Many-Body Localization

Boris Altshuler
 Physics Department, Columbia University

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures

Great Park, Windsor, UK, August 9-21, 2010

Outfine:

1. Introduction to Anderson Locafization
2. Thononless conductivity
3. Localization beyond real space
4. Spectral Statistics and Locafization
5. Many - Boafy Localization
6. Disordered 6osons in 1 D
7. Metal - Insulator transition in electronic systems
1.Introduction

>50 years of Anderson Localization

Absence of Diffusion in Certain Random Lattices

P. W, Anderson
BdI Tdephowe Laboratories, Mwray Hill, New Jersy
(Received October 10, 1957)

This paper presents a simple model for such processes as spin difusion or conduction in the "impurity band." ${ }^{\text {" }}$ These processes involve transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localixed sites. In this shmple model the csaential randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

-One quantum particle
-Random potential (e.g., impurities) Elastic scattering

Einstein (1905):
 Random walk
 always diffusion

as long as the system has no memory

Anderson(1958):
It might be that
For quantum particles

』

$D=0$
not always!
Quantum interference \Rightarrow memory

Einstein Relation (1905)

Diffusion Constant

Einstein Relation (1905)

Diffusion Constant

No diffusion - no conductivity
Localized states - insulator Extended states - metal Metal - insulator transition

Localization of single-electron wave-functions:

$$
\left[-\frac{\boldsymbol{\nabla}^{2}}{2 m}+U(\boldsymbol{r})-\epsilon_{F}\right] \psi_{\alpha}(\boldsymbol{r})=\xi_{\alpha} \psi_{\alpha}(\boldsymbol{r})
$$

Disorder

Nobel Lecture

Nobel Lecture, December 8, 1977
Local Moments and Localized States
I was cited for work both. in the field of magnetism and in that of disordered systems, and I would like to describe here one development in each held which was specifically mentioned in that citation. The two theories I will discuss differed sharply in some ways. The theory of local moments in metals was, in a sense, easy: it was the condensation into a simple mathematical model of ideas which. were very much in the air at the time, and it had rapid and permanent acceptance because of its timeliness and its relative simplicity. What mathematical difficulty it contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and even fewer saw its importance; among those who failed to fully understand it at first was certainly its author. It has yet to receive adequate mathematical treatment, and one has to resort to the indignity of numerical simulations to settle even the simplest questions about it .

Spin Diffusion

Experiment

Feher, G., Phys. Rev. 114, 1219 (1959); Feher, G. \& Gere, E. A., Phys. Rev. 114, 1245 (1959). Light
Wiersma, D.S., Bartolini, P., Lagendijk, A. \& Righini R. "Localization of light in a disordered medium", Nature 390, 671-673 (1997).
Scheffold, F., Lenke, R., Tweer, R. \& Maret, G. "Localization or classical diffusion of light", Nature 398,206-270 (1999).
Schwartz, T., Bartal, G., Fishman, S. \& Segev, M. "Transport and Anderson localization in disordered two dimensional photonic lattices". Nature 446, 52-55 (2007).
C.M. Aegerter, M.Störzer, S.Fiebig, W. Bührer, and G. Maret : JOSA A, 24, \#10, A23, (2007) Microwave
Dalichaouch, R., Armstrong, J.P., Schultz, S.,Platzman, P.M. \& McCall, S.L. "Microwave localization by 2-dimensional random scattering". Nature 354, 53, (1991).

Chabanov, A.A., Stoytchev, M. \& Genack, A.Z. Statistical signatures of photon localization. Nature 404, 850, (2000).

Pradhan, P., Sridar, S, "Correlations due to localization in quantum eigenfunctions od disordered microwave cavities", PRL 85, (2000)

Sound

Weaver, R.L. Anderson localization of ultrasound. Wave Motion 12, 129-142 (1990).

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities
Prabhakar Pradhan and S. Sridhar
Department of Physics, Northeastern University, Boston, Massachusetts 02115 (Received 28 February 2000)

Localization of cold atoms

Billy et al. "Direct observation of Anderson localization of matter waves in a controlled disorder". Nature 453, 891- 894 (2008).

Roati et al. "Anderson localization of a non-interacting Bose-Einstein condensate". Nature 453, 895-898 (2008).

