequential-tunneling model in
which electron bunching arises from dynamical channel

blockade [11,12]. For weak-tunneling output leads, noise
cross correlation in the three-lead configuration is found to
be proportional to the deviation of the autocorrelation from
the Poissonian value (either positive or negative) similar to
the relation found in electronic Hanbury Brown-Twiss
(HBT)-type experiments [3,4,18].

The quantum dot is defined by gates on the surface of a
GaAs=Al0:3Ga0:7As heterostructure [Fig. 1(a)]. The two-
dimensional electron gas 100 nm below the surface has
density 2! 1011 cm"2 and mobility 2! 105 cm2=Vs.
Leads formed by gate pairs Vl-Vbl, Vr-Vbr, and Vl-Vr con-
nect the dot to three reservoirs labeled 0, 1, and 2, respec-
tively. Plunger gate voltage Vbc controls the electron
number in the dot, which we estimate to be #100. The
constriction formed by Vtl-Vl is closed.

A 3He cryostat is configured to allow simultaneous
conductance measurement near dc and noise measurement
near 2 MHz [25]. For dc measurements, the three reservoirs
are each connected to a voltage amplifier, a current source,
and a resistor to ground (r $ 5 k!). The resistor r converts
the current I! out of reservoir ! to a voltage signal mea-
sured by the voltage amplifier; it also converts the current
from the current source to a voltage excitation V! applied
at reservoir !. The nine raw differential conductance ma-
trix elements ~g!" $ dI"=dV! are measured simulta-
neously with lock-in excitations of 20 #Vrms at 44, 20,
and 36 Hz on reservoirs 0, 1, and 2, respectively.
Subtracting r from the matrix ~g yields the intrinsic con-
ductance matrix g $ %E& r~g'"1 ( ~g, where E is the iden-
tity matrix. Ohmic contact resistances (#103!) are small
compared to dot resistances (*105!) and are neglected in
the analysis. Values for the currents I! with bias V0 applied
to reservoir 0 are obtained by numerically integrating ~g0!.

Fluctuations in currents I1 and I2 are extracted from
voltage fluctuations around 2 MHz across separate
resistor-inductor-capacitor (RLC) resonators [Fig. 1(a)].
Power spectral densities SV1;2 and cross-spectral density
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We report measurements of current noise auto- and cross-correlation in a tunable quantum dot
with two or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the auto-
correlation evolves from super-Poissonian to sub-Poissonian in the two-lead case, and the cross-
correlation evolves from positive to negative in the three-lead case, consistent with transport through
multiple levels. In the three-lead dot, we find that for opaque output barriers, the cross-correlation
is nearly proportional to the total output current noise in excess of the Poissonian value.

The Pauli exclusion principle for electrons leads to neg-
ative correlations between single-electron current pulses
traversing a device; therefore, in the absence of interac-
tions, it suppresses current noise auto-correlation below
the uncorrelated Poissonian limit [1, 2], and makes cross-
correlation negative [1–4]. Counterintuitively, though,
the interplay between Pauli exclusion and repulsive
Coulomb interaction can lead to electron bunching and
therefore to positive correlations, i.e., super-Poissonian
auto-correlation or positive cross-correlation.

Recently, positive correlations have attracted a lot
of theoretical [5–14] and experimental [14–23] research.
Super-Poissonian noise observed in GaAs MESFETs [15],
tunnel barriers [16] and self-assembled stacked quan-
tum dots [17] has been attributed to interacting local-
ized states occurring naturally inside these devices. In
more controlled geometries, super-Poissonian noise has
been associated with inelastic cotunneling [9] in a nan-
otube quantum dot [20], and with dynamical channel
blockade [11, 12] in GaAs/AlGaAs quantum dots in
the weak tunneling limit [21] and in the quantum hall
regime [22]. Positive cross-correlation has been observed
in a capacitively-coupled double quantum dot [23], and
in beam-splitters following an inelastic voltage probe [5–
8, 19] and a super-Poissonian noise source [18]. In a
three-lead dot, positive cross-correlation is predicted [12]
but not yet observed.

In this Letter, we report observation of super-
Poissonian auto-correlation and positive cross-correlation
in a semiconductor quantum dot configured to have
two or three leads. The gate and bias voltage depen-
dence of these correlations is consistent with a multi-level
sequential-tunneling model, in which electron bunching
results from the mechanism of dynamical channel block-
ade, as predicted in Refs. [11, 12]. In our interacting
three-lead dot, we find in the limit of opaque output
barriers that the cross-correlation and the total output
noise in excess of the Poissonian value approximate the
linear relation that they obey in Hanbury Brown–Twiss
(HBT)–type experiments [3, 4, 18].
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FIG. 1: (a) Scanning electron micrograph of the quantum dot
device and equivalent circuit near 2 MHz of the noise detection
system. The equivalent circuit near dc is described in the text. For
the data in Figs. 1 and 2, the dot is connected only to reservoirs 0
and 1. (b, c) Differential conductance g01 and current noise spectral
density S1, respectively, as a function of V0 and Vbc. (d) S1 versus
|I1| data (round markers) and multi-level simulation (solid lines)
along the four cuts indicated in (b) and (c) with corresponding col-
ors. Black solid (dashed) line indicates S1 = 2e|I1| (S1 = 1e|I1|).
(e) Data (diamond markers) and multi-level simulation (solid lines)
of the modified Fano factor F along the same cuts as taken in (d).
The F data are not shown for |I1| < 20 pA, since their error bars
diverge as |I1| → 0. Inset: a zoomed-in plot of F at high |V0|.
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FIG. 2: (a) Excess Poissonian noise SEP
1 as a function of V0 and

Vbc. Red (blue) regions indicate super(sub)-Poissonian noise. (b,
c) Single-level (S.L.) and multi-level (M.L.) simulation of SEP

1 , re-
spectively, corresponding to the data region enclosed by the white
dashed parallelogram in (a). At the four colored dots superimposed
on (c), where SEP

1 is most positive, energy diagrams are illustrated
in the correspondingly colored frames at the bottom. In these dia-
grams, black (white) arrows indicate electron (hole) transport; the
greyscale color in the reservoirs and inside the circles on each level
indicates electron population: the darker the higher.

time as tunneling out is suppressed by the finite electron
occupation in the reservoirs at the level energy. Dur-
ing this time, transport is blocked since the large charg-
ing energy prevents more than one non-negative-indexed
level from being occupied at a time. This blockade hap-
pens dynamically during transport, leading to electron
bunching and thus to super-Poissonian noise. At the lo-
cation of the green dot on the lower-left edge in Fig. 2(c),
the transport involves transitions between the (N + 1)-
electron ground state and N -electron ground or excited
states; a similar dynamical blockade occurs in a com-
plementary hole transport picture. The hole transport
through level 0 is slowed down by the finite hole oc-
cupation in reservoir 0, modulating the hole transport
through levels -1, -2 and -3, thus leading to hole bunch-
ing and super-Poissonian noise. Transport at the blue
(orange) dot is similar to transport at the pink (green)
dot, but with the chemical potentials in reservoirs 0 and
1 swapped. One detail present in both the SEP

1 data and
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FIG. 3: (a) The device in the three-lead configuration, in which
the data for this figure and for Fig. 4 are taken. (b) S12, integrated
for 200 s, and −4kBTeg12 over a CB peak at zero bias. Left and
right axes are in different units but both apply to the data. (c)
S12 as a function of V0 and Vbc. Red (blue) regions indicate posi-
tive (negative) cross-correlation. (d, e) Single-level and multi-level
simulation of S12, respectively, corresponding to the data region
enclosed by the white dashed parallelogram in (c).

multi-level simulation is that SEP
1 is stronger along the

edges for electron transport than along the edges for hole
transport. This is due to the energy dependence of the
tunneling rates: since the positive(negative)-indexed lev-
els have higher (lower) energy and tunneling rates com-
pared to level 0, the dynamical modulation due to elec-
tron (hole) transport is enhanced (weakened).

We now turn to the three-lead configuration by open-
ing lead 2 [see Fig. 3(a)]. We first measure S12 at zero
bias, and find the expected cross-correlation from ther-
mal noise: S12 = −4kBTeg12 [29]. To minimize this ther-
mal contribution to S12 for reasons discussed below, we
tune the input and output barriers asymmetrically, with
g01 ≈ g02 ≈ 4g12. Figure 3(c) shows S12 as a function of
Vbc and V0 over a few CB diamonds. The color image of
S12 shows a pattern very similar to that of SEP

1 in the
two-lead configuration [Fig. 2(a)]: S12 is zero inside the
diamonds, negative well inside the transport triangles,
and positive along the diamond edges.
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1 as a function of V0 and

Vbc. Red (blue) regions indicate super(sub)-Poissonian noise. (b,
c) Single-level (S.L.) and multi-level (M.L.) simulation of SEP

1 , re-
spectively, corresponding to the data region enclosed by the white
dashed parallelogram in (a). At the four colored dots superimposed
on (c), where SEP

1 is most positive, energy diagrams are illustrated
in the correspondingly colored frames at the bottom. In these dia-
grams, black (white) arrows indicate electron (hole) transport; the
greyscale color in the reservoirs and inside the circles on each level
indicates electron population: the darker the higher.

time as tunneling out is suppressed by the finite electron
occupation in the reservoirs at the level energy. Dur-
ing this time, transport is blocked since the large charg-
ing energy prevents more than one non-negative-indexed
level from being occupied at a time. This blockade hap-
pens dynamically during transport, leading to electron
bunching and thus to super-Poissonian noise. At the lo-
cation of the green dot on the lower-left edge in Fig. 2(c),
the transport involves transitions between the (N + 1)-
electron ground state and N -electron ground or excited
states; a similar dynamical blockade occurs in a com-
plementary hole transport picture. The hole transport
through level 0 is slowed down by the finite hole oc-
cupation in reservoir 0, modulating the hole transport
through levels -1, -2 and -3, thus leading to hole bunch-
ing and super-Poissonian noise. Transport at the blue
(orange) dot is similar to transport at the pink (green)
dot, but with the chemical potentials in reservoirs 0 and
1 swapped. One detail present in both the SEP

1 data and
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FIG. 3: (a) The device in the three-lead configuration, in which
the data for this figure and for Fig. 4 are taken. (b) S12, integrated
for 200 s, and −4kBTeg12 over a CB peak at zero bias. Left and
right axes are in different units but both apply to the data. (c)
S12 as a function of V0 and Vbc. Red (blue) regions indicate posi-
tive (negative) cross-correlation. (d, e) Single-level and multi-level
simulation of S12, respectively, corresponding to the data region
enclosed by the white dashed parallelogram in (c).

multi-level simulation is that SEP
1 is stronger along the

edges for electron transport than along the edges for hole
transport. This is due to the energy dependence of the
tunneling rates: since the positive(negative)-indexed lev-
els have higher (lower) energy and tunneling rates com-
pared to level 0, the dynamical modulation due to elec-
tron (hole) transport is enhanced (weakened).

We now turn to the three-lead configuration by open-
ing lead 2 [see Fig. 3(a)]. We first measure S12 at zero
bias, and find the expected cross-correlation from ther-
mal noise: S12 = −4kBTeg12 [29]. To minimize this ther-
mal contribution to S12 for reasons discussed below, we
tune the input and output barriers asymmetrically, with
g01 ≈ g02 ≈ 4g12. Figure 3(c) shows S12 as a function of
Vbc and V0 over a few CB diamonds. The color image of
S12 shows a pattern very similar to that of SEP

1 in the
two-lead configuration [Fig. 2(a)]: S12 is zero inside the
diamonds, negative well inside the transport triangles,
and positive along the diamond edges.
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Considered individually, Coulomb repulsion and Fermi
statistics both tend to smooth electron flow, thereby reduc-
ing shot noise below the uncorrelated Poissonian limit
[1,2]. For similar reasons, Fermi statistics without inter-
actions also induces a negative noise cross correlation in
multiterminal devices [1–4]. It is therefore surprising that,
under certain conditions, the interplay between Fermi sta-
tistics and Coulomb interaction can lead to electron bunch-
ing, i.e., super-Poissonian autocorrelation and positive
cross correlation of electronic noise.

The specific conditions under which such positive noise
correlations can arise has been the subject of numerous
theoretical [5–14] and experimental [14–23] studies in the
past few years. Super-Poissonian noise observed in metal-
semiconductor field effect transistors [15], tunnel barriers
[16], and self-assembled stacked quantum dots [17] has
been attributed to interacting localized states [10,15,24]
occurring naturally in these devices. In more controlled
geometries, super-Poissonian noise has been associated
with inelastic cotunneling [9] in a nanotube quantum dot
[20] and with dynamical channel blockade [11,12] in
GaAs=AlGaAs quantum dots in the weak-tunneling [21]
and quantum Hall regimes [22]. Positive noise cross cor-
relation has been observed in a capacitively coupled double
dot [23] as well as in electronic beam splitters following
either an inelastic voltage probe [5–8,19] or a super-
Poissonian noise source [18]. The predicted positive noise
cross correlation in a three-lead quantum dot [12] has not
been reported experimentally to our knowledge.

This Letter describes measurement of current noise
auto- and cross correlation in a Coulomb-blockaded quan-
tum dot configured to have either two or three leads. As a
function of gate voltage and bias, regions of super- and
sub-Poissonian noise, as well as positive and negative noise
cross correlation, are identified. Results are in good agree-
ment with a multilevel sequential-tunneling model in
which electron bunching arises from dynamical channel

blockade [11,12]. For weak-tunneling output leads, noise
cross correlation in the three-lead configuration is found to
be proportional to the deviation of the autocorrelation from
the Poissonian value (either positive or negative) similar to
the relation found in electronic Hanbury Brown-Twiss
(HBT)-type experiments [3,4,18].

The quantum dot is defined by gates on the surface of a
GaAs=Al0:3Ga0:7As heterostructure [Fig. 1(a)]. The two-
dimensional electron gas 100 nm below the surface has
density 2! 1011 cm"2 and mobility 2! 105 cm2=Vs.
Leads formed by gate pairs Vl-Vbl, Vr-Vbr, and Vl-Vr con-
nect the dot to three reservoirs labeled 0, 1, and 2, respec-
tively. Plunger gate voltage Vbc controls the electron
number in the dot, which we estimate to be #100. The
constriction formed by Vtl-Vl is closed.

A 3He cryostat is configured to allow simultaneous
conductance measurement near dc and noise measurement
near 2 MHz [25]. For dc measurements, the three reservoirs
are each connected to a voltage amplifier, a current source,
and a resistor to ground (r $ 5 k!). The resistor r converts
the current I! out of reservoir ! to a voltage signal mea-
sured by the voltage amplifier; it also converts the current
from the current source to a voltage excitation V! applied
at reservoir !. The nine raw differential conductance ma-
trix elements ~g!" $ dI"=dV! are measured simulta-
neously with lock-in excitations of 20 #Vrms at 44, 20,
and 36 Hz on reservoirs 0, 1, and 2, respectively.
Subtracting r from the matrix ~g yields the intrinsic con-
ductance matrix g $ %E& r~g'"1 ( ~g, where E is the iden-
tity matrix. Ohmic contact resistances (#103!) are small
compared to dot resistances (*105!) and are neglected in
the analysis. Values for the currents I! with bias V0 applied
to reservoir 0 are obtained by numerically integrating ~g0!.

Fluctuations in currents I1 and I2 are extracted from
voltage fluctuations around 2 MHz across separate
resistor-inductor-capacitor (RLC) resonators [Fig. 1(a)].
Power spectral densities SV1;2 and cross-spectral density
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FIG. 2: (a) Excess Poissonian noise SEP
1 as a function of V0 and

Vbc. Red (blue) regions indicate super(sub)-Poissonian noise. (b,
c) Single-level (S.L.) and multi-level (M.L.) simulation of SEP

1 , re-
spectively, corresponding to the data region enclosed by the white
dashed parallelogram in (a). At the four colored dots superimposed
on (c), where SEP

1 is most positive, energy diagrams are illustrated
in the correspondingly colored frames at the bottom. In these dia-
grams, black (white) arrows indicate electron (hole) transport; the
greyscale color in the reservoirs and inside the circles on each level
indicates electron population: the darker the higher.

time as tunneling out is suppressed by the finite electron
occupation in the reservoirs at the level energy. Dur-
ing this time, transport is blocked since the large charg-
ing energy prevents more than one non-negative-indexed
level from being occupied at a time. This blockade hap-
pens dynamically during transport, leading to electron
bunching and thus to super-Poissonian noise. At the lo-
cation of the green dot on the lower-left edge in Fig. 2(c),
the transport involves transitions between the (N + 1)-
electron ground state and N -electron ground or excited
states; a similar dynamical blockade occurs in a com-
plementary hole transport picture. The hole transport
through level 0 is slowed down by the finite hole oc-
cupation in reservoir 0, modulating the hole transport
through levels -1, -2 and -3, thus leading to hole bunch-
ing and super-Poissonian noise. Transport at the blue
(orange) dot is similar to transport at the pink (green)
dot, but with the chemical potentials in reservoirs 0 and
1 swapped. One detail present in both the SEP

1 data and
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FIG. 3: (a) The device in the three-lead configuration, in which
the data for this figure and for Fig. 4 are taken. (b) S12, integrated
for 200 s, and −4kBTeg12 over a CB peak at zero bias. Left and
right axes are in different units but both apply to the data. (c)
S12 as a function of V0 and Vbc. Red (blue) regions indicate posi-
tive (negative) cross-correlation. (d, e) Single-level and multi-level
simulation of S12, respectively, corresponding to the data region
enclosed by the white dashed parallelogram in (c).

multi-level simulation is that SEP
1 is stronger along the

edges for electron transport than along the edges for hole
transport. This is due to the energy dependence of the
tunneling rates: since the positive(negative)-indexed lev-
els have higher (lower) energy and tunneling rates com-
pared to level 0, the dynamical modulation due to elec-
tron (hole) transport is enhanced (weakened).

We now turn to the three-lead configuration by open-
ing lead 2 [see Fig. 3(a)]. We first measure S12 at zero
bias, and find the expected cross-correlation from ther-
mal noise: S12 = −4kBTeg12 [29]. To minimize this ther-
mal contribution to S12 for reasons discussed below, we
tune the input and output barriers asymmetrically, with
g01 ≈ g02 ≈ 4g12. Figure 3(c) shows S12 as a function of
Vbc and V0 over a few CB diamonds. The color image of
S12 shows a pattern very similar to that of SEP

1 in the
two-lead configuration [Fig. 2(a)]: S12 is zero inside the
diamonds, negative well inside the transport triangles,
and positive along the diamond edges.
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S12 (green markers) versus SEP for the same data as in (a). The
solid black line has a slope of 1/4, the value expected for a 50/50
beam-splitter.

Both the single-level and multi-level models can be ex-
tended to include the third lead [12, 26]. Figures 3(d)
and 3(e) show the single-level and multi-level simula-
tions of S12, respectively. Similar to the two-lead case,
only the multi-level model reproduces the positive cross-
correlation along the diamond edges.

The observed similarity between S12 in the three-
lead case and SEP

1 in the two-lead case motivates us
to investigate the relationship between S12 and the to-
tal excess Poissonian noise SEP = S1 + S2 + 2S12 −
2e(I1 + I2) coth(eV0/2kBTe) in the three-lead dot. Fig-
ure 4 shows SEP and S12 along the arbitrarily chosen
cut at V0 = +0.5 mV, and reveals a linear relationship
S12 = SEP/4. This is reminiscent of electronic HBT-type
experiments [3, 4, 18], where the cross-correlation follow-
ing a beam-splitter is proportional to the total output
current noise in excess of the Poissonian value, with a ra-
tio of 1/4 for a 50/50 beam-splitter. This demonstrates
that the three-lead dot, at the present barrier settings,
can be viewed as a two-lead dot followed by an ideal
beam-splitter. Therefore, dynamical channel blockade,
which leads to super-Poissonian noise in the two-lead dot,
also leads to positive cross-correlation in the three-lead
dot. The observed HBT-like linear relationship holds in
the ideal beam-splitter limit, where the two outputs have
vanishing cross conductance; we approximate this limit
in our device by tuning g01 ≈ g02 # g12. Otherwise, the
thermal noise gives a negative contribution that lowers
S12 below SEP/4, as we have observed both experimen-
tally and in simulation (not shown).

