Lecture 3: Flow Equation Renormalization Group

FEI

Motivation: Nonequilibrium transport through quantum dots

Flow Equation Renormalization Group

Due to: Wegner, Ann. Phys. (Leipzig), <u>3</u>, 77 (1994), Glazek, Wilson, Phys. Rev. D, <u>48</u>, 5863 (1993) Reviewed in: Kehrein, "The Flow Equation Approach to Many-Particle Systems" FE3

Idea: diagonalize H by se [RG generalization of Schrieffer-Wolff idea]	equence of infinitesimal unitary transformations: $H(B) = U(B) H(o) u^{\dagger}(B) , \qquad u^{\dagger} = u^{-1}$	(1)
Starting point:	U(0) = Goal: μ(∞) =	
Consider:	$\frac{\partial H}{\partial B} = \partial_{g} H = (\partial_{g} U) \qquad H(o) U'' + U H(o) \qquad \partial_{g} U''$	(থ
≥ _B (UU ⁻ ') ↔	where $\gamma(B) := (\partial_B U) U^{-1} \stackrel{(*)}{=}$	(3)
"Flow Equation" for Hamiltonian:	$\partial_{\mathbf{B}} \mathbf{H}(\mathbf{B}) \stackrel{(\mathbf{Z})}{=} \left[\gamma(\mathbf{G}), \mathbf{H}(\mathbf{G}) \right]$ reminiscent of Heisenberg eq. of motion for t-dependence	(4)
[solving (4) generates 1-p	arameter family of unitarily equivalent Hamiltonians H(B)]	
Equivalent representation:	$U(3) = T_{B} e \int_{0}^{B} dS' \gamma(s') \qquad (5)$]
Canonical choice for	: Suppose: $H(B) = H_B(B) + H_{int}(B)$ (1)	FE4
Canonical choice for	:-diagonal part H1 flows to zero, if we choose	FE4
Canonical choice for • Wegner showed that off "canonical generator":	Suppose: $H(B) = H_0(B) + H_{int}(B)$ () -diagonal part H1 flows to zero, if we choose $\eta(B) := [H_0(B), H_{int}(B)]$	FE4 (2)
Canonical choice for Wegner showed that off "canonical generator": Theorem:	Suppose: $H(B) = H_0(B) + H_{int}(B)$ (1) -diagonal part H1 flows to zero, if we choose $I(B) := [H_0(B), H_{int}(B)]$ $T_r[H_0(B) H_{int}(B)] = 0$ and $T_r[\partial_B H_0(B) H_{int}(B)] = 0$ are satisfied if H0 changes no quantum numbers, and each term in Hint changes at leas	FE4 (2) (3) t one)
Canonical choice for Wegner showed that off "canonical generator": Theorem: (these conditions then off-diagonal terms decrease under flow:	Suppose: $H(B) = H_0(B) + H_{int}(B)$ () -diagonal part H1 flows to zero, if we choose $\eta(B) := [H_0(B), H_{int}(B)]$ $T_r[H_0(B) H_{int}(B)] = 0$ and $T_r[\partial_B H_0(B) H_{int}(B)] = 0$ s are satisfied if H0 changes no quantum numbers, and each term in Hint changes at leas $T_r[H_{int}^2(B)]$	FE4 (2) (3) t one) (4)
Canonical choice for Wegner showed that off "canonical generator": Theorem: (these conditions then off-diagonal terms decrease under flow: <u>Interpretation of B:</u>	Suppose: $H(B) = H_0(B) + H_{int}(B)$ (i) -diagonal part H1 flows to zero, if we choose $\eta(B) := [H_0(B), H_{int}(B)]$ $Tr[H_0(B) H_{int}(B)] = 0$ and $Tr[\partial_B H_0(B) H_{int}(B)] = 0$ are satisfied if H0 changes no quantum numbers, and each term in Hint changes at leas $Tr[H_{int}^2(B)]$ Dimensions: $[\eta] \stackrel{(B)}{=}$	FE4 (2) (3) t one) (4)
Canonical choice for Wegner showed that off "canonical generator": Theorem: (these conditions then off-diagonal terms decrease under flow: <u>Interpretation of B:</u>	$\frac{1}{2} \qquad \text{Suppose:} \qquad H(B) = H_0(B) + H_{int}(B) \qquad (3)$ $= -\text{diagonal part H1 flows to zero, if we choose}$ $I(B) := [H_0(B), H_{int}(B)]$ $Tr[H_0(B) + H_{int}(B)] = 0 \qquad \text{and} \qquad Tr[\partial_B H_0(B) + H_{int}(B)] = 0$ $\text{are satisfied if H0 changes no quantum numbers, and each term in Hint changes at leas}$ $Tr[H_{int}^2(B)]$ Dimensions: $[\gamma] \stackrel{(2)}{=} \qquad (G) \stackrel{(2)}$	FE4 (2) (3) t one) (4) (5) (4)
Canonical choice for Wegner showed that off "canonical generator": Theorem: (these conditions then off-diagonal terms decrease under flow: <u>Interpretation of B:</u>	Suppose: $H(B) = H_0(B) + H_{int}(B)$ (1) diagonal part H1 flows to zero, if we choose $\eta(B) := [H_0(B), H_{int}(B)]$ $Tr[H_0(B) H_{int}(B)] = 0$ and $Tr[\partial_B H_0(B) H_{int}(B)] = 0$ s are satisfied if H0 changes no quantum numbers, and each term in Hint changes at leas $Tr[H_{int}^2(B)]$ Dimensions: $[\eta] \stackrel{(2)}{=} (G_1) \stackrel{(2)}{=} (G_2) \stackrel{(2)}{=} (G_3) \stackrel{(2)}{=} (G_3) \stackrel{(2)}{=} (G_3) \stackrel{(2)}{=} (G_3) \stackrel{(2)}{=} (G_3) \stackrel{(3)}{=} (G_3) (3)$	FE4 (2) (3) t one) (4) (5) (4) (7)