Q: What about electrons ?
A: Yes,... but electrons interact with each other

Anderson Model

- Lattice - tight binding model
() \otimes Onsite energies ε_{i} - random

- Hopping matrix elements $I_{i j}$
$-W<\varepsilon_{i}<W$
uniformly distributed

$I_{i j}= \begin{cases}I & \begin{array}{l}\text { i and } j \text { are } \\ \text { neighbors }\end{array} \\ 0 & \text { otherwise }\end{cases}$

Anderson Transition $\quad I_{c}=f(d) * W$
 $\boldsymbol{I}<\boldsymbol{I}_{c}$
 Insulator

All eigenstates are localized Localization length ξ

$$
\underset{\text { Metal }}{ }
$$

There appear states extended all over the whole system

Why arbitrary

- weak hopping I is not sufficient for the existence of the diffusion

Einstein (1905): Marcovian (no memory) process \rightarrow diffusion

Quantum mechanics is not marcovian There is memory in quantum propagation. Why?

Hamiltonian

$$
\begin{array}{r}
\hat{H}=\left(\begin{array}{cc}
\varepsilon_{1} & I \\
I & \varepsilon_{2}
\end{array}\right) \text { diagonalize } \hat{H}=\left(\begin{array}{c}
E_{1} \\
0
\end{array}\right. \\
E_{2}-E_{1}=\sqrt{\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2}+I^{2}}
\end{array}
$$

$$
\begin{aligned}
& \hat{H}=\left(\begin{array}{cc}
\varepsilon_{1} & I \\
I & \varepsilon_{2}
\end{array}\right) \hat{\text { diagonalize }} \hat{H}=\left(\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right) \\
& E_{2}-E_{1}=\sqrt{\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2}+I^{2}} \approx \begin{array}{ll}
\varepsilon_{2}-\varepsilon_{1} & \varepsilon_{2}-\varepsilon_{1} \gg I \\
I & \varepsilon_{2}-\varepsilon_{1} \ll I
\end{array} \\
& \text { vol veumann \& Wigner "noncrossing rule" }
\end{aligned}
$$

v. Neumann J. \& Wigner E. 1929 Phys. Zeit. v.30, p. 467

What about the eigenfunctions?

$$
\hat{H}=\left(\begin{array}{cc}
\varepsilon_{1} & I \\
I & \varepsilon_{2}
\end{array}\right) \quad E_{2}-E_{1}=\sqrt{\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2}+I^{2}} \approx \begin{array}{cc}
\varepsilon_{2}-\varepsilon_{1} & \varepsilon_{2}-\varepsilon_{1} \gg I \\
I & \varepsilon_{2}-\varepsilon_{1} \ll I
\end{array}
$$

What about the eigenfunctions?

$$
\begin{array}{cc}
\phi_{1}, \varepsilon_{1} ; \phi_{2}, \varepsilon_{2} & \Leftarrow \psi_{1}, E_{1} ; \psi_{2}, E_{2} \\
\varepsilon_{2}-\varepsilon_{1} \gg I & \varepsilon_{2}-\varepsilon_{1} \ll I
\end{array}
$$

$\psi_{1,2}=\varphi_{1,2}+O\left(\frac{I}{\varepsilon_{2}-\varepsilon_{1}}\right) \varphi_{2,1}$
Off-resonance
Eigenfunctions are close to the original onsite wave functions

$$
\psi_{1,2} \approx \varphi_{1,2} \pm \varphi_{2,1}
$$

Resonance
In both eigenstates the probability is equally shared between the sites

Anderson insulator Few isolated resonances

Anderson metal
There are many resonances and they overlap

Typically each site is in the resonance with some other one

Anderson insulator Few isolated resonances

Anderson metal
There are many resonances and they overlap

Transition:

 Typically each site is in the resonance with some other one
Condition for Localization:

I< energy mismatch

\# of n.neighbors

$$
\begin{array}{|c|}
\hline \text { energy } \\
\text { mismatch }
\end{array}=\left|\varepsilon_{i}-\varepsilon_{j}\right|_{\text {typ }}=W
$$ neighbors

$$
=2 d
$$

A bit more precise:

$$
\frac{I_{c}}{W} \simeq\left(\frac{1}{2 d}\right)\left(\frac{1}{\ln d}\right)
$$