In conclusion, we have observed super-Poissonian noise
in a two-lead dot and positive cross-correlation in a three-
lead dot along the edges of CB diamonds. A comparison
of the data to both a single-level model and a multi-
level model suggests that the observed positive correla-
tions arise from dynamical channel blockade in multi-
level transport. In the three-lead case, in the limit of
opaque output barriers, we have found an HBT-like linear

relationship between the cross-correlation and the total
excess Poissonian noise.
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Considered individually, Coulomb repulsion and Fermi
statistics both tend to smooth electron flow, thereby reduc-
ing shot noise below the uncorrelated Poissonian limit
[1,2]. For similar reasons, Fermi statistics without inter-
actions also induces a negative noise cross correlation in
multiterminal devices [1–4]. It is therefore surprising that,
under certain conditions, the interplay between Fermi sta-
tistics and Coulomb interaction can lead to electron bunch-
ing, i.e., super-Poissonian autocorrelation and positive
cross correlation of electronic noise.

The specific conditions under which such positive noise
correlations can arise has been the subject of numerous
theoretical [5–14] and experimental [14–23] studies in the
past few years. Super-Poissonian noise observed in metal-
semiconductor field effect transistors [15], tunnel barriers
[16], and self-assembled stacked quantum dots [17] has
been attributed to interacting localized states [10,15,24]
occurring naturally in these devices. In more controlled
geometries, super-Poissonian noise has been associated
with inelastic cotunneling [9] in a nanotube quantum dot
[20] and with dynamical channel blockade [11,12] in
GaAs=AlGaAs quantum dots in the weak-tunneling [21]
and quantum Hall regimes [22]. Positive noise cross cor-
relation has been observed in a capacitively coupled double
dot [23] as well as in electronic beam splitters following
either an inelastic voltage probe [5–8,19] or a super-
Poissonian noise source [18]. The predicted positive noise
cross correlation in a three-lead quantum dot [12] has not
been reported experimentally to our knowledge.

This Letter describes measurement of current noise
auto- and cross correlation in a Coulomb-blockaded quan-
tum dot configured to have either two or three leads. As a
function of gate voltage and bias, regions of super- and
sub-Poissonian noise, as well as positive and negative noise
cross correlation, are identified. Results are in good agree-
ment with a multilevel sequential-tunneling model in
which electron bunching arises from dynamical channel

blockade [11,12]. For weak-tunneling output leads, noise
cross correlation in the three-lead configuration is found to
be proportional to the deviation of the autocorrelation from
the Poissonian value (either positive or negative) similar to
the relation found in electronic Hanbury Brown-Twiss
(HBT)-type experiments [3,4,18].

The quantum dot is defined by gates on the surface of a
GaAs=Al0:3Ga0:7As heterostructure [Fig. 1(a)]. The two-
dimensional electron gas 100 nm below the surface has
density 2! 1011 cm"2 and mobility 2! 105 cm2=Vs.
Leads formed by gate pairs Vl-Vbl, Vr-Vbr, and Vl-Vr con-
nect the dot to three reservoirs labeled 0, 1, and 2, respec-
tively. Plunger gate voltage Vbc controls the electron
number in the dot, which we estimate to be #100. The
constriction formed by Vtl-Vl is closed.

A 3He cryostat is configured to allow simultaneous
conductance measurement near dc and noise measurement
near 2 MHz [25]. For dc measurements, the three reservoirs
are each connected to a voltage amplifier, a current source,
and a resistor to ground (r $ 5 k!). The resistor r converts
the current I! out of reservoir ! to a voltage signal mea-
sured by the voltage amplifier; it also converts the current
from the current source to a voltage excitation V! applied
at reservoir !. The nine raw differential conductance ma-
trix elements ~g!" $ dI"=dV! are measured simulta-
neously with lock-in excitations of 20 #Vrms at 44, 20,
and 36 Hz on reservoirs 0, 1, and 2, respectively.
Subtracting r from the matrix ~g yields the intrinsic con-
ductance matrix g $ %E& r~g'"1 ( ~g, where E is the iden-
tity matrix. Ohmic contact resistances (#103!) are small
compared to dot resistances (*105!) and are neglected in
the analysis. Values for the currents I! with bias V0 applied
to reservoir 0 are obtained by numerically integrating ~g0!.

Fluctuations in currents I1 and I2 are extracted from
voltage fluctuations around 2 MHz across separate
resistor-inductor-capacitor (RLC) resonators [Fig. 1(a)].
Power spectral densities SV1;2 and cross-spectral density
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FIG. 2: (a) Excess Poissonian noise SEP
1 as a function of V0 and

Vbc. Red (blue) regions indicate super(sub)-Poissonian noise. (b,
c) Single-level (S.L.) and multi-level (M.L.) simulation of SEP

1 , re-
spectively, corresponding to the data region enclosed by the white
dashed parallelogram in (a). At the four colored dots superimposed
on (c), where SEP

1 is most positive, energy diagrams are illustrated
in the correspondingly colored frames at the bottom. In these dia-
grams, black (white) arrows indicate electron (hole) transport; the
greyscale color in the reservoirs and inside the circles on each level
indicates electron population: the darker the higher.

time as tunneling out is suppressed by the finite electron
occupation in the reservoirs at the level energy. Dur-
ing this time, transport is blocked since the large charg-
ing energy prevents more than one non-negative-indexed
level from being occupied at a time. This blockade hap-
pens dynamically during transport, leading to electron
bunching and thus to super-Poissonian noise. At the lo-
cation of the green dot on the lower-left edge in Fig. 2(c),
the transport involves transitions between the (N + 1)-
electron ground state and N -electron ground or excited
states; a similar dynamical blockade occurs in a com-
plementary hole transport picture. The hole transport
through level 0 is slowed down by the finite hole oc-
cupation in reservoir 0, modulating the hole transport
through levels -1, -2 and -3, thus leading to hole bunch-
ing and super-Poissonian noise. Transport at the blue
(orange) dot is similar to transport at the pink (green)
dot, but with the chemical potentials in reservoirs 0 and
1 swapped. One detail present in both the SEP

1 data and
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FIG. 3: (a) The device in the three-lead configuration, in which
the data for this figure and for Fig. 4 are taken. (b) S12, integrated
for 200 s, and −4kBTeg12 over a CB peak at zero bias. Left and
right axes are in different units but both apply to the data. (c)
S12 as a function of V0 and Vbc. Red (blue) regions indicate posi-
tive (negative) cross-correlation. (d, e) Single-level and multi-level
simulation of S12, respectively, corresponding to the data region
enclosed by the white dashed parallelogram in (c).

multi-level simulation is that SEP
1 is stronger along the

edges for electron transport than along the edges for hole
transport. This is due to the energy dependence of the
tunneling rates: since the positive(negative)-indexed lev-
els have higher (lower) energy and tunneling rates com-
pared to level 0, the dynamical modulation due to elec-
tron (hole) transport is enhanced (weakened).

We now turn to the three-lead configuration by open-
ing lead 2 [see Fig. 3(a)]. We first measure S12 at zero
bias, and find the expected cross-correlation from ther-
mal noise: S12 = −4kBTeg12 [29]. To minimize this ther-
mal contribution to S12 for reasons discussed below, we
tune the input and output barriers asymmetrically, with
g01 ≈ g02 ≈ 4g12. Figure 3(c) shows S12 as a function of
Vbc and V0 over a few CB diamonds. The color image of
S12 shows a pattern very similar to that of SEP

1 in the
two-lead configuration [Fig. 2(a)]: S12 is zero inside the
diamonds, negative well inside the transport triangles,
and positive along the diamond edges.
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Measurements of the spin relaxation rate at low magnetic fields in a quantum dot

S. Amasha,1, ∗ K. MacLean,1 Iuliana Radu,1 D. M. Zumbühl,1, 2 M. A. Kastner,1 M. P. Hanson,3 and A. C. Gossard3

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2Department of Physics and Astronomy, University of Basel,

Klingelbergstrasse 82, CH-4056 Basel, Switzerland
3Materials Department, University of California, Santa Barbara 93106-5050

We measure the relaxation rate W ≡ T1
−1 of a single electron spin in a quantum dot at magnetic

fields from 7 T down to 1.75 T, much lower than previously measured. At 1.75 T we find that
T1 is 170 ms. We find good agreement between our measurements and theoretical predictions of
the relaxation rate caused by the spin-orbit interaction, demonstrating that spin-orbit coupling can
account for spin relaxation in quantum dots.

PACS numbers: 73.63.Kv, 03.67.Lx, 76.30.-v

To implement proposals [1] for quantum computation
based on manipulating electron spins [2] in quantum dots
[3], the spin of the electron must remain coherent for a
sufficiently long period of time. One decoherence mech-
anism that can affect this time is spin-orbit coupling [4].
In a magnetic field B the spin states of a single electron in
a dot are split by the Zeeman energy ∆ = |g|µBB. The
energy relaxation time T1 is the average time necessary
for an electron in the excited spin state to relax to the
ground spin state. In single quantum dots, it has been
predicted [4, 5, 6] that spin relaxation is caused by the
spin-orbit interaction and that T1 increases with decreas-
ing magnetic field. Pulsed gate transport measurements
[7, 8] have put lower bounds on T1, while Elzerman et

al. [9] have utilized an energy-selective spin readout tech-
nique to measure T1 for one electron in a single dot at
large magnetic fields and found T1 = 0.85 ms at B = 8
T. Hanson et al. [10] have measured the singlet-triplet
relaxation time at smaller fields for two electrons.

In this Letter, we present measurements of the relax-
ation rate W ≡ T1

−1 of one electron in a single dot at
magnetic fields from 7 T down to 1.75 T, much lower
than previously measured. These measurements are pos-
sible because of the good stability of the heterostructure
we used combined with an active feedback system that
compensates for residual drift and switches of the dot en-
ergy levels, allowing us to measure down to fields where
∆ is comparable to our electron temperature. We find
relaxation times as long as 170 ms at 1.75 T. We com-
pare our measurements of W vs B to theoretical predic-
tions by Golovach et al. [4] of the relaxation rate caused
by spin-orbit coupling and find excellent agreement be-
tween theory and experiment. This demonstrates that
spin-orbit coupling can account for the relaxation of the
spin of a single electron in a quantum dot.

The dot used in this work is fabricated from an Al-
GaAs/GaAs heterostructure. The two-dimensional elec-
tron gas (2DEG) formed at the AlGaAs/GaAs interface
110 nm below the surface has an electron density of
2.2× 1011 cm−2 and a mobility of 6.4× 105 cm2/Vs [11].
The gate geometry is shown in Fig. 1(a) and is based on

that of Ciorga et al. [12]. We choose gate voltages so
that we form a single dot containing one electron. For
this work we have tuned the barrier formed by the gates
OG and SG1 to have a tunnel rate much lower than the
rate through the barrier defined by OG and SG2. We
measure the dot in a dilution refrigerator with an elec-
tron temperature of about 120 mK. To minimize orbital
effects we align the 2DEG parallel to the magnetic field
to within a few degrees.

We use the quantum point contact (QPC) formed by
SG2 and QG2 as a sensitive electrometer or charge sen-
sor [13] for the dot. The detection circuit is illustrated
in Fig. 1(a) and more details are in Refs. [14, 15, 16].
If an electron tunnels onto or off the dot, it changes the
electrochemical potential of the electrons in the QPC,
which in turn causes a change in resistance δR. We ob-
serve δR by sourcing a 1− 2 nA current across the QPC
and measuring the change in voltage δVQPC. By mak-
ing the tunneling rate through the OG-SG2 barrier less
than the bandwidth of our circuit, we observe the elec-
tron tunneling in real time [9, 17, 18]. Our typical signal
size of 10µV is approximately 5% of the total voltage
across the QPC; this good sensitivity may come from
making the gate SG2 between the dot and the QPC nar-
row, which increases the coupling between the dot and
the QPC [19]. The small QPC current does not heat the
electrons, which is important because it is our electron
temperature which sets the lower limit on the fields we
can measure.

To measure W at a given magnetic field, we apply a
three step pulse sequence [9] Vp on top of the dc volt-
age on gate LP2: VLP2 = Vdc + Vp. This sequence is
illustrated in Fig. 1(e), where we have converted the gate
voltage pulse Vp into the equivalent electrochemical po-
tential energy change of the dot: Ep = −eαLP2Vp, where
αLP2 ≈ 0.065 is the capacitance ratio for gate LP2 ex-
tracted from transport measurements [15]. The first step
is to apply a negative Vp to bring both spin states above
the Fermi energy of the lead, as shown in Fig. 1(b). We
hold the dot in this configuration for a fixed time ti, dur-
ing which time the electron can tunnel off the dot. After
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Measurements of the spin relaxation rate at low magnetic fields in a quantum dot
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We measure the relaxation rate W ≡ T1
−1 of a single electron spin in a quantum dot at magnetic

fields from 7 T down to 1.75 T, much lower than previously measured. At 1.75 T we find that
T1 is 170 ms. We find good agreement between our measurements and theoretical predictions of
the relaxation rate caused by the spin-orbit interaction, demonstrating that spin-orbit coupling can
account for spin relaxation in quantum dots.

PACS numbers: 73.63.Kv, 03.67.Lx, 76.30.-v

To implement proposals [1] for quantum computation
based on manipulating electron spins [2] in quantum dots
[3], the spin of the electron must remain coherent for a
sufficiently long period of time. One decoherence mech-
anism that can affect this time is spin-orbit coupling [4].
In a magnetic field B the spin states of a single electron in
a dot are split by the Zeeman energy ∆ = |g|µBB. The
energy relaxation time T1 is the average time necessary
for an electron in the excited spin state to relax to the
ground spin state. In single quantum dots, it has been
predicted [4, 5, 6] that spin relaxation is caused by the
spin-orbit interaction and that T1 increases with decreas-
ing magnetic field. Pulsed gate transport measurements
[7, 8] have put lower bounds on T1, while Elzerman et

al. [9] have utilized an energy-selective spin readout tech-
nique to measure T1 for one electron in a single dot at
large magnetic fields and found T1 = 0.85 ms at B = 8
T. Hanson et al. [10] have measured the singlet-triplet
relaxation time at smaller fields for two electrons.

In this Letter, we present measurements of the relax-
ation rate W ≡ T1

−1 of one electron in a single dot at
magnetic fields from 7 T down to 1.75 T, much lower
than previously measured. These measurements are pos-
sible because of the good stability of the heterostructure
we used combined with an active feedback system that
compensates for residual drift and switches of the dot en-
ergy levels, allowing us to measure down to fields where
∆ is comparable to our electron temperature. We find
relaxation times as long as 170 ms at 1.75 T. We com-
pare our measurements of W vs B to theoretical predic-
tions by Golovach et al. [4] of the relaxation rate caused
by spin-orbit coupling and find excellent agreement be-
tween theory and experiment. This demonstrates that
spin-orbit coupling can account for the relaxation of the
spin of a single electron in a quantum dot.

The dot used in this work is fabricated from an Al-
GaAs/GaAs heterostructure. The two-dimensional elec-
tron gas (2DEG) formed at the AlGaAs/GaAs interface
110 nm below the surface has an electron density of
2.2× 1011 cm−2 and a mobility of 6.4× 105 cm2/Vs [11].
The gate geometry is shown in Fig. 1(a) and is based on

that of Ciorga et al. [12]. We choose gate voltages so
that we form a single dot containing one electron. For
this work we have tuned the barrier formed by the gates
OG and SG1 to have a tunnel rate much lower than the
rate through the barrier defined by OG and SG2. We
measure the dot in a dilution refrigerator with an elec-
tron temperature of about 120 mK. To minimize orbital
effects we align the 2DEG parallel to the magnetic field
to within a few degrees.

We use the quantum point contact (QPC) formed by
SG2 and QG2 as a sensitive electrometer or charge sen-
sor [13] for the dot. The detection circuit is illustrated
in Fig. 1(a) and more details are in Refs. [14, 15, 16].
If an electron tunnels onto or off the dot, it changes the
electrochemical potential of the electrons in the QPC,
which in turn causes a change in resistance δR. We ob-
serve δR by sourcing a 1− 2 nA current across the QPC
and measuring the change in voltage δVQPC. By mak-
ing the tunneling rate through the OG-SG2 barrier less
than the bandwidth of our circuit, we observe the elec-
tron tunneling in real time [9, 17, 18]. Our typical signal
size of 10µV is approximately 5% of the total voltage
across the QPC; this good sensitivity may come from
making the gate SG2 between the dot and the QPC nar-
row, which increases the coupling between the dot and
the QPC [19]. The small QPC current does not heat the
electrons, which is important because it is our electron
temperature which sets the lower limit on the fields we
can measure.

To measure W at a given magnetic field, we apply a
three step pulse sequence [9] Vp on top of the dc volt-
age on gate LP2: VLP2 = Vdc + Vp. This sequence is
illustrated in Fig. 1(e), where we have converted the gate
voltage pulse Vp into the equivalent electrochemical po-
tential energy change of the dot: Ep = −eαLP2Vp, where
αLP2 ≈ 0.065 is the capacitance ratio for gate LP2 ex-
tracted from transport measurements [15]. The first step
is to apply a negative Vp to bring both spin states above
the Fermi energy of the lead, as shown in Fig. 1(b). We
hold the dot in this configuration for a fixed time ti, dur-
ing which time the electron can tunnel off the dot. After
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FIG. 1: (a) Electron micrograph of the gate geometry. Neg-
ative voltages are applied to the labeled gates to form the
quantum dot and the QPC charge sensor; unlabeled gates are
grounded. Pulses are applied to gate LP2. The drain and
source electrodes are labeled and are grounded. (b)-(d) dia-
grams showing the configuration of energy levels for the three
steps in the pulse sequence shown in (e). (f) and (g) are ex-
amples of data taken at B = 2.5 T and tw = 4 ms. The
direct capacitive coupling between LP2 and the QPC causes
the QPC to respond to the pulse sequence; electron tunneling
events are evident on top of this response. The 0’s denote
when an electron tunnels off the dot, while 1’s denote when
an electron tunnels on.

time ti the dot is in one of three possible states: there is a
probability Pi that the dot is ionized given by the ioniza-
tion efficiency εi = 1 − e−Γiti , where Γi is the tunnel-off
rate. In this work, εi ≈ 0.95. The probability of being in
the ground state is Pg ≈ 1 − εi. Finally, the probability
of being in the excited state is thermally suppressed and

is Pe = e−∆/kBT Pg, which is negligible.

After ionizing the dot, we apply a positive Vp and
bring both states below the Fermi energy of the lead as
shown in Fig. 1(c). We hold the dot in this configura-
tion for a time tw, which we vary. During this time,
electrons tunnel into either the ground or excited states
of the dot with rates Γg and Γe, respectively. We ex-
pect that Γe/Γt = 0.5 where Γt = Γe + Γg, but we do
not assume this a-priori, since we extract Γe/Γt from our
measurements. During tw, the electrons can relax from
the excited to the ground state with a rate W . The

rate equations describing the model are Ṗi = −ΓtPi and
Ṗe = ΓePi −WPe. Solving these equations, we find that
the probabilities for being in the three states after time
tw are given by

Pi(tw) = εie
−Γttw (1)

Pe(tw) = εi
Γe

Γt

Γt

Γt − W
(e−Wtw − e−Γttw) (2)

and Pg = 1 − Pe − Pi. It is important to note that
in Eq. 2 the tw dependence of Pe depends only on W
and Γt. In particular, Eq. 2 has a maximum at tw =
ln(Γt/W )/(Γt − W ). We can measure Γt from the tw
dependence of Pi and then use the tw dependence of Pe

to determine W .
The third step in the pulse sequence is the real-time

readout, shown in Fig. 1(d). We follow Elzerman et al. [9]
and position the levels so that the excited state is above
the Fermi energy of the lead and the ground state is below
the Fermi energy. In this configuration, an electron in
the excited spin state can quickly tunnel off the dot with
rate Γoff , while the tunneling rate of an electron in the
ground state is exponentially suppressed.

Figure 1(f-g) show examples of two types of data. In
Fig. 1(f) we see that an electron tunnels off during the
ionization pulse and back on during the charging pulse.
When we enter the readout stage, an electron tunnels off
the dot, presumably from the excited state, at a time toff

after the end of the charging pulse. Shortly after this, an
electron tunnels back onto the empty dot. We call this
behavior a ‘tunnel-off’ event. In contrast, in Fig. 1(g)
we see an electron tunnel off during the ionization pulse,
but no electron tunnels on during the charging pulse.
Thus the dot is empty entering the readout stage and
the first event in this stage is an electron tunneling onto
the empty dot. We call this an ‘ionization event’, and
measure the time ton between the end of the charging
pulse and the time when an electron tunnels onto the dot.
The times toff and ton are measured using a triggering
and acquisition system described in Ref. [15].