So far, exact. [Solving (5.8a+b) numerically yiels correct $H(\infty) = H_{diag}$ FEL To get feeling for flow, suppose hij is "small", linearize (5.8) in hij, i.e. drop last term on RHS: $\partial_{B} h_{ij}(8) = -(\varepsilon_{i} - \varepsilon_{j})^{2} h_{ij} + O(h_{ij}^{2})$ (5.8b) (1) $h_{ij}(B) = e^{-B[\Sigma_{i}(0) - \Sigma_{j}(0)]^{2}} h_{ij}(0)$ Solution: (Z) <il Hint lj) So, off-diagonal elements die as Those with largest energy difference $\tilde{\epsilon}_{i}(o) - \epsilon_{i}(o)$ die fastest! "Energy scale separation" \rightarrow **(3**) Energy shifts: $\partial_{\mathbf{g}} \varepsilon_{\mathbf{j}}(\mathbf{g}) = Z \sum_{\mathbf{k}+\mathbf{j}} \left[\varepsilon_{\mathbf{j}}(\mathbf{g}) - \varepsilon_{\mathbf{k}}(\mathbf{g}) \right] h_{\mathbf{j}\mathbf{k}}^{2}$ (4) (2) into (5.8a) $+ o(l^3)$ (হ/ Integrate: $\int_{a}^{\infty} B(4)$ $\varepsilon_{j}(\infty) - \varepsilon_{j}(0) = \int_{0}^{\infty} \partial_{B} \varepsilon_{j}(B) \stackrel{(4)}{=}$ 2nd. order pert. theory

$$\begin{array}{c|c} \hline FERG for 1-lead Kondo Model \\ H(\mathfrak{S}) = H_{\mathfrak{s}} \in H_{\mathfrak{s}}(\mathfrak{S}) \\ \hline \mathfrak{S}. \mathsf{kdrein}, \mathsf{bool}, \mathsf{add} \\ \hline \mathsf{PRL}, \mathfrak{sd}, \mathsf{Observe}(\mathsf{coop}) \\ H_{\mathfrak{o}} = \sum_{\mathbf{k} \in \mathcal{C}} \mathfrak{t}_{\mathbf{k} \in \mathcal{L}} \mathfrak{t}_{\mathbf{k} \in \mathfrak{t}} \mathfrak{t}_{\mathbf{k} \in \mathfrak{L}} \mathfrak{t}_{\mathbf{k} \in \mathfrak{L}} \mathfrak{t}_{\mathbf{k} \in \mathfrak{L}} \mathfrak{t}_{\mathbf{k} \in \mathfrak{L}} \mathfrak{$$

Eĸ

FERG in nonequilibrium

Effective Kondo model for coupled channel 1 [compare (AM10.1)]:

Effective Fermi function:

 $H = \sum_{k \alpha \sigma} \psi_{k1\sigma}^{\dagger} \psi_{k1\sigma} + J_{1} \overline{\vartheta_{1}} \overline{\vartheta_$

Parametrization of

couplings:

Coupling at left/right Fermi energy.:

Average coupling in transport window:

$$\gamma J_{\varepsilon \varepsilon'} := \int \frac{\varepsilon + \varepsilon'}{2} (\varepsilon) e^{-\beta \varepsilon - \varepsilon'}$$

 $g_{\ell_{f}}(B) := g_{\varepsilon} = \pm v_{\ell_{\varepsilon}}(B)$ $g_{\ell}(B) := \sqrt[V]{\int_{-V_{\ell}}^{V_{\ell_{\varepsilon}}} d\varepsilon} g_{\varepsilon}(B)$

competition between singlet formation and spin relaxation

Finite voltage causes splitting of Kondo resonance

S. Kehrein

FE 15