Logarithm is due to the resonances, which are not nearest neighbors

Condition for Localization:

$$
\frac{I_{c}}{W} \simeq\left(\frac{1}{2 d}\right)\left(\frac{1}{\ln d}\right)
$$

Q:Is it correct?
A1: For low dimensions - No. $I_{c}=\infty$ for $d=1,2$ All states are localized. Reason - loop trajectories

$$
\varphi=\oint \vec{p} d \vec{r}
$$

Phase accumulated when traveling along the loop

The particle can go around the loop in two directions

Memory!

For $d=1,2$ all states are localized.

$$
\varphi=\oint \vec{p} d \vec{r}
$$

Phase accumulated when traveling along the loop

The particle can go around the loop in two directions

Memory!

Weak Localization:

The localization length S can be large
Inelastic processes lead to dephasing, which is characterized by the dephasing length L_{φ}
If $\zeta \gg L_{\varphi}$, then only small corrections to a conventional metallic behavior

Condition for Localization:

$$
\frac{I_{c}}{W} \simeq\left(\frac{1}{2 d}\right)\left(\frac{1}{\ln d}\right)
$$

Q:Is it correct?
A1: For low dimensions - No. $I_{c}=\infty$ for $d=1,2$

- All states are localized. Reason - loop trajectories

A2: Works better for larger dim
A3: Is exact on the Cayley tree

$$
I_{c}=\frac{W}{K \ln K},
$$

$K \begin{aligned} & \text { is the } \\ & \text { branching } \\ & \text { number }\end{aligned}$

Anderson Model on a Cayley tree

A selfconsistent theory of localization

R Abou-Chacrat, P W Anderson $\psi \stackrel{y}{s}$ and D J Thouless \dagger
† Department of Mathematical Physics, University of Birmingham, Birmingham, B15 2TT
\$ Cavendish Laboratory, Cambridge, England and Bell Laboratories, Murray Hill, New Jersey, 07974, USA

Received 12 January 1973

Abstract

A new basis has been found for the theory of localization of electrons in disordered systems. The method is based on a selfconsistent solution of the equation for the self energy in second order perturbation theory, whose solution may be purely real almost ewerywhere (localized states) or complex everywhere (nomlocalized states). The equations used are exact for a Bethe lattice. The selfeonsistency condition gives a nonlinear integral equation in two variables for the probability distribution of the real and imaginary parts of the self energy. A simple approximation for the stability limit of localized states gives Anderson's 'upper limit approximation'. Exact solution of the stability problem in a special case gives results very close to Anderson's best estimate. A general and simple formula for the stability limit is derived; this formula should be valid for smooth distribution of site energies away from the band edge. Results of Monte Carlo calculations of the selfconsistency problem are deseribed which conlirm and go beyond the analytical results. The relation of this theory to the old Anderson theory is examined, and it is concluded that the present theory is similar but better.

Eigenfunctions

Does anything interesting happen with the spectrum

Density of States

Density of States

Density of States

Anderson Transition

$$
I>I_{c} \quad I<I_{c}
$$

localized and extended

all states are localized
E_{c} - mobility edges (one particle)

Temperature dependence of the conductivity one-electron picture

Temperature dependence of the conductivity one-electron picture

Assume that all the states are localized;

$$
\text { e.g. } d=1,2
$$

$$
\sigma(T)=0 \quad \forall T
$$

Inelastic processes transitions between localized states

$T=0 \Rightarrow \sigma=0$
(any mechanism)

Phonon-assisted hopping

Variable Range Hopping N.F. Mott (1968)

$$
\sigma(T) \propto T^{\gamma} \exp \left[-\left(\frac{\delta_{\zeta}}{T}\right)^{\frac{1}{d+1}}\right]
$$

Mechanism-dependent prefactor

Optimized
phase volume

Any bath with a continuous spectrum of delocalized excitations down to $\omega=\mathbf{0}$ will give the same exponential

Lecture1.
2. Thononless conductivity
in Anderson insulators writh e-e interaction

$$
\begin{aligned}
& \text { Can hopping conductivity } \\
& \text { exist wjisotj pisossoss }
\end{aligned}
$$

Given: 1. All one-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Find: DC conductivity $\sigma(T, \omega=0)$ (zero or finite?)