For a given tw and B we repeat the pulse sequence
Npulse times, where Npulse is typically between 1 × 104

and 1.5 × 105. We histogram the measurements of toff

from tunnel-off events; the results are shown in Fig. 2(a)
and (b) for two different sets of tw and B. The data
are fit well by an exponential on top of a constant offset.
The exponential portion of the data is caused by fast
tunneling out of the excited spin state (Fig. 2(c)), while
the offset is caused by slow tunneling out of the ground
spin state (Fig. 2(d)). Although the energy of the ground
spin state is below the Fermi energy of the lead, there is
still a slow rate for tunneling out of the ground state given
by Γb = Γoff(1 − f(Edot))/(1 − f(Edot + ∆)), where f
is the Fermi function and Edot < 0 is the depth of the
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FIG. 3: (a) relaxation rate W as a function of magnetic field.
The solid line is a theoretical prediction from the work of
Golovach et al. [4] and is discussed in the text. (b) Γe/Γt as a
function of magnetic field. From these data we see that Γe/Γt

is independent of field and is close to 0.5. The data point at
B = 5.6 is Γe/Γt = 2.2 ± 5.8 and is not shown. The large
errors result from a large error in η at this field.

solid lines in the lower panels in Fig. 2(f) and (g), give
excellent agreement with our data.

From the upper and lower panels of Fig. 2(f) and (g),
one can explicitly see the relationship between Pi(tw)
and Pe(tw) in two different regimes. When Γt > W
(Fig. 2(f)), Pe increases on the time scale of Γ−1

t and de-
cays on the time scale of W−1. When W > Γt (Fig. 2(g)),
Pe increases on the time scale of W−1 and decays on the
scale of Γ−1

t . Measuring Γt directly from Pi allows us to
determine W over a large dynamic range.

Using these methods, we measure W as a function
of magnetic field. The data are plotted in Fig. 3(a).
At low fields, the relaxation rate becomes very slow:
we measure T1 = 170 ms at B = 1.75 T. Golovach
et al. [4] have calculated the relaxation rate caused by
spin-orbit coupling between the spin of the electron in
the dot and phonons. As inputs to this calculation
we use |g| = 0.38, which we measure using cotunnel-
ing spectroscopy [21], as well as parameters of phonons
in GaAs. Also required is h̄ω0, the energy level spac-
ing of a parabolic potential well that approximates the
confining potential of the dot. We estimate this quan-
tity from the energy of the first excited orbital state and
find h̄ω0 = 2 meV from transport measurements [16].
The solid line in Fig. 3(a) shows the results of the cal-
culation using these parameters. We find that a spin-
orbit length λSO = 3 µm gives a curve that agrees well
with our data. The contribution of the Dresselhaus and
Rashba terms to λSO depends on the orientation of the
GaAs crystal with respect to the magnetic field. For
our orientation [22] and assuming a symmetric parabolic
well, we have λ−1

SO = |λ−1
α − λ−1

β | where λα = h̄/m∗α,
λβ = h̄/m∗β, and α and β are the Rashba and Dres-
selhaus spin-orbit terms respectively in the Hamiltonian
HSO = β(−pxσx + pyσy) + α(pxσy − pyσx) [4]. This
value of λSO is in good agreement with measurements

of spin-orbit length scales obtained from antilocalization
measurements in quantum dots [23].

We can also extract the value of Γe/Γt as a function of
field. From our fits to data such as those in Fig. 2(f) and
(g), we are able to extract ηεiΓe/Γt and εi. We can obtain
η by noting that η = (R − W )/R, where R = Γoff + W
and is measured directly from histograms such as those
in Fig. 2(a) and (b). This allows us to obtain Γe/Γt at
each value of magnetic field. These values are plotted in
Fig. 3(b). We see the values are independent of field and
very close to 0.5 as we expect.

Using our real-time readout technique, we measure W
as a function of B down to very low magnetic fields. We
find the relaxation rate increases with field, as predicted
by theory [4, 5]. A quantitative comparison between our
measurements and theory gives good agreement, demon-
strating that spin-orbit coupling can account for spin re-
laxation in single quantum dots with one electron.
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spin qubits

|S〉 = | ↑↓〉 − | ↓↑〉

|T 〉 = | ↑↑〉, | ↑↓〉 + | ↓↑〉, | ↓↓〉

|T 〉

|S〉

V
gate

Vgate

two-electron states
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Artificial Helium Atom - Hydrogen Molecule:
An entanglement generator

|S〉 = | ↑↓〉 − | ↓↑〉

|S〉

|S〉

helium
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Fig. 5. (A) Spin-echo
pulse sequence. The
system is initialized
in (0,2)S and trans-
ferred to S by rapid
adiabatic passage. Af-
ter a time tS at large
negative detuning, S
has dephased into a
mixture of S and T0
due to hyperfine inter-
actions. A z-axis p
pulse is performed by
making detuning less
negative, moving to a
region with sizable
J(e) for a time tE.
Pulsing back to nega-
tive detunings for a
time tS¶ 0 tS refocuses
the spin singlet. (B)
PS as a function of
detuning and tE. The
z-axis rotation angle
f 0 J(e)tE/I results
in oscillations in PS
as a function of both
e and tE. (Inset) Model
of PS using J(e) ex-
tracted from the S-Tþ
resonance condition,
assuming g* 0 –0.44
and ideal measure-
ment contrast (from
0.5 to 1). (C) Echo
recovery amplitude PS
plotted as a function
of tS – tS¶ for in-
creasing tS þ tS¶ (red points), along with fits to a Gaussian with adjustable
height and width. The best-fit width gives T2* 0 9 ns, which is consistent
with the value T2* 0 10 ns obtained from singlet decay measurements

(Fig. 3B). Best-fit heights (black points) along with the exponential fit to the
peak height decay (black curve) give a lower bound on the coherence time T2
of 1.2 ms.
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Fig. 5. (A) Spin-echo
pulse sequence. The
system is initialized
in (0,2)S and trans-
ferred to S by rapid
adiabatic passage. Af-
ter a time tS at large
negative detuning, S
has dephased into a
mixture of S and T0
due to hyperfine inter-
actions. A z-axis p
pulse is performed by
making detuning less
negative, moving to a
region with sizable
J(e) for a time tE.
Pulsing back to nega-
tive detunings for a
time tS¶ 0 tS refocuses
the spin singlet. (B)
PS as a function of
detuning and tE. The
z-axis rotation angle
f 0 J(e)tE/I results
in oscillations in PS
as a function of both
e and tE. (Inset) Model
of PS using J(e) ex-
tracted from the S-Tþ
resonance condition,
assuming g* 0 –0.44
and ideal measure-
ment contrast (from
0.5 to 1). (C) Echo
recovery amplitude PS
plotted as a function
of tS – tS¶ for in-
creasing tS þ tS¶ (red points), along with fits to a Gaussian with adjustable
height and width. The best-fit width gives T2* 0 9 ns, which is consistent
with the value T2* 0 10 ns obtained from singlet decay measurements

(Fig. 3B). Best-fit heights (black points) along with the exponential fit to the
peak height decay (black curve) give a lower bound on the coherence time T2
of 1.2 ms.
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We study the decoherence of a single electron spin in an isolated quantum dot induced by hyperfine
interaction with nuclei. The decay is caused by the spatial variation of the electron wave function within
the dot, leading to a nonuniform hyperfine coupling A. We evaluate the spin correlation function and
find that the decay is not exponential but rather power (inverse logarithm) lawlike. For polarized nuclei
we find an exact solution and show that the precession amplitude and the decay behavior can be tuned
by the magnetic field. The decay time is given by h̄N!A, where N is the number of nuclei inside the
dot, and the amplitude of precession decays to a finite value. We show that there is a striking difference
between the decoherence time for a single dot and the dephasing time for an ensemble of dots.

DOI: 10.1103/PhysRevLett.88.186802 PACS numbers: 73.21.La, 76.20.+q, 76.60.Es, 85.35.Be

The spin dynamics of electrons in semiconducting
nanostructures has become of central interest in recent
years [1]. The controlled manipulation of spin, and in
particular of its phase, is the primary prerequisite needed
for novel applications in conventional computer hardware
as well as in quantum information processing. It is
thus desirable to understand the mechanisms which limit
the spin phase coherence of electrons, in particular in
GaAs semiconductors, which have been shown to exhibit
unusually long spin decoherence times T2 exceeding
100 ns [2]. Since in GaAs each nucleus carries spin, the
hyperfine interaction between electron and nuclear spins
is unavoidable, and it is therefore important to understand
its effect on the electron spin dynamics [3]. This is
particularly so for electrons which are confined to a closed
system such as a quantum dot with a spin 1!2 ground
state, since, besides fundamental interest, these systems
are promising candidates for scalable spin qubits [4]. For
recent work on spin relaxation (characterized by T1 times)
in GaAs nanostructures we refer to Refs. [5–7].

Motivated by this we investigate in the following the
spin dynamics of a single electron confined to a quantum
dot in the presence of nuclear spins. We treat the case of
unpolarized nuclei perturbatively, while for the fully po-
larized case we present an exact solution for the spin dy-
namics and show that the decay is nonexponential and can
be strongly influenced by external magnetic fields. We use
the term “decoherence” to describe the case with a single
dot, and the term “dephasing” for an ensemble of dots [8].
The typical fluctuating nuclear magnetic field seen by the
electron spin via the hyperfine interaction is of the order
of [9] "A!

p
N gmB, with an associated electron preces-

sion frequency vN # A!
p

N , where A is a hyperfine con-
stant, g the electron g factor, and mB the Bohr magneton.
For a typical dot size the electron wave function covers
approximately N ! 105 nuclei, then this field is of the
order of 100 G in a GaAs quantum dot. The nuclei in

turn interact with each other via dipolar interaction, which
does not conserve the total nuclear spin and thus leads to
a change of a given nuclear spin configuration within the
time Tn2 $ 1024 s, which is just the period of precession
of a nuclear spin in the local magnetic field generated by
its neighbors.

We note that there are two different regimes of interest,
depending on the parameter vN tc, where tc is the corre-
lation time of the nuclear field. The simplest case is given
by the perturbative regime vN tc ø 1, characterized by
dynamical narrowing: different random nuclear configu-
rations change quickly in time and, as a result, the spin
dynamics is diffusive with a dephasing time #1!v2

Ntc.
A more difficult situation arises when vNtc ¿ 1, requir-
ing a nonperturbative approach. It is this regime which
we will consider in this paper, i.e., the electron is local-
ized in a quantum dot, and the correlation time is due to
the internal nuclear spin dynamics, i.e., tc ! Tn2, giving
vN tc ! 104. Next, we need to address the important is-
sue of averaging over different nuclear spin configurations
in a single dot. Without internal nuclear spin dynamics,
i.e., Tn2 ! `, no averaging is indicated. However, each
flip-flop process (due to hyperfine interaction) creates a
different nuclear configuration, and because of the spatial
variation of the hyperfine coupling constants inside the dot,
this leads to a different value of the nuclear field seen by
the electron spin and thus to its decoherence. Below we
will find that this decoherence is nonexponential, but still
we can indicate a characteristic time given by %A!h̄N &21

[8]. Moreover, we shall find that Tn2 ¿ %A!h̄N &21, and
thus still no averaging over the nuclear configurations is
indicated (and dipolar interactions will be neglected hence-
forth). To underline the importance of this point, we will
contrast below the unaveraged correlator with its average.

Unpolarized nuclei.—We consider a single electron
confined to a quantum dot whose spin S couples to an
external magnetic field B and to nuclear spins 'Ii( via
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Hahn Echo in S - T0 basis
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Measuring and using the nuclear environment
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High-bandwidth QPC detection scope~
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3

cessible. A cyclical gate-pulse sequence is used to prepare
and manipulate two-electron spin states as illustrated in
the inset to Fig. 2(d). The (2,0)S state is first prepared
(P) by configuring the dot in (2,0) where the transition
(2,0)T→(1,0)→(2,0)S occurs rapidly. Gate pulses next
shift to a separation point (S) in (1,1) for a time τS where
singlet-triplet evolution results from a difference in the
Overhauser-field between the two dots: Bl

nuc − Br
nuc=

∆Bnuc. Via control of the pulse amplitude, ε is set so
that singlets mix with either the T0 or T+ triplet (at fi-
nite B). Finally gate pulses project back into (2,0) (M)
for time τM <5µs, performing spin-to- charge conversion
since only the singlet state can tunnel.

Figures 2(b,c) show RF-Out during cyclic gate pulsing
where most of the pulse sequence time is spent in the
measurement state. In order to measure a statistically
meaningful probability PS we set the integration time of
the rf-QPC to be longer than 10 pulse cycles (>100µs)
so that the readout signal represents the average charge
configuration during the measurement state. Inside the
triangular region indicated in Fig. 2(b) RF-Out corre-
sponds to a mixture of (2,0) and (1,1) charge states since
triplets remain blocked in (1,1) for a lifetime T1, longer
than τM [14]. Similarly, in Fig. 2(c) (at finite B) the
rectangular region indicated is where the readout signal
corresponds to a mixture of (2,0)S and (1,1)T+ triplet.
In both cases the probability of dephasing the singlet is
calibrated by comparison with signals obtained within
(1,1) (which defines PS=0) and within (2,0) (which de-
fines PS=1).

Measurement of PS as a function of τS , averaged over
time-scales corresponding to many configurations of Bnuc

yields an ensemble dephasing time T ∗2 ∼10ns correspond-
ing to Bnuc ∼2mT. The probabilities measured here do
not require adjustment to account for contrast reduction
in the limit τM << T1 and are consistent with a semiclas-
sical model [28]. The dependence of contrast C on τM

(for a fixed T1 ∼15µs and τS=50ns) is shown in Fig 2.(e),
and follows an exponential form C = 1 − αe−(τM /T1),
where α = PS(∞).

We now investigate the dynamics of PS by fixing
τS=25ns in the cyclic pulse sequence and observing
fluctuations in PS about its mean value of ∼0.5 for
B=100mT. In order to demonstrate that the fluctua-
tions we observe in PS are related to the dynamics of
Bnuc (and not charge noise) we hold VR=709mV and re-
peatably raster VL, cutting across the readout triangle
that yields PS each raster. In this way we are able to
compare signals from within the readout triangle to the
background charge noise outside the triangle. Fig. 3(a)
shows a charge stability diagram with readout triangle
for B = 100mT with corresponding slices shown in Fig.
3(b) as a function of time. The yellow colored signal in
the top section of Fig. 3(b) corresponds to slices across
the readout triangle in Fig. 3(a) and exhibits fluctuations
in time.

For fields B >20mT, fluctuations in PS occur on a
time-scale of seconds and are ∼ 100 times larger than

FIG. 3: (Color online) (a) RF-Out as a function of VL and
VR with cyclic pulse sequence applied (τS=25ns, τM=1.6µs
B=100mT). Intensity scale same as Fig.2(b,c). (b) Repeated
slices in gate-bias with VR=-709mV measured as a function
of time. Light green markers correspond to transitions indi-
cated in (a). (c) PS and background noise as a function of
time obtained from 1D slices of (b) at positions indicasted by
arrows. (d) Similar to (b) but for B=0. (e) Similar to (b)
but with ε adjusted to mix singlet with T+ triplet, (as in Fig
2.(c))

the background charge noise. In contrast, data taken at
B = 0 as shown in Fig. 3(d), exhibits fluctuations in PS

comparable to the background charge noise. Figure 3.(e)
corresponds to mixing of the singlet with the T+ triplet
at weak detuning and also shows rapid fluctuations in
PS (independent of B) that are indistinguishable from
the background charge noise.

To quantitatively investigate the frequency dependence
of the fluctuations we obtain power spectra of PS by fix-
ing the measurement point M of the cyclic pulse sequence
to the center of the readout triangle and sampling RF-
Out. Figs 4.(a,c) shows the power spectra of PS com-
puted via fast Fourier transform of RF-Out. We mea-
sure the background noise of our system by setting τS =
1ns, where PS = 1 and does not fluctuate (black spectra
in Fig. 4(a,c)). This spectra has a 1/f form typical of
charge noise in the QPC and identical to the spectra ob-
tained if we sample the noise outside the measurement
triangle. Although we focus on frequencies <1kHz, where
fluctuations in PS are strongest, spectra up to 100kHz
were also examined.

Setting ε such that singlets mix only with T0 triplets
(at finite B) we find the form of the spectra depends on
τS and B. In comparison with calculations, we find this
noise in PS is related to fluctuations of the nuclear field
gradient dBz = Bz,l − Bz,r associated with nuclear spin
diffusion (Bz is the component of Bnuc aligned with B).

Time evolution of the singlet return probability
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FIG. 4: (Color online) (a) Power spectra of PS for B=100mT
for τS=1ns (black) showing background noise, τS=25ns (red)
and τS=100ns (blue). Inset shows simulation results for
B=100mT, τS=25ns (red) and τS=100ns (blue). Calcula-
tions assume dots with a 8nm wide transverse wavefunction,
and lateral extent ∼23nm. (b) Red data are the correlation
function of PS obtained by inverse Fourier transform of the
τS=25ns power spectra at B=100mT. Black curve is a fit to
the analytical solution of the form in equation 2. The cor-
relation function calculated with our Monte Carlo simulation
is shown in blue. (c) B dependence of the power spectra for
τS=25ns. Black data are background noise obtained by set-
ting τS=1ns at B=100mT. Inset: calculations for correspond-
ing magnetic fields: B=0 (pink), B=5mT (red), B=10mT
(green), B=100mT (blue).

We now outline our calculations that connect noise in
PS to the decorrelation of dBz. Starting with: PS =
1/2 {1 + cos [2τS(dBz)]}, we note that at B >> Bnuc

the correlation function of PS can be determined ana-
lytically for nuclear fields with Gaussian statistics where
the mean value is:〈PS〉 = 1

2 [1 + e−2τ2
S〈dB2

z〉]. The fluc-
tuations, while not necessarily Gaussian, have a second

moment (the variance): 〈PS(t)PS(t′)〉 − 〈PS〉2

=
e−4τ2

S〈dB2
z〉

4
[
cosh(4τ2

S〈dBz(t)dBz(t′)〉)− 1
]

(1)

We model fluctuations in dBz, on distance scales much
larger than the lattice spacing, and time-scales much
longer than the nearest-neighbor dipole-dipole interac-
tion, as a diffusion process with diffusion constant D
specific to GaAs, D = 10−13 cm2/s [7].

At finite B, nuclear spin- electron spin exchange
is suppressed and the nuclear spin correlator 〈Âβ

z (t +
τ)Âβ

z (t)〉 may be evaluated analytically (β labels each
spin species). The final result depends on the shape of
the electron wavefunction. For an oblate spheroid, such
as a lateral quantum dot, with z-axis width σz and x, y
axis width σxy (and τ ≥ 0):

〈Âβ
z (t + τ)Âβ

z (t)〉 =
xβ

[1 + τDβ/σ2
z ]1/2[1 + τDβ/σ2

xy]
(2)

Figure 4.(b) shows the correlation function for PS ob-
tained via a fit to this analytical form. The decorre-
lation time of Âz(t) due to diffusion is given by τd =
minβ,µ(Dβ/σ2

µ) using appropriate dimensions for the
wavefunction. We find reasonable agreement with cor-
relation data (obtained by inverse Fourier transform of
the power spectrum) for B=100mT as shown in Fig.4(b),
indicating τd ∼1s.

At lower B, when the transverse nuclear fields Bx,y

lead to rapid dephasing, analytical evaluation of the cor-
relation function becomes difficult. Alternatively, we
solve the diffusion equation numerically for arbitrary B
using a Monte Carlo approach based on Euler-Maruyama
stochastic integration. In Fig.4(b) we show that our
numerical calculation of the correlation function is in
good agreement with the analytical solution and data.
The transverse field behavior is simulated via rapid de-
phasing of the transverse nuclear components, with a
rate T ∗

2 (nuc)=10kHz. Our calculations indicate that
the power spectra are largely insensitive to variations in
T ∗

2 (nuc), but sensitive to nuclear T1.
The inset of Fig.4(a) shows numerical results for

B=100mT, for different values of τS . Comparison with
data (main panel Fig.4(a)) yields reasonable agreement
when accounting for the additional 1/f noise in the data,
although a suppression in contrast associated with a
short T1 (see Fig.2(e) and discussion) slightly reduces
the magnitude of the data. Via comparison with the
calculations, we find that the role of τS is to filter fluc-
tuations dBz, so that for τS > T ∗

2 long-time correlations
in dBz are suppressed in the spectra of PS (see eq 1).
This filtering effect leads to the turn-over evident in the
τS=100ns data. We note that for τS ∼ T ∗

2 , little filtering
occurs and the power spectra of PS reflect the underlying
fluctuations in dBz (red data in Fig.4(a)).