Q: Can e-h pairs lead to phonon-less variable range hopping in the same way as phonons do ?

A\#1: Sure

1. Recall phonon-less
$\begin{aligned} & \text { AC conductivity: } \\ & \text { Sir N.F. Mott (1970) }\end{aligned} \quad \sigma(\omega)=\frac{e^{2} \zeta_{\text {loc }}^{d-2}}{\hbar}\left(\frac{\hbar \omega}{\delta_{\zeta}}\right)^{2} \ln ^{d+1}\left|\frac{\delta_{\zeta}}{\hbar \omega}\right|$
2. Fluctuation Dissipation Theorem: there should be Johnson-Nyquist noise
3. Use this noise as a bath instead of phonons
4. Self-consistency (whatever it means)

Q: Can e-h pairs lead to phonon-less variable range hopping in the same way as phonons do ?

A\#1: Sure

A\#2: No way (L. Fleishman. P.W. Anderson (1980)) Except maybe Coulomb interaction in 3D

$$
\sigma(\omega) \simeq \frac{e^{2} \zeta_{l o c}^{d-2}}{\hbar}\left(\frac{\hbar \omega}{\delta_{\zeta}}\right)^{2} \ln ^{d+1}\left|\frac{\delta_{\zeta}}{\hbar \omega}\right|
$$

is contributed by rare resonances

No phonons

 $\forall T$

Problem:

>If the localization length exceeds L_{φ}. then - metal.
>In a metal e-e interaction leads to a finite L_{φ}

At high enough temperatures conductivity should be finite even without phonons

Q: Can e-h pairs lead to phonon-less variable range hopping in the same way as phonons do ?

A\#1: Sure

A\#2: No way (L. Fleishman. P.W. Anderson (1980))
A\#3: Finite temperature Metal-Insulator Transition
$\sigma(T)$
(Basko, Aleiner, BA (2006))

Finite temperature Metal-Insulator Transition

Many body wave functions are localized in functional space

$$
T_{c} \simeq \frac{\delta_{\zeta}}{\lambda|\ln \lambda|}
$$

T
Definitions:
Insulator $\quad \sigma=0$
Metal
$\sigma \neq 0$
not $d \sigma / d T<0$
not $d \sigma / d T>0$

3. Locafization 6eyond

 real space
Kolmogorov - Arnold - Moser (KAM) theory

A.N. Kolmogorov,

Dokl. Akad. Nauk SSSR, 1954.
Proc. 1954 Int. Congress of Mathematics, NorthHolland, 1957

$\hbar=0$

Integrable classical Hamiltonian $\hat{H}_{0}, d>1$:
Separation of variables: d sets of action-angle variables

$$
I_{1}, \theta_{1}=2 \pi \omega_{1} t ; \ldots, I_{2}, \theta_{2}=2 \pi \omega_{2} t ; . .
$$

Quasiperiodic motion:
set of the frequencies, $\omega_{1}, \omega_{2}, \ldots, \omega_{d}$ which are in general incommensurate. Actions I_{i} are integrals of motion $\partial I_{i} / \partial t=0$

tori

Integrable dynamics:
Each classical trajectory is quasiperiodic and confined to a particular torus, which is determined by a set of the integrals of motion

$$
\begin{array}{|c|c|}
\hline \text { space } & \text { Number of dim } \\
\hline \text { real space } & d \\
\hline \text { phase space: }(x, p) & 2 d \\
\text { energy shell } & 2 d-1 \\
\text { tori } & d \\
\hline
\end{array}
$$

Number of dimensions

Each torus has measure zero on the energy shell!