Spectra taken above B=20mT showed little variation,
with all data resembling the B=100mT shown in Fig.4(c)
(fields up to B=300mT were examined). Below B=20mT

Theory of nuclear spin diffusion in quantum dots

Jake Taylor

2D Monte Carlo simulation

* 25nm x 10nm dot size

* 50nm dot separation
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where

fq(t) = 1 − (1 − cos(ωqt))
(λqS)2(2|A|2)

ξ2ω2
q

. (A26)

We can now evaluate the correlator Cqq′ (t) = 〈(Îq
z (t)−

〈Îq
z 〉)(Îq′

z (0) − 〈Îq′

z 〉)〉 = 〈Îq
z (t)Îq′

z (0)〉 − 〈Îq
z (t)〉〈Îq′

z (0)〉.
The calculation proceeds:

Cqq′ (t) = 〈{δq + λqS

ω2
q

[
λqS

ξωq
($[A]Îq

x + %[a]Îq
y ) +(A27)

(δq + λqS)Îq
z ][1 − cos(ωqt)] (A28)

+Îq
z cos(ωqt) (A29)

+
λqS

ξωq
(%[A]Îq

x −$[A]Îq
y ) sin(ωqt)}Îq′

z 〉(A30)

−〈Îq
z 〉〈Îq′

z 〉fq(t) (A31)

We get

Cqq′ (t) ≈ δqq′〈(Îq
z )2 − 〈Îq

z 〉2〉fq(t) (A32)

This indicates that the short time behavior of the cor-
relator, 〈δB̂z(t)δB̂z(0)〉 goes as

〈δB̂z(0)2〉−
∑

q

λ2
q〈(Îq

z )2−〈Îq
z 〉2〉(

(λqS)22A∗A

ξ2
)t2 (A33)

Roughly,

〈δB̂z(t)δB̂z(0)〉 − 〈δB̂z(0)2〉
〈δB̂z(0)2〉

' − 3B4
nuc

B2
extN

t2

2
. (A34)

This suggests that the spectral function S(ω) for δB̂z(t)
has a high frequency cutoff γ ∼ B2

nuc/Bext

√
N . For ex-

ample, in experiments with N ∼ 106, Bnuc = 3 mT, and
Bext = 100 mT, γ ∼ 10ms−1. The expected spin-echo
time (Section V) is T2,SE = 81/4

√

T ∗
2 /γ ∼ 2µs.

The short time behavior, and thus high frequency be-
havior, is independent of the nuclear Zeeman and Knight
shift terms in the hamiltonian. However, longer time
behavior depends upon these parameters. For example,
when the distribution of δq + Sλq is highly inhomoge-
neous, we may expect that electron-spin-mediated nu-
clear spin exchange is suppressed due to the very different
energies associated with individual nuclei.

APPENDIX B: ADIABATIC ELIMINATION FOR
NUCLEAR-SPIN-MEDIATED INELASTIC

DECAY

We will transform the superoperator (Eqn. 34) into the
interaction picture, but first introduce matrix elements
between the eigenstates of the quasi-static fields and the
state |S〉 occurring in the superoperator. For a single
spin in a magnetic field &B = Bnuc(x, y, z) and |B| =
Bnucn (the roman variables x, y, z, n are chosen such that
the nuclear field contribution will be of order unity), the
eigenstates may be written by rotation from spin states
aligned with the z-axis ({|↑〉 , |↓〉}):

(

|1/2〉
|−1/2〉

)

= lim
x′→x+

1
√

2n(n + z)

(

n + z x′ − iy

x′ + iy −n− z

)(

|↑〉
|↓〉

)

(B1)

The limit is taken only to remove the degenerate case of field anti-aligned with the z-axis, i.e., &B = (0, 0,−B), which
would be degenerate for this matrix, and is implicit in what follows. The corresponding eigenvalues of the Hamiltonian
are ±!Ωn/2 in this notation.

Setting |S〉 = (|↑↓〉 − |↓↑〉)/
√

2 and using the single spin transformations for l and r separately (with &Bl =
Bl

nuc(xl, yl, zl), |Bl| = nl and similarly for r), we write

c1/2,1/2 =

〈

1

2
,
1

2

∣

∣

∣

∣

S

〉

=
1

N [(xl + iyl)(nr + zr) − (nl + zl)(xl + iyl)] (B2)

c1/2,−1/2 =

〈

1

2
,−1

2

∣

∣

∣

∣

S

〉

=
1

N [−(nl + zl)(nr + zr) − (xl + iyl)(xr − iyr)] (B3)

c−1/2,1/2 =

〈

−1

2
,
1

2

∣

∣

∣

∣

S

〉

= −c∗1/2,−1/2 (B4)

c−1/2,−1/2 =

〈

−1

2
,−1

2

∣

∣

∣

∣

S

〉

= c∗1/2,1/2 (B5)

and N =
√

8nlnr(nl + zl)(nr + zr) (B6)

It is convenient to define c++ = c1/2,1/2 and c+− = c1/2,−1/2 as the spin-aligned and spin-anti-aligned coefficients,
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where

fq(t) = 1 − (1 − cos(ωqt))
(λqS)2(2|A|2)

ξ2ω2
q

. (A26)

We can now evaluate the correlator Cqq′ (t) = 〈(Îq
z (t)−

〈Îq
z 〉)(Îq′

z (0) − 〈Îq′

z 〉)〉 = 〈Îq
z (t)Îq′

z (0)〉 − 〈Îq
z (t)〉〈Îq′

z (0)〉.
The calculation proceeds:

Cqq′ (t) = 〈{δq + λqS

ω2
q

[
λqS

ξωq
($[A]Îq

x + %[a]Îq
y ) +(A27)

(δq + λqS)Îq
z ][1 − cos(ωqt)] (A28)

+Îq
z cos(ωqt) (A29)

+
λqS

ξωq
(%[A]Îq

x −$[A]Îq
y ) sin(ωqt)}Îq′

z 〉(A30)

−〈Îq
z 〉〈Îq′

z 〉fq(t) (A31)

We get

Cqq′ (t) ≈ δqq′〈(Îq
z )2 − 〈Îq

z 〉2〉fq(t) (A32)

This indicates that the short time behavior of the cor-
relator, 〈δB̂z(t)δB̂z(0)〉 goes as

〈δB̂z(0)2〉−
∑

q

λ2
q〈(Îq

z )2−〈Îq
z 〉2〉(

(λqS)22A∗A

ξ2
)t2 (A33)

Roughly,

〈δB̂z(t)δB̂z(0)〉 − 〈δB̂z(0)2〉
〈δB̂z(0)2〉

' − 3B4
nuc

B2
extN

t2

2
. (A34)

This suggests that the spectral function S(ω) for δB̂z(t)
has a high frequency cutoff γ ∼ B2

nuc/Bext

√
N . For ex-

ample, in experiments with N ∼ 106, Bnuc = 3 mT, and
Bext = 100 mT, γ ∼ 10ms−1. The expected spin-echo
time (Section V) is T2,SE = 81/4

√

T ∗
2 /γ ∼ 2µs.

The short time behavior, and thus high frequency be-
havior, is independent of the nuclear Zeeman and Knight
shift terms in the hamiltonian. However, longer time
behavior depends upon these parameters. For example,
when the distribution of δq + Sλq is highly inhomoge-
neous, we may expect that electron-spin-mediated nu-
clear spin exchange is suppressed due to the very different
energies associated with individual nuclei.

APPENDIX B: ADIABATIC ELIMINATION FOR
NUCLEAR-SPIN-MEDIATED INELASTIC

DECAY

We will transform the superoperator (Eqn. 34) into the
interaction picture, but first introduce matrix elements
between the eigenstates of the quasi-static fields and the
state |S〉 occurring in the superoperator. For a single
spin in a magnetic field &B = Bnuc(x, y, z) and |B| =
Bnucn (the roman variables x, y, z, n are chosen such that
the nuclear field contribution will be of order unity), the
eigenstates may be written by rotation from spin states
aligned with the z-axis ({|↑〉 , |↓〉}):

(

|1/2〉
|−1/2〉

)

= lim
x′→x+

1
√

2n(n + z)

(

n + z x′ − iy

x′ + iy −n− z

)(

|↑〉
|↓〉

)

(B1)

The limit is taken only to remove the degenerate case of field anti-aligned with the z-axis, i.e., &B = (0, 0,−B), which
would be degenerate for this matrix, and is implicit in what follows. The corresponding eigenvalues of the Hamiltonian
are ±!Ωn/2 in this notation.

Setting |S〉 = (|↑↓〉 − |↓↑〉)/
√

2 and using the single spin transformations for l and r separately (with &Bl =
Bl

nuc(xl, yl, zl), |Bl| = nl and similarly for r), we write

c1/2,1/2 =

〈

1

2
,
1

2

∣

∣

∣

∣

S

〉

=
1

N [(xl + iyl)(nr + zr) − (nl + zl)(xl + iyl)] (B2)

c1/2,−1/2 =

〈

1

2
,−1

2

∣

∣

∣

∣

S

〉

=
1

N [−(nl + zl)(nr + zr) − (xl + iyl)(xr − iyr)] (B3)

c−1/2,1/2 =

〈

−1

2
,
1

2

∣

∣

∣

∣

S

〉

= −c∗1/2,−1/2 (B4)

c−1/2,−1/2 =

〈

−1

2
,−1

2

∣

∣

∣

∣

S

〉

= c∗1/2,1/2 (B5)

and N =
√

8nlnr(nl + zl)(nr + zr) (B6)

It is convenient to define c++ = c1/2,1/2 and c+− = c1/2,−1/2 as the spin-aligned and spin-anti-aligned coefficients,
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where

fq(t) = 1 − (1 − cos(ωqt))
(λqS)2(2|A|2)

ξ2ω2
q

. (A26)

We can now evaluate the correlator Cqq′ (t) = 〈(Îq
z (t)−

〈Îq
z 〉)(Îq′

z (0) − 〈Îq′

z 〉)〉 = 〈Îq
z (t)Îq′

z (0)〉 − 〈Îq
z (t)〉〈Îq′

z (0)〉.
The calculation proceeds:

Cqq′ (t) = 〈{δq + λqS

ω2
q

[
λqS

ξωq
($[A]Îq

x + %[a]Îq
y ) +(A27)

(δq + λqS)Îq
z ][1 − cos(ωqt)] (A28)

+Îq
z cos(ωqt) (A29)

+
λqS

ξωq
(%[A]Îq

x −$[A]Îq
y ) sin(ωqt)}Îq′

z 〉(A30)

−〈Îq
z 〉〈Îq′

z 〉fq(t) (A31)

We get

Cqq′ (t) ≈ δqq′〈(Îq
z )2 − 〈Îq

z 〉2〉fq(t) (A32)

This indicates that the short time behavior of the cor-
relator, 〈δB̂z(t)δB̂z(0)〉 goes as

〈δB̂z(0)2〉−
∑

q

λ2
q〈(Îq

z )2−〈Îq
z 〉2〉(

(λqS)22A∗A

ξ2
)t2 (A33)

Roughly,

〈δB̂z(t)δB̂z(0)〉 − 〈δB̂z(0)2〉
〈δB̂z(0)2〉

' − 3B4
nuc

B2
extN

t2

2
. (A34)

This suggests that the spectral function S(ω) for δB̂z(t)
has a high frequency cutoff γ ∼ B2

nuc/Bext

√
N . For ex-

ample, in experiments with N ∼ 106, Bnuc = 3 mT, and
Bext = 100 mT, γ ∼ 10ms−1. The expected spin-echo
time (Section V) is T2,SE = 81/4

√

T ∗
2 /γ ∼ 2µs.

The short time behavior, and thus high frequency be-
havior, is independent of the nuclear Zeeman and Knight
shift terms in the hamiltonian. However, longer time
behavior depends upon these parameters. For example,
when the distribution of δq + Sλq is highly inhomoge-
neous, we may expect that electron-spin-mediated nu-
clear spin exchange is suppressed due to the very different
energies associated with individual nuclei.

APPENDIX B: ADIABATIC ELIMINATION FOR
NUCLEAR-SPIN-MEDIATED INELASTIC

DECAY

We will transform the superoperator (Eqn. 34) into the
interaction picture, but first introduce matrix elements
between the eigenstates of the quasi-static fields and the
state |S〉 occurring in the superoperator. For a single
spin in a magnetic field &B = Bnuc(x, y, z) and |B| =
Bnucn (the roman variables x, y, z, n are chosen such that
the nuclear field contribution will be of order unity), the
eigenstates may be written by rotation from spin states
aligned with the z-axis ({|↑〉 , |↓〉}):

(

|1/2〉
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)

= lim
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(B1)

The limit is taken only to remove the degenerate case of field anti-aligned with the z-axis, i.e., &B = (0, 0,−B), which
would be degenerate for this matrix, and is implicit in what follows. The corresponding eigenvalues of the Hamiltonian
are ±!Ωn/2 in this notation.

Setting |S〉 = (|↑↓〉 − |↓↑〉)/
√

2 and using the single spin transformations for l and r separately (with &Bl =
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nuc(xl, yl, zl), |Bl| = nl and similarly for r), we write
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It is convenient to define c++ = c1/2,1/2 and c+− = c1/2,−1/2 as the spin-aligned and spin-anti-aligned coefficients,
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where

fq(t) = 1 − (1 − cos(ωqt))
(λqS)2(2|A|2)

ξ2ω2
q

. (A26)

We can now evaluate the correlator Cqq′ (t) = 〈(Îq
z (t)−

〈Îq
z 〉)(Îq′

z (0) − 〈Îq′

z 〉)〉 = 〈Îq
z (t)Îq′

z (0)〉 − 〈Îq
z (t)〉〈Îq′

z (0)〉.
The calculation proceeds:

Cqq′ (t) = 〈{δq + λqS
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We get

Cqq′ (t) ≈ δqq′〈(Îq
z )2 − 〈Îq

z 〉2〉fq(t) (A32)

This indicates that the short time behavior of the cor-
relator, 〈δB̂z(t)δB̂z(0)〉 goes as
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z 〉2〉(

(λqS)22A∗A

ξ2
)t2 (A33)

Roughly,
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This suggests that the spectral function S(ω) for δB̂z(t)
has a high frequency cutoff γ ∼ B2

nuc/Bext

√
N . For ex-

ample, in experiments with N ∼ 106, Bnuc = 3 mT, and
Bext = 100 mT, γ ∼ 10ms−1. The expected spin-echo
time (Section V) is T2,SE = 81/4

√

T ∗
2 /γ ∼ 2µs.

The short time behavior, and thus high frequency be-
havior, is independent of the nuclear Zeeman and Knight
shift terms in the hamiltonian. However, longer time
behavior depends upon these parameters. For example,
when the distribution of δq + Sλq is highly inhomoge-
neous, we may expect that electron-spin-mediated nu-
clear spin exchange is suppressed due to the very different
energies associated with individual nuclei.

APPENDIX B: ADIABATIC ELIMINATION FOR
NUCLEAR-SPIN-MEDIATED INELASTIC

DECAY

We will transform the superoperator (Eqn. 34) into the
interaction picture, but first introduce matrix elements
between the eigenstates of the quasi-static fields and the
state |S〉 occurring in the superoperator. For a single
spin in a magnetic field &B = Bnuc(x, y, z) and |B| =
Bnucn (the roman variables x, y, z, n are chosen such that
the nuclear field contribution will be of order unity), the
eigenstates may be written by rotation from spin states
aligned with the z-axis ({|↑〉 , |↓〉}):
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The limit is taken only to remove the degenerate case of field anti-aligned with the z-axis, i.e., &B = (0, 0,−B), which
would be degenerate for this matrix, and is implicit in what follows. The corresponding eigenvalues of the Hamiltonian
are ±!Ωn/2 in this notation.

Setting |S〉 = (|↑↓〉 − |↓↑〉)/
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S

〉

= c∗1/2,1/2 (B5)

and N =
√

8nlnr(nl + zl)(nr + zr) (B6)

It is convenient to define c++ = c1/2,1/2 and c+− = c1/2,−1/2 as the spin-aligned and spin-anti-aligned coefficients,

γ ∼ 104s−1
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where

fq(t) = 1 − (1 − cos(ωqt))
(λqS)2(2|A|2)

ξ2ω2
q

. (A26)

We can now evaluate the correlator Cqq′ (t) = 〈(Îq
z (t)−

〈Îq
z 〉)(Îq′

z (0) − 〈Îq′

z 〉)〉 = 〈Îq
z (t)Îq′

z (0)〉 − 〈Îq
z (t)〉〈Îq′

z (0)〉.
The calculation proceeds:

Cqq′ (t) = 〈{δq + λqS

ω2
q

[
λqS

ξωq
($[A]Îq

x + %[a]Îq
y ) +(A27)

(δq + λqS)Îq
z ][1 − cos(ωqt)] (A28)

+Îq
z cos(ωqt) (A29)

+
λqS

ξωq
(%[A]Îq

x −$[A]Îq
y ) sin(ωqt)}Îq′

z 〉(A30)

−〈Îq
z 〉〈Îq′

z 〉fq(t) (A31)

We get

Cqq′ (t) ≈ δqq′〈(Îq
z )2 − 〈Îq

z 〉2〉fq(t) (A32)

This indicates that the short time behavior of the cor-
relator, 〈δB̂z(t)δB̂z(0)〉 goes as

〈δB̂z(0)2〉−
∑

q

λ2
q〈(Îq

z )2−〈Îq
z 〉2〉(

(λqS)22A∗A

ξ2
)t2 (A33)

Roughly,

〈δB̂z(t)δB̂z(0)〉 − 〈δB̂z(0)2〉
〈δB̂z(0)2〉

' − 3B4
nuc

B2
extN

t2

2
. (A34)

This suggests that the spectral function S(ω) for δB̂z(t)
has a high frequency cutoff γ ∼ B2

nuc/Bext

√
N . For ex-

ample, in experiments with N ∼ 106, Bnuc = 3 mT, and
Bext = 100 mT, γ ∼ 10ms−1. The expected spin-echo
time (Section V) is T2,SE = 81/4

√

T ∗
2 /γ ∼ 2µs.

The short time behavior, and thus high frequency be-
havior, is independent of the nuclear Zeeman and Knight
shift terms in the hamiltonian. However, longer time
behavior depends upon these parameters. For example,
when the distribution of δq + Sλq is highly inhomoge-
neous, we may expect that electron-spin-mediated nu-
clear spin exchange is suppressed due to the very different
energies associated with individual nuclei.

APPENDIX B: ADIABATIC ELIMINATION FOR
NUCLEAR-SPIN-MEDIATED INELASTIC

DECAY

We will transform the superoperator (Eqn. 34) into the
interaction picture, but first introduce matrix elements
between the eigenstates of the quasi-static fields and the
state |S〉 occurring in the superoperator. For a single
spin in a magnetic field &B = Bnuc(x, y, z) and |B| =
Bnucn (the roman variables x, y, z, n are chosen such that
the nuclear field contribution will be of order unity), the
eigenstates may be written by rotation from spin states
aligned with the z-axis ({|↑〉 , |↓〉}):

(

|1/2〉
|−1/2〉

)

= lim
x′→x+

1
√

2n(n + z)

(

n + z x′ − iy

x′ + iy −n− z

)(

|↑〉
|↓〉

)

(B1)

The limit is taken only to remove the degenerate case of field anti-aligned with the z-axis, i.e., &B = (0, 0,−B), which
would be degenerate for this matrix, and is implicit in what follows. The corresponding eigenvalues of the Hamiltonian
are ±!Ωn/2 in this notation.