Kolmogorov - Arnold - Moser (KAM) theory

A.N. Kolmogorov, Integrable classical Hamiltonian $\hat{H}_{0}, \boldsymbol{d}>1$: Dokl. Akad. Nauk SSSR, 1954.
Proc. 1954 Int. Congress of Mathematics, NorthHolland, 1957

Separation of variables: \boldsymbol{d} sets of action-angle variables $I_{1}, \theta_{1}=2 \pi \omega_{1} t ; ., I_{2}, \theta_{2}=2 \pi \omega_{2} t ;$.. Quasiperiodic motion: set of the frequencies, $\omega_{1}, \omega_{2}, . ., \omega_{d}$ which are in general incommensurate Actions I_{i} are integrals of motion $\partial I_{i} / \partial t=0$

Will an arbitrary weak perturbation
V of the integrable Hamiltonian H_{0} destroy the tori and make the motion ergodic (when each point at the energy shell will be reached sooner or later)
Most of the tori survive weak and smooth enough perturbations

Kolmogorov - Arnold - Moser (KAM) theory

A.N. Kolmogorov, Dokl. Akad. Nauk SSSR, 1954.
Proc. 1954 Int. Congress of Mathematics, NorthHolland, 1957

Will an arbitrary weak perturbation \hat{V} of the integrable Hamiltonian \hat{H}_{0} destroy the tori and make the motion ergodic (i.e. each point at the energy shell would be reached? sooner or later)
 perturbations

КАМ
 Most of the tori survive weak and smooth enough perturbations

Each point in the space of the integrals of motion corresponds to a torus and vice versa

Finite motion.
Localization in the space of the integrals of motion

KАМ

Most of the tori survive weak and smooth enough perturbations

КАМ theorem:

Most of the tori survive weak and smooth enough perturbations

Energy shell

Glossary

\(\left.\begin{array}{|c|c|}\hline Classical \& Quantum

\hline Integrable \& Integrable

H_{0}=H_{0}(\vec{I})\end{array} \hat{H}_{0}=\sum_{\mu} E_{\mu}|\mu\rangle\langle\mu|,|\mu\rangle=|\vec{I}\rangle\right\rangle |\)\begin{tabular}{cc|}
\hline KAM \& Localized

\hline | Ergodic - distributed all |
| :--- |
| over the energy shell |
| Chaotic | \& Extended?

\hline
\end{tabular}

Strong disorder

Strong disorder

localized

Moderate disorder extended
No disorder chaotic extended
No disorder integrable localized
Too weak disorder int. localized

Consider an integrable system. Each state is characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum numbers. The whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements of the hopping between different sites (Anderson model !?)

> Is it possible to tell if the - states are localized (in some unknown basis) or extended.

Density of States is not singular at the Anderson transition

This applies only to the average Density of States

Fluctuations?
4. Spectral statistics and Locafization

RANDOM MATRIX THEORY

Spectral statistics
$\boldsymbol{N} \times \boldsymbol{N} \quad$ ensemble of Hermitian matrices
\boldsymbol{E}_{α}
$\delta_{1} \equiv\left\langle\boldsymbol{E}_{\alpha+1}-\boldsymbol{E}_{\alpha}\right\rangle$
$\langle. . . .\rangle$.
$\boldsymbol{s} \equiv \frac{\boldsymbol{E}_{\alpha+1}-\boldsymbol{E}_{\alpha}}{\delta_{1}}$
$P(s)$

- distribution function of nearest neighbors spacing between

$$
\begin{aligned}
& \text { Spectral Rigidity } \\
& \text { Level repulsion }
\end{aligned}
$$

RANDOM MATRICES

$N \times N$ matrices with random matrix elements. $\quad N \rightarrow \infty$

Dyson Ensembles

Matrix elements Ensemble $\boldsymbol{\beta} \quad \underline{\text { realization }}$

real
complex orthogonal 1 unitary

2
simplectic 4

T-inv potential
broken T-invariance (e.g., by magnetic field)

T-inv, but with spinorbital coupling

Anderson Model

$$
\%
$$

$-W<\varepsilon_{i}<W$ uniformly distributed

Is there much in common between Random Matrices and Hamiltonians with random potential ?

Q:

What are the spectral statistics of a finite size Anderson model

Anderson Transition

Strong disorder

I $<\boldsymbol{I}_{\text {c }}$

Insulator

All eigenstates are localized Localization length ξ

The eigenstates, which are localized at different places will not repel each other

Poisson spectral statistics

Weak disorder

$$
\begin{array}{r}
I>I_{c} \\
\text { Metal }
\end{array}
$$

There appear states extended all over the whole system

Any two extended eigenstates repel each other

Wigner - Dyson spectral statistics

Anderson Localization and Spectral Statistics

Consider an integrable system. Each state is characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum numbers. The whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements of the hopping between different sites (Anderson model !?)

Weak enough hopping:
Localization - Poisson
Strong hopping: transition to Wigner-Dyson

Extended Level repulsion, anticrossings, states: Wigner-Dyson spectral statistics

Localized states:

Poisson spectral statistics

Invariant (basis independent) definition

Many-Body Locafization

BA, Gefen, Kamenev \& Levitov, 1997 Basko, Aleiner \& BA, 2005

Example: Random Ising model in the perpendicular field

 Will not discuss today in detail$$
\hat{H}=\sum_{i=1}^{N} B_{i} \hat{\sigma}_{i}^{z}+\sum_{i \neq j} J_{i j} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z}+I \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} \equiv \hat{H}_{0}+I \sum_{i=1}^{N} \hat{\sigma}_{i}^{x}
$$

$\vec{\sigma}_{i}$ - Pauli matrices, $\sigma_{i}^{z}= \pm \frac{1}{2}$
$i=1,2, \ldots, N ; \quad N \gg 1$
Without perpendicular field all σ_{i}^{Z} commute with the Hamiltonian, i.e.
they are integrals of motion

$$
\hat{H}=\sum_{\text {Random Ising model }}^{N} B_{i} \hat{\sigma}_{i}^{z}+\sum_{i \neq j} J_{i j} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z}+I \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} \equiv \hat{H}_{0}+I \sum_{i=1}^{N} \hat{\sigma}_{i}^{x}
$$

$\vec{\sigma}_{i}$ - Pauli matrices
$i=1,2, \ldots, N ; \quad N \gg 1$

$$
H_{0}\left(\left\{\sigma_{i}\right\}\right)
$$

onsite energy
$\hat{\sigma}^{x}=\hat{\sigma}^{+}+\hat{\sigma}^{-}$
hoping between nearest neighbors

$$
\hat{H}=\sum_{i=1}^{N} B \hat{\sigma}_{i}^{2}+\sum_{i=1} J_{i} \hat{\sigma}_{i}^{\top} \hat{\sigma}_{j}^{z}+I \sum_{i=1}^{N} \hat{\sigma}_{i}^{X}=\hat{H}_{0}+I \sum_{i=1}^{N} \hat{\sigma}_{i}^{x}
$$

Anderson Model on \mathbf{N}-dimensional cube

Usually:
\# of dimensions $\quad d \rightarrow$ const
system linear size $L \rightarrow \infty$

Here:
\# of dimensions $\quad d=N \rightarrow \infty$
system linear size $L=1$

6-dimensional cube

9-dimensional cube

Definitions:

$\begin{array}{rcrc}\text { Insulator } & \sigma=0 & \text { Metal } & \sigma \neq 0 \\ \text { not } & d \sigma / d T<0 & \text { not } d \sigma / d T>0\end{array}$

Many-Body Localization

1D 6osons + disorder

1D Localization

Exactly solved: all states are localized

Conjectured:

Gertsenshtein \& Vasil'ev, 1959

Mott \& Twose, 1961

correct for
1 -particle problem bosons as well as for fermions

Bosons without disorder

-Bose - Einstein condensation
-Bose-condensate even at weak enough repulsion
-Even in 1d case at $\mathbf{T}=\mathbf{0}$ - "algebraic superfluid"
-Finite temperature - Normal fluid

Localization of cold atoms

Billy et al. "Direct observation of Anderson localization of matter waves in a controlled disorder". Nature 453, 891-894 (2008).

Roati et al. "Anderson localization of a non-interacting Bose-Einstein condensate". Nature 453, 895-898 (2008).

No interaction!