Setting |S〉 = (|↑↓〉 − |↓↑〉)/
√

2 and using the single spin transformations for l and r separately (with &Bl =
Bl

nuc(xl, yl, zl), |Bl| = nl and similarly for r), we write

c1/2,1/2 =

〈

1

2
,
1

2

∣

∣

∣

∣

S

〉

=
1

N [(xl + iyl)(nr + zr) − (nl + zl)(xl + iyl)] (B2)

c1/2,−1/2 =

〈

1

2
,−1

2

∣

∣

∣

∣

S

〉

=
1

N [−(nl + zl)(nr + zr) − (xl + iyl)(xr − iyr)] (B3)

c−1/2,1/2 =

〈

−1

2
,
1

2

∣

∣

∣

∣

S

〉

= −c∗1/2,−1/2 (B4)

c−1/2,−1/2 =

〈

−1

2
,−1

2

∣

∣

∣

∣

S

〉

= c∗1/2,1/2 (B5)

and N =
√

8nlnr(nl + zl)(nr + zr) (B6)

It is convenient to define c++ = c1/2,1/2 and c+− = c1/2,−1/2 as the spin-aligned and spin-anti-aligned coefficients,

Relaxation, dephasing, and quantum control of electron spins in double quantum dots
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Recent experiments by our group have demonstrated quantum manipulation of two-electron spin
states in double quantum dots using electrically controlled exchange interactions. To analyze these
observations, we develop a detailed theory for two-electron double dot systems that treats both
charge and spin degrees of freedom on an equal basis. We analyze the relaxation and dephas-
ing mechanisms that are relevant to experiments. Our work indicates that both charge and spin
dephasing play important roles in the dynamics of the two-spin system, but neither represents a
fundamental nor a practical limit for electrical control of spin degrees of freedom in semiconductor
quantum bits.

PACS numbers:

Electron spins in quantum dots are a potentially pow-
erful tool for studying mesoscopic physics, developing
spintronics1, and creating building blocks for quantum
computing2–4. In the field of quantum information, con-
fined electron spins have been suggested as potential re-
alization of a quantum bit, due to their potential for long
coherence times5. However, the deleterious effects of hy-
perfine coupling to lattice nuclear spins6–10, as found in
experiments11–14, severly limit the phase coherence of
electron spins. Thus, understanding hyperfine degrees
of freedom is critical of quantum control of spins.

Recent experiments by our group explored coherent
spin manipulation of electron spins to observed and sup-
press the hyperfine interaction12,13. In this paper, we
develop a theory describing such coherence properties in
double quantum dots in the two-electron regime, with an
aim of understanding the experimental results. The ef-
fects of hyperfine interactions, external magnetic field,
exchange terms and charge interactions are combined
into a unified theory necessary to explain our experi-
ments.

Our analysis is based on the observation that nuclear
spins vary slowly, which allows us to use a quasi-static
approximation (QSA)7,15. Working within the QSA, we
consider the role of charge dephasing and charge-based
decay in mediating spin blockade. Consistent with exper-
iment12, find that decay is enhanced near zero magnetic
field over a range set by the average magnitude of the
random Overhauser field. We then consider the effect of
fast control of the local electrostatic potentials of double
quantum dots, and show how this may be used to perform
exchange gates2,6, prepare and measure two-spin entan-
gled states3, and probe higher-order time dynamics of
the nuclear spins in the system3,13. Limitations to using
exchange interactions for preparation, manipulation, and
measurement, due to nuclear spins, phonons, and classi-
cal noise sources, are considered. We attempt wherever
possible to draw direct parallels between the theory de-
veloped here and experimentally accessible parameters.
We note several authors have worked on related issues
(Refs. 16,17).

The paper is structured as follows. Spin interactions
of a single electron in a single quantum dot, including
hyperfine terms, are considered in section I. The quasi-
static regime is defined and investigated, and dephasing
of electron spins by hyperfine interactions in the quasi-
static regime is detailed. This provides a basis for ex-
tending the results to double quantum dot systems. We
then develop a theory describing the two-electron states
of a double quantum dot in section II, including the re-
sponse of the system to changes in external gate voltages,
and the role of inelastic charge transitions18–20. This is
combined with the theory of spin interactions in a single
dot to produce a theory describing the dynamics of the
low energy states, including spin terms, of the double dot
system in two experimental regimes. One is the biased
regime, where the charge state of two electrons in one
dot is nearly degenerate with the state with one electron
in each dot. The other is the unbiased regime, where
the two dots are balanced such that the states with two
electrons in either dot are much higher in energy.

In the remaining sections, we investigate situations
of relevance to experiments12,13. First we consider spin
blockade in the biased regime, as investigated in Ref. 12.
Then we consider how fast gate control allows for prepa-
ration and measurement of two-electron spin states, as
well as controlled exchange interactions and probing of
nuclear-spin-related dephasing, as investigated in Ref. 13.
Finally, we consider limitations to exchange gates and
quantum memory of logical qubits encoded in double dot
systems.

I. HYPERFINE INTERACTIONS IN A SINGLE
QUANTUM DOT: A BRIEF REVIEW

We begin by reviewing the basic physics of hyperfine
interactions for electron spins in quantum dots. The
material of this section largely covers established the-
ory7,8,15,21 and our presentation is similar in manner to
Ref. 7. We will focus on a prototypical case: the de-
phasing of a single electron spin in a quantum dot due to

upper frequency cut-off of nuclear dynamics

this sets the scale for spin-echo T2
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Hyperfine-mediated gate-driven electron spin resonance
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An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated
experimentally and theoretically. The magnetic field dependence and absence of associated Rabi
oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to
the instantaneous hyperfine effective field, and the effect can be used to create and detect nuclear
polarizations up to 16%. A device incorporating a micromagnet shows evidence of a magnetic field
difference between dots, allowing electrons in either dot to be addressed selectively.

The proposed use of confined electron spins as solid-
state qubits [1] has motivated considerable progress in
their manipulation and detection [2–8] . In such a pro-
posal, the most general single-qubit operation is a spin
rotation. One technique for performing arbitrary spin
rotations is electron spin resonance (ESR) [9], in which a
pair of magnetic fields is applied, one static (denoted B)
and one resonant with the electron precession (Larmor)
frequency (denoted B̃). Observing single-spin ESR is
challenging because of the difficulty of combining suffi-
ciently large B̃ with single-spin detection, but has nev-
ertheless been achieved in several systems [2, 3, 5]. In
GaAs quantum dots, where a particularly high degree of
spin control has been achieved [4, 6, 7], ESR was recently
demonstrated using a microstripline to generate B̃ [8].

An alternative to ESR is electric dipole spin resonance
(EDSR) [10–12], in which an oscillating electric field Ẽ
replaces B̃. EDSR has the advantage that high-frequency
electric fields are often easier to apply and localize than
magnetic fields, but requires an interaction mechanism
between Ẽ and the electron spin. Known mechanisms
of EDSR include spin-orbit coupling and inhomogeneous
Zeeman coupling [12–15].

In this Letter, we present the first experimental study
of a novel EDSR effect mediated by the random inho-
mogeneity of the nuclear spin orientation. The effect is
observed via spin-blocked transitions in a few-electron
GaAs double quantum dot. For B = |B| < 1 T the res-
onance strength is independent of B and shows no Rabi
oscillations as a function of time, consistent with a theo-
retical model which we develop but in contrast to other
EDSR mechanisms. We make use of the resonance to cre-
ate and detect nuclear polarization which we interpret as
the backaction of EDSR on the nuclei [8, 16–18]. Finally,
we show that we may be able to individually address
spins in each dot by creating a local field gradient.

The device measured, shown in Fig. 1(a), is fabri-
cated on a GaAs/Al0.3Ga0.7As heterostructure with a

∗These authors contributed equally to this work.

two-dimensional electron gas (density 2× 1015 m−2, mo-
bility 20 m2/Vs) 110 nm below the surface. Ti/Au top
gates define a few-electron double quantum dot. A charge
sensing quantum point contact (QPC), tuned to conduc-
tance gs ∼ 0.2e2/h, is sensitive to the electron occupation
(NL, NR) of the left and right dots [19, 20]. The voltages
VL and VR on gates L and R, which control the equilib-
rium occupation, are pulsed using a Tektronix AWG520;
in addition, L is coupled to a Wiltron 6779B microwave
source gated by the AWG520 marker channel. A static
magnetic field B was applied parallel to [110] in the plane
of the heterostructure. Measurements were performed
in a dilution refrigerator at an electron temperature of
150 mK, known from Coulomb blockade width.

As in previous measurements [8], we detect spin tran-
sitions with the device configured in the spin blockade
regime [21, 22]. In this regime, accessed by appropri-
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FIG. 1: (Color online) (a) Micrograph of a device lithographi-
cally identical to the one measured, with schematic of the bias and
measurement circuit. The direction of B and the crystal axes are
indicated. (b) gs measured at Vsd = 600µeV near the (1,1)-(0,2)
transition. The spin blockade region is outlined. Equilibrium oc-
cupations for different gate voltages are shown, as are gate config-
urations during the measurement/reinitialization (M) and manip-
ulation (C) pulses. A plane background has been subtracted. (c)
Energy levels of the double dot during the pulse cycle (See text.)
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Hyperfine-mediated gate-driven electron spin resonance
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An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated
experimentally and theoretically. The magnetic field dependence and absence of associated Rabi
oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to
the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable
nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference
between dots, allowing electrons in either dot to be addressed selectively.

The proposed use of confined electron spins as solid-
state qubits [1] has motivated considerable progress in
their manipulation and detection [2, 3, 4, 5, 6, 7, 8]. In
such a proposal, the most general single-qubit operation
is a spin rotation. One technique for performing arbitrary
spin rotations is electron spin resonance (ESR) [9], in
which a pair of magnetic fields is applied, one static (de-
noted B) and one resonant with the electron precession
(Larmor) frequency (denoted B̃). Observing single-spin
ESR is challenging because of the difficulty of combining
sufficiently large B̃ with single-spin detection, but has
nevertheless been achieved in several systems [2, 3, 5]. In
GaAs quantum dots, where a particularly high degree of
spin control has been achieved [4, 6, 7], ESR was recently
demonstrated using a microstripline to generate B̃ [8].

An alternative to ESR is electric dipole spin reso-
nance (EDSR) [10, 11, 12], in which an oscillating electric

field Ẽ replaces B̃. EDSR has the advantage that high-
frequency electric fields are often easier to apply and lo-
calize than magnetic fields, but requires an interaction
mechanism between Ẽ and the electron spin. Known
mechanisms of EDSR include spin-orbit coupling and in-
homogeneous Zeeman coupling [12, 13, 14, 15].

In this Letter, we present the first experimental study
of a novel EDSR effect mediated by the random inho-
mogeneity of the nuclear spin orientation. The effect is
observed via spin-blocked transitions in a few-electron
GaAs double quantum dot. For B = |B| < 1 T the
resonance strength is independent of B and shows no
Rabi oscillations as a function of time, consistent with
a theoretical model which we develop but in contrast to
other EDSR mechanisms. We make use of the resonance
to create nuclear polarization, which we interpret as the
backaction of EDSR on the nuclei [8, 16, 17, 18]. Finally,
we demonstrate that spins may be individually addressed
in each dot by creating a local field gradient.

The device for which most data is presented (Fig. 1(a))
was fabricated on a GaAs/Al0.3Ga0.7As heterostruc-

∗These authors contributed equally to this work.

ture with a two-dimensional electron gas (density 2 ×
1015 m−2, mobility 20 m2/Vs) 110 nm below the surface.
Ti/Au top gates define a few-electron double quantum
dot. A charge sensing quantum point contact (QPC),
tuned to conductance gs ∼ 0.2e2/h, is sensitive to the
electron occupation (NL, NR) of the left and right dots
[19, 20]. The voltages VL and VR on gates L and R,
which control the equilibrium occupation, are pulsed us-
ing a Tektronix AWG520; in addition, L is coupled to a
Wiltron 6779B microwave source gated by the AWG520
marker channel. A static magnetic field B was applied
parallel to [110] in the plane of the heterostructure. Mea-
surements were performed in a dilution refrigerator at an
electron temperature of 150 mK, known from Coulomb
blockade width.

As in previous measurements [8], we detect spin tran-
sitions with the device configured in the spin blockade
regime [21, 22]. In this regime, accessed by tuning VL

and VR, a bias Vsd across the device induces transport

FIG. 1: (Color online) (a) Micrograph of a device lithographi-
cally identical to the one measured, with schematic of the bias
and measurement circuit. The direction of B and the crystal axes
are indicated. (b) gs measured at Vsd ∼ 600µeV near the (1,1)-
(0,2) transition. White dashed outline indicates spin blockade re-
gion. Equilibrium occupations for different gate voltages are shown,
as are gate configurations during the measurement/reinitialization
(M) and manipulation (C) pulses. A plane background has been
subtracted. (c) Energy levels of the double dot during the pulse
cycle (See text).
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FIG. 2: Signal of spin resonance δVQPC as a function of applied
magnetic field B and microwave frequency f . EDSR induces a
breaking of spin blockade, manifest as a peak in the voltage across
the charge sensor δVQPC at the Larmor frequency. Field- and
frequency-independent backgrounds have been subtracted. Inset:
Jitter of resonant frequency due to instantaneous Overhauser shifts.

ate settings of VL and VR, a bias Vsd across the device
induces transport via the sequence of charge transitions
(0, 2) → (0, 1) → (1, 1) → (0, 2). An intra-dot exchange
interaction J02 makes the (1, 1) → (0, 2) transition se-
lective in the two-electron spin state, inhibited for the
ms = ±1 triplets T± but allowed for the ms = 0 triplet
T0 or singlet S. Since decay of the T± states requires spin
relaxation, it becomes the rate-limiting step in transport,
and so the time-averaged occupation is dominated by
the (1,1) portion of the transport sequence. Figure 1(b)
shows the conductance gs of the charge sensor (monitored
using a lock-in amplifier with 100 ms time constant) as a
function of VL and VR. Inside the region (outlined) where
spin blockade is active, gs has the value corresponding to
(1,1) [22].

EDSR is detected via changes in sensor conductance gs

while the following cycle of gate pulses [8] is applied to VL

and VR (Fig. 1(c)): We begin at a point inside the spin
blockade region (M in Fig. 1(b)), where with high prob-
ability the electron state is initialized to (1, 1)T±. We
then apply a pulse of ∼1 µs duration which configures
VL and VR to point C, where Coulomb blockade prevents
electron tunneling regardless of spin state. Towards the
end of this pulse, we apply to gate L a microwave burst of
duration τEDSR at frequency f . Finally we pulse back to
M for a readout/reinitialization step of duration ∼3 µs.
If and only if a spin (on either dot) was flipped during the
pulse, the transition (1, 1) → (0, 2) now occurs, leading
to a change in average occupation and therefore a cor-
responding change in gs. If this transition has occurred,
subsequent electron transitions reinitialize the state to
(1, 1)T± by the end of this step, after which the pulse
cycle is repeated. This pulsed EDSR scheme has the ad-
vantage of separating spin manipulation from readout.

Changes in gs due to EDSR are monitored via the volt-
age VQPC across the QPC sensor, biased at 5 nA. For
increased sensitivity, we chop the microwaves at 227 Hz
and lock in at this frequency with 100 ms time constant
to measure the change δVQPC due to the microwaves.

100

80

60

40

20

0

!
V

p
e
a
k
(n

V
)

0.80.60.40.20.0
"

EDSR
 (µs)

 0.17 GHz,    44 mT
 2.9   GHz,  550 mT

50

40

0.80.60.40.20.0
"

EDSR
 (µs)

0.17 GHz

555

545 2.9 GHz 60

40

20

0

5

6

7

8

9

1

#
R

 (
1
0

6
s

-1
)

9

0.1
2 3 4 5 6 7 8 9

1
PMW (mW)

0.91 GHz
185 mT

30

20

10

0!
V

p
e
a
k  (

n
V

)

10
"EDSR (µs)

30

20

10

0!
V

p
e
a
k  (

n
V

)

210
"EDSR (µs)

!V
QPC

 (nV)

a)

b)

B
 (

m
T

)

Q
P

C

Q
P

C

Q
P

C

FIG. 3: (Color online) (a) Dependence of δV peak
QPC on τEDSR at dif-

ferent frequencies and equal calibrated microwave powers. Points
are data, curves are fits (see text.) Insets: Data from which the
points in the main figure are taken. Each vertical cut through the
inset corresponds to one point in the main figure. Jitter in the field
position of the resonance reflects the time dependent Overhauser
shifts due to hyperfine coupling. (b) Points: Spin-flip rate ΩR as a
function of microwave power PMW (at the source), measured at a

single field and frequency. Line: a ΩR ∝ P 0.5
MW fit. Insets: δV peak

QPC
as functions of τEDSR for two values of the microwave power, show-
ing the fits from which points in the main figure are derived.

δVQPC is proportional to the spin-flip probability during
the manipulation pulse.

A resonant response is seen clearly as B and f are
varied for constant τEDSR = 1µs (Fig. 2.) A peak in
δVQPC, corresponding to a spin transition, is seen at a
frequency proportional to B. This is the key signature
of spin resonance. From the slope of the resonant line
we deduce for the g-factor |g| = 0.39 ± 0.01, within the
range measured in similar GaAs devices [23, 24]. Fluc-
tuations of the resonance frequency seen in the inset of
Fig. 2 we attribute to instantaneous Overhauser shifts;
their range is ∼ ±22 MHz, corresponding to a field ∼
4 mT, consistent with measured Overhauser fields in sim-
ilar devices [6, 7, 25].

We now investigate the behavior of this EDSR peak in
more detail (Fig. 3). To reduce the effects of the shifting
Overhauser field, the microwave source is frequency mod-
ulated at 3 kHz in a sawtooth pattern with depth 36 MHz
about a central frequency f . As shown in the insets of
Fig 3(a), we scan B over the resonance while varying

3

τEDSR, and extract the resonant peak height δV peak
QPC by

fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak

QPC (τEDSR) observed.

To obtain theoretical predictions for δV peak
QPC (τEDSR)

and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2

0r2/2−
|g|µB(S·B), the calculation can be simplified by perform-
ing a canonical transformation U = exp[ik · R(t)] to a
frame moving with the dot, where R(t) = −eẼ(t)/mω2

0 .
Here S = σ/2, ω0 is the confinement frequency, and
k is the quasimomentum. The transformed hyperfine
Hamiltonian reads HU

hf = AΣjδ(r + R(t) − rj)(Ij · S),
with A the hyperfine coupling constant and the sum-
mation running over all nuclear spins Ij . After aver-
aging over the orbital wave function ψ(r) and expand-
ing in R(t) (assumed small compared to the dot size)
this becomes HU

hf(t) = J(t) · σ, where J(t) is an oper-
ator in all Ij . Choosing the z-axis along B, the com-
ponents of J(t) are Jz = 1

2A
∑

j ψ2(rj)Iz
j and J±(t) =

eA
mω2

0

∑
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diagonal component J±(t) drives EDSR, while the diag-
onal component Jz describes a detuning of EDSR from
the Larmor frequency ωL by an amount ωz randomly
distributed as ρ(ωz) = exp(−ω2

z/∆2)/(∆
√

π) [28]; time
dependent corrections to ωz are disregarded. The dis-
persion ∆ and the Rabi frequency ΩR are the root mean
square values of Jz and J±, dominated respectively by
spatial fluctuations even and odd under inversion of Ẽ:
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with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin

state [30]:

p↓(τEDSR) =
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(δω/2)2 + Ω2
sin2

[√
(δω/2)2 + Ω2 τEDSR

]
.

(2)
To compare with the time-averaged data of Fig. 3, we
average Eq. 2 over ωz with weight ρ(ωz) and also over
Ω with weight ρ(Ω) = 2Ω exp(−Ω2/Ω2

R)/Ω2
R. This latter

distribution arises because the J± acquire independent
Gaussian-distributed contributions from both Ix

j and Iy
j

components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1

R .
Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
must be scaled by a QPC sensitivity V 0

QPC to convert to
a voltage δV peak

QPC . Taking ∆ = 2π×28 MHz (the quadra-
ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the

3

τEDSR, and extract the resonant peak height δV peak
QPC by

fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak

QPC (τEDSR) observed.

To obtain theoretical predictions for δV peak
QPC (τEDSR)

and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2

0r2/2−
|g|µB(S·B), the calculation can be simplified by perform-
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j ψ(rj)Ẽ(t) ·∇ψ(rj)I±j . The time-dependent off-

diagonal component J±(t) drives EDSR, while the diag-
onal component Jz describes a detuning of EDSR from
the Larmor frequency ωL by an amount ωz randomly
distributed as ρ(ωz) = exp(−ω2

z/∆2)/(∆
√

π) [28]; time
dependent corrections to ωz are disregarded. The dis-
persion ∆ and the Rabi frequency ΩR are the root mean
square values of Jz and J±, dominated respectively by
spatial fluctuations even and odd under inversion of Ẽ:

∆ =
A

2!