Thermodynamics of ideal Bose-gas in the presence of disorder is a pathological problem: all particles will occupy the localized state

Need repulsion

 with the lowest energy1D Bosons + disorder + weak repulsion

Weakly interacting bosons

-Bose - Einstein condensation
-Bose-condensate even at weak enough repulsion
-Even in 1D case at $T=0$ - "algebraic superfluid"

1. No interaction

2. No disorder
 Superfluidinsulator transition
3. Weak repulsion

T=0 Superfluid - Insulator Quantum Phase Transition

T. Giamarchi and H. J. Schulz, Phys. Rev., B37, \#1(1988).
relatively
strong
interaction
E. Altman, Y. Kafri, A. Polkovnikov \& G. Refael, Phys. Rev. Lett., 100, 170402 (2008).
G.M. Falco, T. Nattermann, \& V.L. Pokrovsky, Phys. Rev., B80, 104515 (2009).

Is it a normal fluid at any temperature?

Dogma

There can be no phase transitions at a finite temperature in 1D Van Howe, Landau

Reason

 Thermal fluctuation destroy any long range correlations in 1D
$T=0$ Normal fluid - Insulator Phase Transition:

Neither normal fluids nor glasses (insulators) exhibit long range correlations

True phase transition: singularities in
still
transport (rather than thermodynamic) properties

What is insulator?

Perfect Zero DC conductivity at Insulator finite temperatures

Possible if the system is decoupled from any outside bath

Normal
metal
(fluid)

Finite (even if very small) DC conductivity at finite temperatures

1D Luttinger liquid: bosons = fermions ?

Bosons with infinitely strong repulsion
\approx Free fermions
Free bosons \approx Fermions with infinitely strong attraction

Weakly interacting bosons

Fermions with strong attraction

As soon as the occupation numbers become large the analogy with fermions is not too useful

1D Weakly Interacting Bosons + Disorder

Aleiner, BA \& Shlyapnikov, 2010, Nature Physics, to be published cond-mat 0910.4534

1. No interaction
disorder

2. No disorder

Normal fluid

Density of States $v(\varepsilon)$ in one dimension

Density of States $V(\varepsilon)$ in one dimension

Density of States $V(\varepsilon)$ in one dimension

Weak disorder - random potential $U(x)$

Random potential $\boldsymbol{U}(x)$:

Characteristic scales:

$\left(\varsigma_{*} E_{*}\right)^{-1}$ Length $\zeta_{*} \equiv\left(\frac{\hbar^{4}}{U_{0}^{2} \sigma m}\right)^{1 / 3} \gg \sigma$

All states are localized Localization length:

$$
\varsigma_{*} \quad \varepsilon \sim E_{*}
$$

$$
\varsigma(\varepsilon) \sim \varsigma_{*} \frac{\varepsilon}{E_{*}} \quad \varepsilon \gg E_{*}
$$

Finite density Bose-gas with repulsion

Density \boldsymbol{n}

Two more energy scales
Temperature of quantum degeneracy

$$
T_{d} \equiv \frac{\hbar^{2} n^{2}}{m}
$$

Interaction energy per particle $n g$

Two
dimensionless parameters

$$
\begin{array}{ll}
\kappa \equiv E_{*} / n g & \begin{array}{l}
\text { Characterizes the } \\
\text { strength of disorder }
\end{array} \\
\gamma \equiv n g / T_{d} & \begin{array}{l}
\text { Characterizes the } \\
\text { interaction strength }
\end{array}
\end{array}
$$

Strong disorder $\kappa \gg 1$ Weak interaction $\gamma \ll 1$

Dimensionless temperature $t=T / n g$

Critical temperature $T_{c} \quad t_{c}=t_{c}(\kappa, \gamma)$
Critical disorder $\quad \kappa_{c}=\kappa_{c}(t, \gamma)$

Phase transition line on the t, \mathcal{K} - plane

Finite temperature phase transition in 1D

$\kappa \equiv E_{*} / n g$

$$
\kappa_{c}=t^{1 / 3}
$$

	Insulator	$\kappa_{c}(t)$
	$\kappa_{c} \sim 1$	$\kappa_{c}=\left(t^{2} \gamma\right)^{1 / 3}$
	$1 / \sqrt{\gamma}$	
1		$1 / \gamma$

$$
t \equiv T / n g
$$

Conventional Anderson Model

-one particle,
-one level per site, -onsite disorder -nearest neighbor hoping
Basis: $|i\rangle, \quad i \begin{gathered}\text { labels } \\ \text { sites }\end{gathered}$