√
I(I + 1)mω0n0

3π!d
, ΩR =

eẼA

!2ω0

√
I(I + 1)n0

32πd
,

(1)
with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin
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To compare with the time-averaged data of Fig. 3, we
average Eq. 2 over ωz with weight ρ(ωz) and also over
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distribution arises because the J± acquire independent
Gaussian-distributed contributions from both Ix
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components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1
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Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
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QPC to convert to
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ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the
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fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak
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To obtain theoretical predictions for δV peak
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and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2
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|g|µB(S·B), the calculation can be simplified by perform-
ing a canonical transformation U = exp[ik · R(t)] to a
frame moving with the dot, where R(t) = −eẼ(t)/mω2

0 .
Here S = σ/2, ω0 is the confinement frequency, and
k is the quasimomentum. The transformed hyperfine
Hamiltonian reads HU

hf = AΣjδ(r + R(t) − rj)(Ij · S),
with A the hyperfine coupling constant and the sum-
mation running over all nuclear spins Ij . After aver-
aging over the orbital wave function ψ(r) and expand-
ing in R(t) (assumed small compared to the dot size)
this becomes HU

hf(t) = J(t) · σ, where J(t) is an oper-
ator in all Ij . Choosing the z-axis along B, the com-
ponents of J(t) are Jz = 1
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∆ =
A

2!

√
I(I + 1)mω0n0

3π!d
, ΩR =

eẼA

!2ω0

√
I(I + 1)n0

32πd
,

(1)
with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin
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To compare with the time-averaged data of Fig. 3, we
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Gaussian-distributed contributions from both Ix

j and Iy
j

components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1
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Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
must be scaled by a QPC sensitivity V 0

QPC to convert to
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ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the
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τEDSR, and extract the resonant peak height δV peak
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fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak

QPC (τEDSR) observed.
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and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2
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with A the hyperfine coupling constant and the sum-
mation running over all nuclear spins Ij . After aver-
aging over the orbital wave function ψ(r) and expand-
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with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].
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with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin
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To compare with the time-averaged data of Fig. 3, we
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maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
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Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].
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is observed to develop over ∼100 s (not shown), corre-
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effect is stronger at higher B. In Fig. 4(a), we show how
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direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the
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and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
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(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
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and its dependence on B and PMW, we model EDSR
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aging over the orbital wave function ψ(r) and expand-
ing in R(t) (assumed small compared to the dot size)
this becomes HU

hf(t) = J(t) · σ, where J(t) is an oper-
ator in all Ij . Choosing the z-axis along B, the com-
ponents of J(t) are Jz = 1

2A
∑

j ψ2(rj)Iz
j and J±(t) =

eA
mω2

0

∑
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with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin
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To compare with the time-averaged data of Fig. 3, we
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j

components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1

R .
Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
must be scaled by a QPC sensitivity V 0

QPC to convert to
a voltage δV peak

QPC . Taking ∆ = 2π×28 MHz (the quadra-
ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the

3

τEDSR, and extract the resonant peak height δV peak
QPC by

fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak

QPC (τEDSR) observed.

To obtain theoretical predictions for δV peak
QPC (τEDSR)

and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2

0r2/2−
|g|µB(S·B), the calculation can be simplified by perform-
ing a canonical transformation U = exp[ik · R(t)] to a
frame moving with the dot, where R(t) = −eẼ(t)/mω2

0 .
Here S = σ/2, ω0 is the confinement frequency, and
k is the quasimomentum. The transformed hyperfine
Hamiltonian reads HU

hf = AΣjδ(r + R(t) − rj)(Ij · S),
with A the hyperfine coupling constant and the sum-
mation running over all nuclear spins Ij . After aver-
aging over the orbital wave function ψ(r) and expand-
ing in R(t) (assumed small compared to the dot size)
this becomes HU

hf(t) = J(t) · σ, where J(t) is an oper-
ator in all Ij . Choosing the z-axis along B, the com-
ponents of J(t) are Jz = 1
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with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin

state [30]:
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To compare with the time-averaged data of Fig. 3, we
average Eq. 2 over ωz with weight ρ(ωz) and also over
Ω with weight ρ(Ω) = 2Ω exp(−Ω2/Ω2

R)/Ω2
R. This latter

distribution arises because the J± acquire independent
Gaussian-distributed contributions from both Ix

j and Iy
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components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1

R .
Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
must be scaled by a QPC sensitivity V 0

QPC to convert to
a voltage δV peak

QPC . Taking ∆ = 2π×28 MHz (the quadra-
ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the
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τEDSR, and extract the resonant peak height δV peak
QPC by

fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak

QPC (τEDSR) observed.

To obtain theoretical predictions for δV peak
QPC (τEDSR)

and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2

0r2/2−
|g|µB(S·B), the calculation can be simplified by perform-
ing a canonical transformation U = exp[ik · R(t)] to a
frame moving with the dot, where R(t) = −eẼ(t)/mω2

0 .
Here S = σ/2, ω0 is the confinement frequency, and
k is the quasimomentum. The transformed hyperfine
Hamiltonian reads HU

hf = AΣjδ(r + R(t) − rj)(Ij · S),
with A the hyperfine coupling constant and the sum-
mation running over all nuclear spins Ij . After aver-
aging over the orbital wave function ψ(r) and expand-
ing in R(t) (assumed small compared to the dot size)
this becomes HU

hf(t) = J(t) · σ, where J(t) is an oper-
ator in all Ij . Choosing the z-axis along B, the com-
ponents of J(t) are Jz = 1

2A
∑

j ψ2(rj)Iz
j and J±(t) =

eA
mω2

0

∑
j ψ(rj)Ẽ(t) ·∇ψ(rj)I±j . The time-dependent off-

diagonal component J±(t) drives EDSR, while the diag-
onal component Jz describes a detuning of EDSR from
the Larmor frequency ωL by an amount ωz randomly
distributed as ρ(ωz) = exp(−ω2

z/∆2)/(∆
√

π) [28]; time
dependent corrections to ωz are disregarded. The dis-
persion ∆ and the Rabi frequency ΩR are the root mean
square values of Jz and J±, dominated respectively by
spatial fluctuations even and odd under inversion of Ẽ:
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with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin

state [30]:

p↓(τEDSR) =
Ω2

(δω/2)2 + Ω2
sin2

[√
(δω/2)2 + Ω2 τEDSR

]
.

(2)
To compare with the time-averaged data of Fig. 3, we
average Eq. 2 over ωz with weight ρ(ωz) and also over
Ω with weight ρ(Ω) = 2Ω exp(−Ω2/Ω2

R)/Ω2
R. This latter

distribution arises because the J± acquire independent
Gaussian-distributed contributions from both Ix

j and Iy
j

components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1

R .
Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
must be scaled by a QPC sensitivity V 0

QPC to convert to
a voltage δV peak

QPC . Taking ∆ = 2π×28 MHz (the quadra-
ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the
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τEDSR, and extract the resonant peak height δV peak
QPC by

fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak

QPC (τEDSR) observed.

To obtain theoretical predictions for δV peak
QPC (τEDSR)

and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2

0r2/2−
|g|µB(S·B), the calculation can be simplified by perform-
ing a canonical transformation U = exp[ik · R(t)] to a
frame moving with the dot, where R(t) = −eẼ(t)/mω2

0 .
Here S = σ/2, ω0 is the confinement frequency, and
k is the quasimomentum. The transformed hyperfine
Hamiltonian reads HU

hf = AΣjδ(r + R(t) − rj)(Ij · S),
with A the hyperfine coupling constant and the sum-
mation running over all nuclear spins Ij . After aver-
aging over the orbital wave function ψ(r) and expand-
ing in R(t) (assumed small compared to the dot size)
this becomes HU

hf(t) = J(t) · σ, where J(t) is an oper-
ator in all Ij . Choosing the z-axis along B, the com-
ponents of J(t) are Jz = 1
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j and J±(t) =
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j ψ(rj)Ẽ(t) ·∇ψ(rj)I±j . The time-dependent off-

diagonal component J±(t) drives EDSR, while the diag-
onal component Jz describes a detuning of EDSR from
the Larmor frequency ωL by an amount ωz randomly
distributed as ρ(ωz) = exp(−ω2

z/∆2)/(∆
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π) [28]; time
dependent corrections to ωz are disregarded. The dis-
persion ∆ and the Rabi frequency ΩR are the root mean
square values of Jz and J±, dominated respectively by
spatial fluctuations even and odd under inversion of Ẽ:
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with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin

state [30]:
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To compare with the time-averaged data of Fig. 3, we
average Eq. 2 over ωz with weight ρ(ωz) and also over
Ω with weight ρ(Ω) = 2Ω exp(−Ω2/Ω2

R)/Ω2
R. This latter

distribution arises because the J± acquire independent
Gaussian-distributed contributions from both Ix

j and Iy
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components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1

R .
Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
must be scaled by a QPC sensitivity V 0

QPC to convert to
a voltage δV peak

QPC . Taking ∆ = 2π×28 MHz (the quadra-
ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the

3

τEDSR, and extract the resonant peak height δV peak
QPC by

fitting each scan to a Gaussian in B. For f = 0.17 GHz
and 2.9 GHz and equal calibrated microwave power [26],
the results are plotted in Fig. 3(a) The two curves are
similar in turn-on time and saturation value, and this
for frequencies up to f = 6 GHz. From similar data
(see insets of Fig. 3(b)) taken the at f = 0.91 GHz, us-
ing theory to be described, we extract the dependence of
the spin-flip rate ΩR on microwave power PMW shown in
Fig. 3(b). For no power or field (up to ∼ 1 T) are Rabi
oscillations in δV peak

QPC (τEDSR) observed.

To obtain theoretical predictions for δV peak
QPC (τEDSR)

and its dependence on B and PMW, we model EDSR
as arising from the coupling of an electron in a single dot
to an oscillating electric field Ẽ and the hyperfine field of
an ensemble of nuclei [27]. For a parabolic quantum dot
with zero-order Hamiltonian H0 = !2k2/2m+mω2

0r2/2−
|g|µB(S·B), the calculation can be simplified by perform-
ing a canonical transformation U = exp[ik · R(t)] to a
frame moving with the dot, where R(t) = −eẼ(t)/mω2

0 .
Here S = σ/2, ω0 is the confinement frequency, and
k is the quasimomentum. The transformed hyperfine
Hamiltonian reads HU

hf = AΣjδ(r + R(t) − rj)(Ij · S),
with A the hyperfine coupling constant and the sum-
mation running over all nuclear spins Ij . After aver-
aging over the orbital wave function ψ(r) and expand-
ing in R(t) (assumed small compared to the dot size)
this becomes HU

hf(t) = J(t) · σ, where J(t) is an oper-
ator in all Ij . Choosing the z-axis along B, the com-
ponents of J(t) are Jz = 1
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distributed as ρ(ωz) = exp(−ω2
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with I = 3/2, n0 the nuclear concentration, and d the
vertical confinement. We note that ΩR is independent
of B; this is in contrast with spin-orbit-mediated EDSR
of localized electrons, where Kramers’ theorem requires
that the Rabi frequency vanish linearly as B → 0 [12, 14,
29].

A given instantaneous configuration of nuclear spins
with detuning δω = 2πf − (ωL +ωz) and Rabi frequency
Ω leads to a spin-flip probability from an initial ↑ spin

state [30]:
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Ω2
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To compare with the time-averaged data of Fig. 3, we
average Eq. 2 over ωz with weight ρ(ωz) and also over
Ω with weight ρ(Ω) = 2Ω exp(−Ω2/Ω2

R)/Ω2
R. This latter

distribution arises because the J± acquire independent
Gaussian-distributed contributions from both Ix

j and Iy
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components of the nuclear spins. The resulting spin-flip
probability p↓(τEDSR;∆,ΩR) shows only a remnant of
Rabi oscillations as a weak overshoot at τEDSR ∼ Ω−1

R .
Absence of Rabi oscillations is a specific property of
hyperfine-driven EDSR and originates because the J±
average to zero.

For comparison with data, this probability p↓(τEDSR)
must be scaled by a QPC sensitivity V 0

QPC to convert to
a voltage δV peak

QPC . Taking ∆ = 2π×28 MHz (the quadra-
ture sum of the EDSR linewidth and half the FM modu-
lation depth) and using ΩR and V 0

QPC as free parameters,
a fit to the 44 mT data (green curve in Fig. 3(a)) gives
values ΩR = 1.7 × 106 s−1 and V 0

QPC = 2.4 µV. Keep-
ing this value of V 0

QPC we fit the 550 mT data to obtain
the blue curve (ΩR = 1.8 × 106 s−1) in Fig. 3(a), and
the 185 mT data to obtain the values of ΩR shown in
Fig. 3(b). As in Eq. 1, ΩR scales as P 0.5

MW and is inde-
pendent of B. From this field independence, present also
in the EDSR intensity in Fig. 2, and from the absence
of Rabi oscillations, we deduce that the dominant EDSR
mechanism in this low field range is hyperfine.

Estimating !ω0 ∼ 1 meV [24], Ẽ ∼ 6 × 103 Vm−1 at
maximum applied power [26], d ∼ 5 nm, and using the
known values n0 = 4×1028 m−3 and An0=90 µeV [31] we
calculate ΩR ∼ 11×106 s−1, an order of magnitude larger
than measured. The discrepancy may reflect uncertainty
in our estimate of Ẽ, or its inhomogeneity.

Above, we generalized a mean-field description of the
hyperfine interaction [28, 32] to the resonance regime,
where flip-flop processes make its applicability not obvi-
ous. The overshoot in the theoretical curves in Fig. 3,
which is not seen in the data, is absent when quantum
corrections are accounted for [33].

Consistent with a hyperfine mechanism, this EDSR ef-
fect can be used to create as well as detect nuclear po-
larization [16]. If f is scanned repeatedly over the res-
onance at high power, a shift of the resonance position
is observed to develop over ∼100 s (not shown), corre-
sponding to a nuclear spin alignment parallel to B. The
effect is stronger at higher B. In Fig. 4(a), we show how
to build up a substantial polarization: While slowly in-
creasing B, we scan f repeatedly downwards, i. e. in the
direction which approximately tracks the moving reso-
nance. The resonance is observed to be nearly pinned
in frequency until at large enough B it escapes from the
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An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated
experimentally and theoretically. The magnetic field dependence and absence of associated Rabi
oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to
the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable
nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference
between dots, allowing electrons in either dot to be addressed selectively.

The proposed use of confined electron spins as solid-
state qubits [1] has motivated considerable progress in
their manipulation and detection [2, 3, 4, 5, 6, 7, 8]. In
such a proposal, the most general single-qubit operation
is a spin rotation. One technique for performing arbitrary
spin rotations is electron spin resonance (ESR) [9], in
which a pair of magnetic fields is applied, one static (de-
noted B) and one resonant with the electron precession
(Larmor) frequency (denoted B̃). Observing single-spin
ESR is challenging because of the difficulty of combining
sufficiently large B̃ with single-spin detection, but has
nevertheless been achieved in several systems [2, 3, 5]. In
GaAs quantum dots, where a particularly high degree of
spin control has been achieved [4, 6, 7], ESR was recently
demonstrated using a microstripline to generate B̃ [8].

An alternative to ESR is electric dipole spin reso-
nance (EDSR) [10, 11, 12], in which an oscillating electric

field Ẽ replaces B̃. EDSR has the advantage that high-
frequency electric fields are often easier to apply and lo-
calize than magnetic fields, but requires an interaction
mechanism between Ẽ and the electron spin. Known
mechanisms of EDSR include spin-orbit coupling and in-
homogeneous Zeeman coupling [12, 13, 14, 15].

In this Letter, we present the first experimental study
of a novel EDSR effect mediated by the random inho-
mogeneity of the nuclear spin orientation. The effect is
observed via spin-blocked transitions in a few-electron
GaAs double quantum dot. For B = |B| < 1 T the
resonance strength is independent of B and shows no
Rabi oscillations as a function of time, consistent with
a theoretical model which we develop but in contrast to
other EDSR mechanisms. We make use of the resonance
to create nuclear polarization, which we interpret as the
backaction of EDSR on the nuclei [8, 16, 17, 18]. Finally,
we demonstrate that spins may be individually addressed
in each dot by creating a local field gradient.

The device for which most data is presented (Fig. 1(a))
was fabricated on a GaAs/Al0.3Ga0.7As heterostruc-

∗These authors contributed equally to this work.

ture with a two-dimensional electron gas (density 2 ×
1015 m−2, mobility 20 m2/Vs) 110 nm below the surface.
Ti/Au top gates define a few-electron double quantum
dot. A charge sensing quantum point contact (QPC),
tuned to conductance gs ∼ 0.2e2/h, is sensitive to the
electron occupation (NL, NR) of the left and right dots
[19, 20]. The voltages VL and VR on gates L and R,
which control the equilibrium occupation, are pulsed us-
ing a Tektronix AWG520; in addition, L is coupled to a
Wiltron 6779B microwave source gated by the AWG520
marker channel. A static magnetic field B was applied
parallel to [110] in the plane of the heterostructure. Mea-
surements were performed in a dilution refrigerator at an
electron temperature of 150 mK, known from Coulomb
blockade width.

As in previous measurements [8], we detect spin tran-
sitions with the device configured in the spin blockade
regime [21, 22]. In this regime, accessed by tuning VL

and VR, a bias Vsd across the device induces transport

FIG. 1: (Color online) (a) Micrograph of a device lithographi-
cally identical to the one measured, with schematic of the bias
and measurement circuit. The direction of B and the crystal axes
are indicated. (b) gs measured at Vsd ∼ 600µeV near the (1,1)-
(0,2) transition. White dashed outline indicates spin blockade re-
gion. Equilibrium occupations for different gate voltages are shown,
as are gate configurations during the measurement/reinitialization
(M) and manipulation (C) pulses. A plane background has been
subtracted. (c) Energy levels of the double dot during the pulse
cycle (See text).
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An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated
experimentally and theoretically. The magnetic field dependence and absence of associated Rabi
oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to
the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable
nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference
between dots, allowing electrons in either dot to be addressed selectively.

The proposed use of confined electron spins as solid-
state qubits [1] has motivated considerable progress in
their manipulation and detection [2, 3, 4, 5, 6, 7, 8]. In
such a proposal, the most general single-qubit operation
is a spin rotation. One technique for performing arbitrary
spin rotations is electron spin resonance (ESR) [9], in
which a pair of magnetic fields is applied, one static (de-
noted B) and one resonant with the electron precession
(Larmor) frequency (denoted B̃). Observing single-spin
ESR is challenging because of the difficulty of combining
sufficiently large B̃ with single-spin detection, but has
nevertheless been achieved in several systems [2, 3, 5]. In
GaAs quantum dots, where a particularly high degree of
spin control has been achieved [4, 6, 7], ESR was recently
demonstrated using a microstripline to generate B̃ [8].

An alternative to ESR is electric dipole spin reso-
nance (EDSR) [10, 11, 12], in which an oscillating electric

field Ẽ replaces B̃. EDSR has the advantage that high-
frequency electric fields are often easier to apply and lo-
calize than magnetic fields, but requires an interaction
mechanism between Ẽ and the electron spin. Known
mechanisms of EDSR include spin-orbit coupling and in-
homogeneous Zeeman coupling [12, 13, 14, 15].

In this Letter, we present the first experimental study
of a novel EDSR effect mediated by the random inho-
mogeneity of the nuclear spin orientation. The effect is
observed via spin-blocked transitions in a few-electron
GaAs double quantum dot. For B = |B| < 1 T the
resonance strength is independent of B and shows no
Rabi oscillations as a function of time, consistent with
a theoretical model which we develop but in contrast to
other EDSR mechanisms. We make use of the resonance
to create nuclear polarization, which we interpret as the
backaction of EDSR on the nuclei [8, 16, 17, 18]. Finally,
we demonstrate that spins may be individually addressed
in each dot by creating a local field gradient.

The device for which most data is presented (Fig. 1(a))
was fabricated on a GaAs/Al0.3Ga0.7As heterostruc-

∗These authors contributed equally to this work.

ture with a two-dimensional electron gas (density 2 ×
1015 m−2, mobility 20 m2/Vs) 110 nm below the surface.
Ti/Au top gates define a few-electron double quantum
dot. A charge sensing quantum point contact (QPC),
tuned to conductance gs ∼ 0.2e2/h, is sensitive to the
electron occupation (NL, NR) of the left and right dots
[19, 20]. The voltages VL and VR on gates L and R,
which control the equilibrium occupation, are pulsed us-
ing a Tektronix AWG520; in addition, L is coupled to a
Wiltron 6779B microwave source gated by the AWG520
marker channel. A static magnetic field B was applied
parallel to [110] in the plane of the heterostructure. Mea-
surements were performed in a dilution refrigerator at an
electron temperature of 150 mK, known from Coulomb
blockade width.

As in previous measurements [8], we detect spin tran-
sitions with the device configured in the spin blockade
regime [21, 22]. In this regime, accessed by tuning VL

and VR, a bias Vsd across the device induces transport

FIG. 1: (Color online) (a) Micrograph of a device lithographi-
cally identical to the one measured, with schematic of the bias
and measurement circuit. The direction of B and the crystal axes
are indicated. (b) gs measured at Vsd ∼ 600µeV near the (1,1)-
(0,2) transition. White dashed outline indicates spin blockade re-
gion. Equilibrium occupations for different gate voltages are shown,
as are gate configurations during the measurement/reinitialization
(M) and manipulation (C) pulses. A plane background has been
subtracted. (c) Energy levels of the double dot during the pulse
cycle (See text).
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Dynamical nuclear spin polarization and the Zamboni effect in gated double quantum dots
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A dynamical nuclear polarization scheme is studied in gated double dots. We demonstrate that a small
polarization !#0.5% " is sufficient to enhance the singlet decay time by two orders of magnitude. This en-
hancement is attributed to an equilibration process between the nuclear reservoirs in the two dots accompanied
by reduced fluctuations in the Overhauser fields that are mediated by the electron-nuclear spin hyperfine
interaction.

DOI: 10.1103/PhysRevB.75.161301 PACS number!s": 73.63.Kv, 03.67.!a, 72.25.Dc, 85.35.Gv

Electron spins localized in semiconductor quantum dots
have been intensively investigated in recent years due to
their potential use in quantum information processing and
spintronics.1 Several experimental2–4 and theoretical5–10

studies have identified the hyperfine !HF" interaction be-
tween an electron spin and the surrounding nuclear spins as
one of the main sources for electron spin decoherence in low
temperature GaAs quantum dots, leading to T2

* on the order
of 10–25 ns and T2 on the order of "s. These values are
orders of magnitude shorter than the spin relaxation time,
which approaches tens of milliseconds in these systems.2

Several strategies have been suggested to alleviate elec-
tron spin decoherence via nuclear spins, including spin-echo
techniques !to remove inhomogeneous broadening4,7,10",
nuclear spin state measurement !to narrow the Overhauser
field distribution11", and nuclear polarization !to reduce
phase space for nuclear spin dynamics12". Nuclear spin po-
larization is also valuable for state initialization in NMR
quantum computing and for utilizing collective nuclear states
as long-lived quantum memory.13 So far, optical pumping
has produced up to #60% nuclear polarization14 in interface
fluctuation GaAs dots, while spin transfer via hyperfine me-
diated spin-flip scattering in the spin-blockade regime in
gated GaAs dots has led to #1% polarization.15,16 Among
the limiting factors in these dynamical polarization schemes
are the large difference in the Zeeman energies of the elec-
trons and nuclei making joint spin flip processes energeti-
cally unfavorable, and nuclear spin diffusion due to dipolar
interaction. In contrast, theoretical studies have shown that in
order to achieve a sizeable enhancement of single electron
spin decoherence time via phase-space squeezing, a nuclear
polarization of more than 99% is required.8,9,17

In this Rapid Communication we show that HF interac-
tion can be exploited to dynamically polarize the nuclear
spins in gated double dots. Most interestingly the relaxation
time of the two-electron spin singlet state dramatically in-
creases without the need for nearly complete nuclear polar-
ization. This suppression of relaxation is achieved by an
equilibration process in the nuclear reservoirs in the two dots
and a reduction in the fluctuations of their Overhauser fields.
We have dubbed this effect, mediated by the HF interaction
during the polarization cycles, as the nuclear Zamboni
effect.18

We study the dynamics of a system of two electrons lo-
calized in a gated double dot interacting with two nuclear
spin baths within the framework of the Hamiltonian

H = Horb + HZ + HHF, !1"

where we have neglected nuclear-nuclear dipolar coupling in
the current study. For the orbital part we adapt the Hund-
Mulliken approach12,19 to solve for the electronic states in the
gated dot configuration, where Horb includes the single-
particle Hamiltonian and the Coulomb interaction. The rel-
evant Hilbert space of Horb is spanned by four two-particle
states, $S!2,0" ,S!0,2" ,S!1,1" ,T!1,1"%, which consist of the
separated singlet and triplet and the two doubly occupied
singlet states. Indices !i , j" indicate the number of confined
electrons in the !left,right" dot. We neglect the doubly
occupied triplet states as their energy is much higher for
the structures under study.2,4 The Zeeman interaction
HZ=g"BB ·&i=L,RSi, with g=−0.44 and "B being the Bohr
magneton, splits the triplet states. The resulting energy dia-
gram and exchange interaction J near the !1,1" to !0,2"
charge transition are shown in Figs. 1!a" and 1!b" for
B=100 mT !EZ=2.5 "eV", half interdot distance a=1.9aB,
and dot confinement #0=120 "eV, corresponding to the ex-
perimental parameters in Ref. 4

For the HF interaction we consider the contact term be-
tween the two electrons and the surrounding nuclei

HHF = &
i=L,R

&
k

Ai
kIi

k · Si = h · S + !h · !S , !2"

where Ai
k is the HF coupling constant with the kth nucleus in

the ith dot. Here h= 1
2 !hL+hR", !h= 1

2 !hL−hR", and
S=SL+SR, !S=SL−SR are the sums and differences of the
nuclear fields and the electron spins in the two dots, respec-
tively, where hi=&kAi

kIi
k is the nuclear field in dot i. We

assume Ii
k= 1

2 for simplicity. The Hamiltonian in Eq. !1" con-
serves the total spin and can be block diagonalized in each of
the Hilbert subspaces defined by the eigenvalues of the op-
erator Jz=SL

z +SR
z +&i,kIi

kz. In order to make the numerical ef-
fort for a larger number of spins tractable, we assume a con-
stant HF coupling for all the nuclei in each dot, allowing us
to write the Overhauser fields as hi= !$i /N"Ii, i=L ,R, where
$i=&kAi

k'100 "eV is the total HF coupling, N is the num-
ber of nuclei per dot, and Ii is the collective spin operator for
dot i. This approximation provides two more integrals of
motion, namely the two SU!2" Casimir operators IL

2,IR
2 , and

enables us to further divide the Hilbert space, making the
complexity of the problem scale polynomially with N instead
of exponentially.

We have tested the validity of the uniform HF coupling
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approximation for the nuclear polarization dynamics studied
here by slicing the dot into concentric rings. Assigning dif-
ferent HF coupling for each ring, and assuming no inter-ring
dynamics, we find that the dynamics described below are
largely unaffected by this averaging procedure.20 Studies of
nuclear spin diffusion in a quantum dot also verify that inter-
ring nuclear spin dynamics is significantly suppressed for
smaller quantum dots.21 Our approach enables us to study the
interplay between HF and exchange effects within a unified
theory through exact diagonalization of the Hamiltonian !1".
The system dynamics under any applied gate-pulse are cal-
culated without resorting to the quasistatic approximation
that may not be appropriate to describe nuclear polarization
dynamics.22 At the same time, our use of collective spin
states enables us to consider a substantially larger number of
nuclei !#1000 per dot" as compared with previous numerical
studies,6,7 which is important in determining the scaling
properties of the dynamical features with N.

The nuclear spin configuration in each dot is represented
in the basis of collective Dicke states $j ,m%, where
0! j!N /2 is the total spin of the state !or cooperative num-
ber" and $m$! j is the z projection of the total spin. The
initial nuclear spin configuration in the two dots is written as

$"!0"%nuc = &
IL=0

N/2

w!IL"$IL,IL
z0% ! &

IR=0

N/2

w!IR"$IR,IR
z0% , !3"

and will be denoted henceforth as !IL
z0 , IR

z0"w where Ii
z0 indi-

cates the initial polarization of the nuclear configuration in
dot i. The distribution weights w!Ii" are assigned statistically
by the number of possible ways in which one can arrange N
spins into singlets, triplets, quintets, etc. We find that these
weights obey a Gaussian distribution peaked at Ii='N /2
whose width is '2N, as shown in Fig. 1!c".23

An example of the proposed dynamical polarization pulse
sequence is shown in the lower panel of Fig. 1!a".16 The key
is to drive the system through the S−T+ resonance with dif-
ferent speed in the two directions, so that only in one direc-
tion can the electron-nuclear spin flip occur. An S!0,2" state
is prepared by positively detuning the double dot !P" to en-
able electron exchange with the leads, whose Fermi level is
above the S!0,2" but below the doubly occupied triplets. The
electrons are then separated using rapid adiabatic passage,
where the bias is swept to a negative detuning quickly rela-
tive to the HF coupling but slowly as compared to the elec-
tron tunneling between the hybridized singlet states. Our
simulations show that the adiabaticity requirement is met
with sweep times of 5 ns. The bias is then swept back slowly
through the S−T+ anticrossing !D, which can be identified
experimentally4" where the HF interaction mediates electron
spin flip flop with the nuclear spin baths. Choosing point S!
to be far enough from the S−T0 degeneracy, the electron spin
state is always flipped from a singlet to a T+, thus polarizing
the nuclear spin baths. Finally, the system is swept back to
point P where the triplet state relaxes quickly through elec-
tron exchange with the leads, and a new S!0,2" state is pre-
pared for the next cycle. The singlet preparation at the end of
each cycle is simulated by partially tracing the electronic
subsystem and applying a direct product of the resulting

nuclear density matrix with the electronic configuration at
point P. To study effects of the polarization cycles on the
relaxation of the electron singlet state, we add a measure-
ment cycle where the dots are negatively detuned to the S
−T0 degeneracy !S" for a separation time #S, followed by a
measurement of the singlet probability PS !#M #5 $s".2,4 To
enhance the efficiency of the polarization process, we per-
form a nonlinear bias sweep, spending a substantial part of
the cycle in the vicinity of D (see Fig. 1!a").

Before presenting the simulation results for the polariza-
tion scheme, we discuss the envisaged impact of this proce-
dure on the decay time of the electron singlet correlations.
Figure 2 depicts the time evolution of PS when the electrons
are prepared in a singlet state and placed at point S, for
several values of N. In Fig. 2!a" the initial nuclear state is
!0,−min('N , IR)"w, representing a statistical polarization dif-
ference between the two dots. The time axes are multiplied
by 'N /105, indicating that the decay time scales like 1/'N.
The decay time of 25 ns agrees well with the experimental

FIG. 1. !Color online" !a" Upper panel: Orbital energy diagram
for the double dot near the !1,1"-!0,2" transition vs a bias parameter,
proportional to the interdot bias gate potential. Shown are the hy-
bridized singlet states !black curves" and split !1,1" triplet states T−
!dash-dotted green", T0 !blue", and T+ !dashed red". ! denotes the
S−T+ degeneracy point. Lower panel: Polarize, separate, and mea-
sure pulse sequence. Three polarization cycles are shown followed
by a separation time and a measurement of the singlet probability.
The letters at the bottom indicate biasing points discussed in the
main text. !b" Exchange energy as a function of bias. !c" Center
location !blue" and full width at half maximum !FWHM" !red" of
the nuclear spin state distribution as a function of N. The dashed
lines are 'N /2 and '2N, corresponding to the center location and
FWHM of the distribution, respectively.
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findings,4,24 and its scaling with N corresponds to the deco-
herence time behavior found in Ref. 8, since we scale the HF
coupling constant with a fixed number of nuclei !105" rather
than with N. Similar dynamics is found for other initial
nuclear states, e.g., !−min#$N , IL% ,−min#2$N , IR%"w. Figure
2!b" shows the time evolution of PS for the fully polarized
nuclear configuration !−IL ,−IR"w. In this case PS decay times
are two orders of magnitude longer reaching 3 !s and they
do not scale with N. Other equally polarized configurations
do not always present an enhanced singlet coherence, indi-
cating that the fully polarized nuclear state is characterized
by a narrower distribution in addition to having "hz=0. We
stress that the term fully polarized does not suggest that all
the spins are polarized, since one is limited by the total spin
of each collective state within the weighted distribution. In
fact, the total attainable polarization is p=1.4533/$N reach-
ing a value of 0.46% for N=105, which is consistent with
recent experiments.16,25

The short time dynamics can be understood within a
2#2 effective Hamiltonian for the Sz=0 subspace, Heff
= J

2 !1+$z"+"hz$x, where $ is the pseudospin operator !&S'
→ &$z=−1', &T0'→ &$z=1'".8 Even when ("hz'=0 as for the
fully polarized state in Fig. 2!b", the spin dynamics do not
vanish altogether. The reason is that applying Heff on each of
the collective states in the weighted distribution results in
different eigenvalues and their dynamics do not cancel out,
giving rise to quantum fluctuations. In both cases shown in
Fig. 2 there is a long time !)2.5 !s for B=100 mT" enve-
lope decay attributed to higher-order corrections to Heff that
are contained in Eq. !1". This envelope scales like 1/N and
could therefore govern the dynamics of the fully polarized
state in the large N limit. Its long time scale is a consequence
of the large Zeeman splitting as compared with the Over-

hauser fields and it can be made longer using a larger mag-
netic field. For the N values we are considering, these cor-
rections are only observed for the state !0,0"w for which all
other dynamics are shut down.

Our results also agree well with the experimental
findings24 and analytical results8 for J%0. These include
preservation of the singlet correlations over a long time scale
in the limit of J&Enuc, and the appearance of damped oscil-
lations in PS with a saturation value that depends on Enuc/J
in the intermediate regime J)Enuc. We also find the long
time !$S&T2

*" value of PS to be 1/2 for B&Bnuc and 1/3 for
B'Bnuc, in agreement with semiclassical theory.5

Now we investigate the effects of the polarization cycles
on the electron spin states by separating the electrons every
four cycles to calculate PS as the polarization progresses.
Bias changes require calculating the evolution separately for
each bias, using the resulting density matrix at each step as
the initial condition for the subsequent step. The numerical
effort is thus much more demanding and we are limited to
several tens of nuclei per dot. Figures 3!a"–3!c" show PS
calculated for the initial nuclear configuration, after 20 po-
larization cycles, and after 100 cycles. The singlet decay
times show a gradual enhancement as the nuclear polariza-
tion builds up, and their scaling with N gradually shifts from
1/$N #Fig. 3!a"% to 1 #Fig. 3!c"%. An enhancement of factor
300 is obtained for the singlet decay times that reach )8 !s
when the polarization process is complete. The correspond-
ing nuclear polarizations in the two dots, shown in Fig. 3!d",
equilibrate during the polarization process. This equilibration
effect is robust to any of our choices of initial nuclear con-
figuration, and the degree of equilibration depends on the
symmetry of the double dot. The equilibration between the
two nuclear spin configurations and the narrow distribution
of the Overhauser fields formed during the polarization pro-
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which are an artifact of the uniform coupling approximation and
can be eliminated by performing dynamics averaging over different
HF couplings. !b" Initial nuclear configuration !−IL ,−IR"w.
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=0. !a" Initial PS without polarization. Time axes are scaled like
$N /105. !b" PS calculated after 20 polarization cycles. Time axes
are scaled like !N /105"0.28. !c" PS calculated after 100 polarization
cycles. Time axes do not scale with N. !d" The corresponding
nuclear polarizations in the left !L-red lines" and right !R-blue lines"
dot. The vertical dotted line corresponds to the time elapsed after
20 cycles, at which PS shown in !b" was calculated.
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findings,4,24 and its scaling with N corresponds to the deco-
herence time behavior found in Ref. 8, since we scale the HF
coupling constant with a fixed number of nuclei !105" rather
than with N. Similar dynamics is found for other initial
nuclear states, e.g., !−min#$N , IL% ,−min#2$N , IR%"w. Figure
2!b" shows the time evolution of PS for the fully polarized
nuclear configuration !−IL ,−IR"w. In this case PS decay times
are two orders of magnitude longer reaching 3 !s and they
do not scale with N. Other equally polarized configurations
do not always present an enhanced singlet coherence, indi-
cating that the fully polarized nuclear state is characterized
by a narrower distribution in addition to having "hz=0. We
stress that the term fully polarized does not suggest that all
the spins are polarized, since one is limited by the total spin
of each collective state within the weighted distribution. In
fact, the total attainable polarization is p=1.4533/$N reach-
ing a value of 0.46% for N=105, which is consistent with
recent experiments.16,25

The short time dynamics can be understood within a
2#2 effective Hamiltonian for the Sz=0 subspace, Heff
= J

2 !1+$z"+"hz$x, where $ is the pseudospin operator !&S'
→ &$z=−1', &T0'→ &$z=1'".8 Even when ("hz'=0 as for the
fully polarized state in Fig. 2!b", the spin dynamics do not
vanish altogether. The reason is that applying Heff on each of
the collective states in the weighted distribution results in
different eigenvalues and their dynamics do not cancel out,
giving rise to quantum fluctuations. In both cases shown in
Fig. 2 there is a long time !)2.5 !s for B=100 mT" enve-
lope decay attributed to higher-order corrections to Heff that
are contained in Eq. !1". This envelope scales like 1/N and
could therefore govern the dynamics of the fully polarized
state in the large N limit. Its long time scale is a consequence
of the large Zeeman splitting as compared with the Over-

hauser fields and it can be made longer using a larger mag-
netic field. For the N values we are considering, these cor-
rections are only observed for the state !0,0"w for which all
other dynamics are shut down.

Our results also agree well with the experimental
findings24 and analytical results8 for J%0. These include
preservation of the singlet correlations over a long time scale
in the limit of J&Enuc, and the appearance of damped oscil-
lations in PS with a saturation value that depends on Enuc/J
in the intermediate regime J)Enuc. We also find the long
time !$S&T2

*" value of PS to be 1/2 for B&Bnuc and 1/3 for
B'Bnuc, in agreement with semiclassical theory.5

Now we investigate the effects of the polarization cycles
on the electron spin states by separating the electrons every
four cycles to calculate PS as the polarization progresses.
Bias changes require calculating the evolution separately for
each bias, using the resulting density matrix at each step as
the initial condition for the subsequent step. The numerical
effort is thus much more demanding and we are limited to
several tens of nuclei per dot. Figures 3!a"–3!c" show PS
calculated for the initial nuclear configuration, after 20 po-
larization cycles, and after 100 cycles. The singlet decay
times show a gradual enhancement as the nuclear polariza-
tion builds up, and their scaling with N gradually shifts from
1/$N #Fig. 3!a"% to 1 #Fig. 3!c"%. An enhancement of factor
300 is obtained for the singlet decay times that reach )8 !s
when the polarization process is complete. The correspond-
ing nuclear polarizations in the two dots, shown in Fig. 3!d",
equilibrate during the polarization process. This equilibration
effect is robust to any of our choices of initial nuclear con-
figuration, and the degree of equilibration depends on the
symmetry of the double dot. The equilibration between the
two nuclear spin configurations and the narrow distribution
of the Overhauser fields formed during the polarization pro-
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New materials to eliminate the nuclear environment
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mostly zero nuclear spin isotopes
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The Kondo-effect is a many-body phenomenon
arising due to conduction electrons scattering off
a localized spin degree of freedom [1], as provided
e.g. by a quantum dot occupied by an odd num-
ber of electrons. Coherent spin-flip scattering
off such a quantum impurity correlates the con-
duction electrons in the source and drain elec-
trodes and at low temperature this leads to a
zero-bias conductance anomaly [2, 3]. Over the
last decade, this correlation effect has become a
common signature in bias-spectroscopy of single-
electron transistors, and it has been observed
in GaAs quantum dots [4–9] as well as in vari-
ous single-atom [10], and single-molecule [11–15]
transistors. Here we report on the observation
of a pronounced conductance peak at finite bias-
voltage in a single-wall carbon nanotube quan-
tum dot holding an even number of electrons, and
demonstrate that this resonance is due to an ex-
clusively nonequilibrium Kondo-effect. We find
excellent agreement between experiment and the-
ory, thus confirming the correlated nature of this
nonequilibrium resonance.

For quantum dots accommodating an odd number
of electrons, a suppression of charge-fluctuations in the
Coulomb blockade regime leads to a local spin-1/2 degree
of freedom and, when temperature is lowered through a
characteristic Kondo-temperature TK , the Kondo-effect
shows up as a zero-bias peak in the differential conduc-
tance. In a dot with an even number of electrons, the two
electrons residing in the highest occupied level may either
form a singlet or promote one electron to the next level
to form a triplet, depending on the relative magnitude of
the level splitting δ and the ferromagnetic intradot ex-
change energy J . For J > δ, the triplet state prevails
and gives rise to a zero-bias Kondo peak [7, 8], but when
δ > J the singlet state is lower in energy and no Kondo
effect is expected in the linear conductance. Nevertheless,
spin-flip tunneling becomes viable when the applied bias

is large enough to accommodate a transition from sin-
glet to triplet. Such inter-lead exchange-tunneling may
give rise to incipient Kondo correlations and concomitant
conductance peaks near V ∼ ±δ/e. However, since the
tunneling involves excited states with a rather limited
life-time, the question remains to what extend the co-
herence of such inelastic spin-flips and hence the Kondo-
effect is maintained? Finite bias conductance peaks have
been observed before in carbon nanotubes [11, 14, 16] as
well as in GaAs quantum dots [8, 9], but for lack of a
quantitative theory for this nonequilibrium Kondo-effect
no characterization of the phenomenon has been possible.
As pointed out in Ref.17, a bias induced population of
the excited state (here the triplet), may change a simple
finite-bias cotunneling step into a cusp in the nonlinear
conductance. Therefore, in order to quantify the strength
of correlations involved in such a finite-bias conductance
anomaly, a proper nonequilibrium treatment will be nec-
essary.

We have examined a quantum dot based on a single-
wall carbon nanotube (see Fig. 1a). Electron transport
measurements of the two-terminal differential conduc-
tance were carried out in a cryostat with a base electron
temperature of Tel ≈ 80 mK and a magnetic field per-
pendicular to the nanotube axis. The low temperature
characteristics of the device are seen from the density
plot in Fig. 1b, showing dI/dV as a function of source-
drain voltage V and gate voltage Vg. The dominant blue
regions of low conductance are caused by Coulomb block-
ade (CB) while the sloping white and red lines are edges
of the CB diamonds, where the blockade is overcome by
the finite source-drain bias. Moreover, white and red hor-
izontal ridges of high conductance around zero bias are
seen. These ridges occur in an alternating manner, for
every second electron added to the nanotube dot. These
are the Kondo resonances induced by the finite electron
spin S = 1/2 existing for an odd number N of elec-
trons where an unpaired electron is localized on the tube.
The zero bias resonances are absent for the other regions
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FIG. 1: Experimental setup and shell-filling scheme
for a single-wall carbon nanotube. a, Schematic of the
nanotube device, comprising a single-wall carbon nanotube
grown by chemical vapor deposition on a SiO2 substrate and
contacted by Cr/Au source and drain electrodes, spaced by
250 nm. Highly doped silicon below the SiO2 cap layer acted
as a back gate electrode. Room temperature measurements of
conductance as a function of back-gate voltage, Vg, indicate
that the conducting nanotube is metallic with a small gap
outside the region considered here (cf. Supplementary Infor-
mation, section 1). b, Density-plot of dI/dV as a function
of V and Vg at Tmix = 81 mK. c, Diagram illustrating the
corresponding level-filling-scheme.

(with even N) where the ground state spin is S = 0.
Over most of the measured gate-voltage range (not all
shown) the diamond-plot exhibits a clear four-electron
periodicity, consistent with the consecutive filling of two
non-degenerate sub-bands, corresponding to the two dif-
ferent sub-lattices of the rolled up graphene sheet, within
each shell [16]. This shell-filling scheme is illustrated in
Fig. 1c.

We observe inelastic cotunneling features for all even
N, located at respectively the level-spacing ∆ or the
sub-band-mismatch δ, i.e. eV ∼ ±∆ for a filled shell
and eV ∼ ±δ for a half-filled shell. Reading off the
addition, and excitation energies throughout the quar-
tet near Vg = −4.90V, shown in Fig. 1b, we can esti-
mate the relevant energy-scales within a constant inter-
action model [16, 18, 19]. We deduce a charging en-
ergy EC ≈ 3.0 meV, a level-spacing ∆ ≈ 4.6 meV,
a subband mismatch δ ≈ 1.5 meV, and rather weak
intradot exchange, and intra-orbital Coulomb energies
J, dU < 0.05δ. The fact that δ > J is consistent with
a singlet ground-state for N=2, involving only the lower
sub-band (orbital), together with a triplet at excitation
energy δ − J and another singlet at energy δ. Notice
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FIG. 2: Temperature dependence of the finite-bias res-
onance. a, Temperature dependence of dI/dV as a func-
tion of V , at Vg = −4.90 V, taken at Tmix =81 (thick),
199, 335, 388, 488, 614, 687 (dashed) mK. b, Tempera-
ture dependence of the finite-bias conductance peak in Fig.2a
(open circles) and the neighboring zero-bias Kondo reso-
nance (solid circles) at Vg = −4.96 V (see Fig.1a). The
dashed line is a fit to the NRG-interpolation-formula a(1 +
(21/0.22 − 1)(T/TK)2)−0.22 with a = 0.11 and TK = 1.0 K.
The full line is a fit to the heuristic weak-coupling for-
mula a log−2[ T 2 + (bΓ(V = δ))2/TK ] with a = 6.9 and
b = 0.74, using our calculated spin-relaxation rate and Kondo-
temperature, Γ(V = δ) = 365 mK and TK = 0.4 mK, deter-
mined implicitly from the fit presented in Fig. 4. This may
not be exactly the correct analytical formula for the peak
height, but the data are clearly seen to be consistent with a
saturation of a log-enhanced Kondo-peak at T ≈ Γ ≈ 365
mK. c, dI/dV vs. V and magnetic field B, at Vg = −4.90 V.
d, dI/dV vs. V at B = 6 T, corresponding to vertical cross
section (dashed) in Fig.2c. The d2I/dV 2 trace (thin) under-
lines the presence of three distinct peaks in dI/dV . The black
bars each correspond to ∆V = gµBB/e with g = 2.0 for nan-
otubes.

that also the regions with N odd and S = 1/2 ground-
state exhibit an inelastic resonance at an energy close
to δ. We expect these to be well described by, possibly
Kondo-enhanced, transitions promoting the valence elec-
tron from orbital 1 to orbital 2, but we shall not investi-
gate these resonances in detail. Focusing on the case with
N = 2, Fig. 2a shows the measured line-shape, dI/dV vs.
V , at Vg = −4.90 V and for temperatures ranging from
81 mK to 687 mK. The conductance is highly asymmet-
ric in bias-voltage and exhibits a pronounced peak near
V ∼ δ/e which increases markedly when lowering the
temperature (cf. inset Fig. 2a).

For N = 2, we model the nanotube quantum dot by a
two-orbital Anderson impurity occupied by two electrons
coupled to the leads via four different tunneling ampli-
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for a single-wall carbon nanotube. a, Schematic of the
nanotube device, comprising a single-wall carbon nanotube
grown by chemical vapor deposition on a SiO2 substrate and
contacted by Cr/Au source and drain electrodes, spaced by
250 nm. Highly doped silicon below the SiO2 cap layer acted
as a back gate electrode. Room temperature measurements of
conductance as a function of back-gate voltage, Vg, indicate
that the conducting nanotube is metallic with a small gap
outside the region considered here (cf. Supplementary Infor-
mation, section 1). b, Density-plot of dI/dV as a function
of V and Vg at Tmix = 81 mK. c, Diagram illustrating the
corresponding level-filling-scheme.

(with even N) where the ground state spin is S = 0.
Over most of the measured gate-voltage range (not all
shown) the diamond-plot exhibits a clear four-electron
periodicity, consistent with the consecutive filling of two
non-degenerate sub-bands, corresponding to the two dif-
ferent sub-lattices of the rolled up graphene sheet, within
each shell [16]. This shell-filling scheme is illustrated in
Fig. 1c.

We observe inelastic cotunneling features for all even
N, located at respectively the level-spacing ∆ or the
sub-band-mismatch δ, i.e. eV ∼ ±∆ for a filled shell
and eV ∼ ±δ for a half-filled shell. Reading off the
addition, and excitation energies throughout the quar-
tet near Vg = −4.90V, shown in Fig. 1b, we can esti-
mate the relevant energy-scales within a constant inter-
action model [16, 18, 19]. We deduce a charging en-
ergy EC ≈ 3.0 meV, a level-spacing ∆ ≈ 4.6 meV,
a subband mismatch δ ≈ 1.5 meV, and rather weak
intradot exchange, and intra-orbital Coulomb energies
J, dU < 0.05δ. The fact that δ > J is consistent with
a singlet ground-state for N=2, involving only the lower
sub-band (orbital), together with a triplet at excitation
energy δ − J and another singlet at energy δ. Notice
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onance. a, Temperature dependence of dI/dV as a func-
tion of V , at Vg = −4.90 V, taken at Tmix =81 (thick),
199, 335, 388, 488, 614, 687 (dashed) mK. b, Tempera-
ture dependence of the finite-bias conductance peak in Fig.2a
(open circles) and the neighboring zero-bias Kondo reso-
nance (solid circles) at Vg = −4.96 V (see Fig.1a). The
dashed line is a fit to the NRG-interpolation-formula a(1 +
(21/0.22 − 1)(T/TK)2)−0.22 with a = 0.11 and TK = 1.0 K.
The full line is a fit to the heuristic weak-coupling for-
mula a log−2[ T 2 + (bΓ(V = δ))2/TK ] with a = 6.9 and
b = 0.74, using our calculated spin-relaxation rate and Kondo-
temperature, Γ(V = δ) = 365 mK and TK = 0.4 mK, deter-
mined implicitly from the fit presented in Fig. 4. This may
not be exactly the correct analytical formula for the peak
height, but the data are clearly seen to be consistent with a
saturation of a log-enhanced Kondo-peak at T ≈ Γ ≈ 365
mK. c, dI/dV vs. V and magnetic field B, at Vg = −4.90 V.
d, dI/dV vs. V at B = 6 T, corresponding to vertical cross
section (dashed) in Fig.2c. The d2I/dV 2 trace (thin) under-
lines the presence of three distinct peaks in dI/dV . The black
bars each correspond to ∆V = gµBB/e with g = 2.0 for nan-
otubes.

that also the regions with N odd and S = 1/2 ground-
state exhibit an inelastic resonance at an energy close
to δ. We expect these to be well described by, possibly
Kondo-enhanced, transitions promoting the valence elec-
tron from orbital 1 to orbital 2, but we shall not investi-
gate these resonances in detail. Focusing on the case with
N = 2, Fig. 2a shows the measured line-shape, dI/dV vs.
V , at Vg = −4.90 V and for temperatures ranging from
81 mK to 687 mK. The conductance is highly asymmet-
ric in bias-voltage and exhibits a pronounced peak near
V ∼ δ/e which increases markedly when lowering the
temperature (cf. inset Fig. 2a).

For N = 2, we model the nanotube quantum dot by a
two-orbital Anderson impurity occupied by two electrons
coupled to the leads via four different tunneling ampli-
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FIG. 1: Experimental setup and shell-filling scheme
for a single-wall carbon nanotube. a, Schematic of the
nanotube device, comprising a single-wall carbon nanotube
grown by chemical vapor deposition on a SiO2 substrate and
contacted by Cr/Au source and drain electrodes, spaced by
250 nm. Highly doped silicon below the SiO2 cap layer acted
as a back gate electrode. Room temperature measurements of
conductance as a function of back-gate voltage, Vg, indicate
that the conducting nanotube is metallic with a small gap
outside the region considered here (cf. Supplementary Infor-
mation, section 1). b, Density-plot of dI/dV as a function
of V and Vg at Tmix = 81 mK. c, Diagram illustrating the
corresponding level-filling-scheme.

(with even N) where the ground state spin is S = 0.
Over most of the measured gate-voltage range (not all
shown) the diamond-plot exhibits a clear four-electron
periodicity, consistent with the consecutive filling of two
non-degenerate sub-bands, corresponding to the two dif-
ferent sub-lattices of the rolled up graphene sheet, within
each shell [16]. This shell-filling scheme is illustrated in
Fig. 1c.

We observe inelastic cotunneling features for all even
N, located at respectively the level-spacing ∆ or the
sub-band-mismatch δ, i.e. eV ∼ ±∆ for a filled shell
and eV ∼ ±δ for a half-filled shell. Reading off the
addition, and excitation energies throughout the quar-
tet near Vg = −4.90V, shown in Fig. 1b, we can esti-
mate the relevant energy-scales within a constant inter-
action model [16, 18, 19]. We deduce a charging en-
ergy EC ≈ 3.0 meV, a level-spacing ∆ ≈ 4.6 meV,
a subband mismatch δ ≈ 1.5 meV, and rather weak
intradot exchange, and intra-orbital Coulomb energies
J, dU < 0.05δ. The fact that δ > J is consistent with
a singlet ground-state for N=2, involving only the lower
sub-band (orbital), together with a triplet at excitation
energy δ − J and another singlet at energy δ. Notice

0.0 0.1

0

0 2 4 6

0

1

2

-2 -1 0 1 2

0.00

0.05

0.10

0.15

100 1000

0.05

0.10

0.15

 

dI/dV  (e2
/h)

 
6 T

 d
2I/dV 

2
 (a.u.)

 

 

V
  

(m
V

)

B  (T)

dc

b

a

 

 
d

I/d
V

  
( e

2
/ h

)

V  (mV)

 

 

P
e

a
k
 d

I/d
V

  
( e

2
/ h

)

T
mix

 (mK)

FIG. 2: Temperature dependence of the finite-bias res-
onance. a, Temperature dependence of dI/dV as a func-
tion of V , at Vg = −4.90 V, taken at Tmix =81 (thick),
199, 335, 388, 488, 614, 687 (dashed) mK. b, Tempera-
ture dependence of the finite-bias conductance peak in Fig.2a
(open circles) and the neighboring zero-bias Kondo reso-
nance (solid circles) at Vg = −4.96 V (see Fig.1a). The
dashed line is a fit to the NRG-interpolation-formula a(1 +
(21/0.22 − 1)(T/TK)2)−0.22 with a = 0.11 and TK = 1.0 K.
The full line is a fit to the heuristic weak-coupling for-
mula a log−2[ T 2 + (bΓ(V = δ))2/TK ] with a = 6.9 and
b = 0.74, using our calculated spin-relaxation rate and Kondo-
temperature, Γ(V = δ) = 365 mK and TK = 0.4 mK, deter-
mined implicitly from the fit presented in Fig. 4. This may
not be exactly the correct analytical formula for the peak
height, but the data are clearly seen to be consistent with a
saturation of a log-enhanced Kondo-peak at T ≈ Γ ≈ 365
mK. c, dI/dV vs. V and magnetic field B, at Vg = −4.90 V.
d, dI/dV vs. V at B = 6 T, corresponding to vertical cross
section (dashed) in Fig.2c. The d2I/dV 2 trace (thin) under-
lines the presence of three distinct peaks in dI/dV . The black
bars each correspond to ∆V = gµBB/e with g = 2.0 for nan-
otubes.

that also the regions with N odd and S = 1/2 ground-
state exhibit an inelastic resonance at an energy close
to δ. We expect these to be well described by, possibly
Kondo-enhanced, transitions promoting the valence elec-
tron from orbital 1 to orbital 2, but we shall not investi-
gate these resonances in detail. Focusing on the case with
N = 2, Fig. 2a shows the measured line-shape, dI/dV vs.
V , at Vg = −4.90 V and for temperatures ranging from
81 mK to 687 mK. The conductance is highly asymmet-
ric in bias-voltage and exhibits a pronounced peak near
V ∼ δ/e which increases markedly when lowering the
temperature (cf. inset Fig. 2a).

For N = 2, we model the nanotube quantum dot by a
two-orbital Anderson impurity occupied by two electrons
coupled to the leads via four different tunneling ampli-
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addition, and excitation energies throughout the quar-
tet near Vg = −4.90V, shown in Fig. 1b, we can esti-
mate the relevant energy-scales within a constant inter-
action model [16, 18, 19]. We deduce a charging en-
ergy EC ≈ 3.0 meV, a level-spacing ∆ ≈ 4.6 meV,
a subband mismatch δ ≈ 1.5 meV, and rather weak
intradot exchange, and intra-orbital Coulomb energies
J, dU < 0.05δ. The fact that δ > J is consistent with
a singlet ground-state for N=2, involving only the lower
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b = 0.74, using our calculated spin-relaxation rate and Kondo-
temperature, Γ(V = δ) = 365 mK and TK = 0.4 mK, deter-
mined implicitly from the fit presented in Fig. 4. This may
not be exactly the correct analytical formula for the peak
height, but the data are clearly seen to be consistent with a
saturation of a log-enhanced Kondo-peak at T ≈ Γ ≈ 365
mK. c, dI/dV vs. V and magnetic field B, at Vg = −4.90 V.
d, dI/dV vs. V at B = 6 T, corresponding to vertical cross
section (dashed) in Fig.2c. The d2I/dV 2 trace (thin) under-
lines the presence of three distinct peaks in dI/dV . The black
bars each correspond to ∆V = gµBB/e with g = 2.0 for nan-
otubes.

that also the regions with N odd and S = 1/2 ground-
state exhibit an inelastic resonance at an energy close
to δ. We expect these to be well described by, possibly
Kondo-enhanced, transitions promoting the valence elec-
tron from orbital 1 to orbital 2, but we shall not investi-
gate these resonances in detail. Focusing on the case with
N = 2, Fig. 2a shows the measured line-shape, dI/dV vs.
V , at Vg = −4.90 V and for temperatures ranging from
81 mK to 687 mK. The conductance is highly asymmet-
ric in bias-voltage and exhibits a pronounced peak near
V ∼ δ/e which increases markedly when lowering the
temperature (cf. inset Fig. 2a).

For N = 2, we model the nanotube quantum dot by a
two-orbital Anderson impurity occupied by two electrons
coupled to the leads via four different tunneling ampli-
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ABSTRACT

We report the realization of nanotube-based multiple quantum dots that are fully defined and controlled with electrostatic gates. Metallic

top-gates are used to produce localized depletion regions in the underlying tubes; a pair of such depletion regions in a nanotube with ohmic

contact electrodes defines the quantum dot. Top-gate voltages tune the transparencies of tunnel barriers as well as the electrostatic energies

within single and multiple dots. This approach allows precise control over multiple devices on a single tube, and serves as a design paradigm

for nanotube-based electronics and quantum systems.

A number of proposed solid-state devices1 take as their

fundamental element the quantum dotsa classically isolated
island of electrons with a discrete energy spectrum.1,2 As a

substrate for realizing multiple quantum-dot devices, carbon

nanotubes3 offer a variety of appealing physical properties.

However, nanotube-based electronics in general have been

limited by the difficulty of fabricating complex devices on

a single tube. In previous studies, isolated quantum dots

formed in carbon nanotubes were defined either by tunnel

barriers at the metal-nanotube interface4,5 or by intrinsic6,7
or induced8,9 defects along the tube. These devices demon-

strated the potential of nanotube-based quantum devices but

did not allow independent control over device parameters

(e.g., charge number and tunnel barrier transparency), and

also placed stringent geometric constraints on device design.

In the present study, we address some of these challenges

by forming the quantum dots on the nanotube using only

patterned gates, while the contacts to the nanotube remain

highly transparent. This design allows multiple quantum dots

to be arbitrarily positioned along a tube (quantum dots

connected to 1D nanotube leads), with independent control

over tunnel barriers and dot charges. A backgate is used to

set overall carrier density. Here, we show that quantum dots

fabricated in this manner exhibit familiar characteristics yet

provide significant advances in device control. In particular,

full control over tunnel barrier locations and transparencies

should allow improvements in the study and control of spin

and charge dynamics in carbon nanotubes.

Nanotubes were grown via chemical vapor deposition from

lithographically defined Fe catalyst islands on a degenerately

doped Si wafer with 1 µm of thermally grown oxide (See

Figure 1a). Atomic force microscopy was used to locate

nanotubes relative to alignment markers, and single-walled

tubes with diameters less than ∼3 nm were contacted with

15 nm of Pd, patterned by electron beam lithography.10

Device lengths were in the range 5-25 µm. After contacting,
the entire sample was coated with 25-35 nm of either SiO2
deposited by plasma-enhanced chemical vapor deposition

(PECVD) or Al2O3 deposited by atomic layer deposition

Figure 1. (a) Schematic of a gate-defined carbon nanotube
quantum dot showing vertically integrated geometry and ohmic
contacts. Pd provides high-conductance contacts at the metal-
nanotube interface that do not form tunnel barriers at low temper-
atures. (b) Gate response of a ∼25 µm long nanotube contacted
with Pd, top-gated using PECVD SiO2 at T ∼ 300 mK with ∼10
µV ac excitation. For this device, all gates strongly suppress
conductance at voltages above ∼+1 V. Inset: SEM of a litho-
graphically similar gate pattern. The middle two gates are connected
together and serve as a single plunger gate. Scale bar ) 2 µm.
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