Hamiltonian: $\hat{H}=\hat{H}_{0}+\hat{V}$

$\hat{H}_{0}=\sum_{i} \varepsilon_{i}|i\rangle\langle i| \quad \hat{V}=\sum_{i, j=n . n .} I|i\rangle\langle j|$
Transition: happens when the hoping matrix element exceeds the energy mismatch
The same for many-body localization

Many body Anderson-like Model

many particles, several particles per site.
interaction

Many body Anderson-like Model

- many particles,

 several particles per site.interaction

Basis:

$$
\mu=\left\{n_{i}\right\}
$$

i labels sites
$n_{i}=0,1,2, \ldots . \begin{gathered}\text { occupation } \\ \text { numbers }\end{gathered}$

Hamiltonian:

$$
\hat{H}=\hat{H}_{0}+\hat{V} \quad \hat{H}_{0}=\sum_{\mu} E_{\mu}|\mu\rangle\langle\mu|
$$

$$
\hat{V}=\sum_{\mu, \eta(\mu)} I|\mu\rangle\langle\eta(\mu)|
$$

$$
\left.|\eta(\mu)\rangle=\left|. ., n_{i}-1, . ., n_{j}-1, . ., n_{k}+1, . ., n_{l}^{\delta}+1, . .\right\rangle\right\rangle
$$

$$
i, j, k, l=n . n .
$$

Conventional Anderson Model

Basis: |i>

i labels sites

$$
\begin{aligned}
& \hat{H}= \sum_{i} \varepsilon_{i}|i\rangle\langle i|+ \\
& \sum_{i, j=n . n .} I|i\rangle\langle j|
\end{aligned}
$$

Many body Andersonlike Model
Basis: $|\mu\rangle, \mu=\left\{n_{i}^{\alpha}\right\}$
i labels sites

$$
n_{i}=0,1,2, \ldots
$$

occupation numbers

$$
\hat{H}=\sum_{\mu} E_{\mu}|\mu\rangle\langle\mu|+\sum_{\mu, \nu(\mu)} I|\mu\rangle\langle v(\mu)|
$$

"nearest $\quad|v(\mu)\rangle=\left|. ., n_{i}-1, . ., n_{j}-1, . ., n_{k}+1, . ., n_{l}^{\delta}+1, ..\right\rangle$ neighbors":

$$
i, j, k, l=n . n .
$$

Transition temperature: $T_{c} \equiv t_{c}(n g)$
$|i\rangle,|j\rangle \Rightarrow|k\rangle,|l\rangle$
transition

Transition temperature: $T_{c} \equiv t_{c}(n g)$
$|i\rangle,|j\rangle \Rightarrow|k\rangle,|l\rangle$
transition
$I_{i j, k l}$ matrix element Decay of a state $|i\rangle$
Δ typical mismatch N_{1} typical \# of channels

Anderson condition:

$\Delta_{i j, l \mid} \equiv \varepsilon_{i}+\varepsilon_{j}-\varepsilon_{k}-\varepsilon_{l} \begin{aligned} & \text { energy } \\ & \text { mismatch }\end{aligned}$
$I(T)_{\ll \Delta(T) / N_{1}(T)}^{\gg \Delta(T) / N_{1}(T) \text { extended }}$

High temperatures:
 $T \gg T_{d}$
 $\Longleftrightarrow t \gg \gamma^{-1}$

Bose-gas is not degenerated; occupation numbers either $\mathbf{0}$ or $\mathbf{1}$

Matrix element of the transition

$$
I \sim g / \varsigma(\varepsilon=T) \sim\left(g E_{*}\right) /\left(\varsigma_{*} T\right)
$$

should be compared with the minimal energy
mismatch $(v \varsigma)^{-1} /(n \varsigma) \sim\left(v n \varsigma_{*}^{2} T^{2}\right)^{-1} E_{*}^{2}$

Localization spacing δ_{ζ}

Number of channels
$\kappa_{c}(t) \propto t^{1 / 3} \quad t \gamma \gg 1$

Intermediate temperatures: $\gamma^{-1 / 2} \ll t \ll \gamma^{-1}$

1. $T \ll T_{d} \Longleftrightarrow t \gamma \ll 1$
2. Bose-gas is degenerated: occupation numbers either >>1.
3. Typical energies $|\mu|=T^{2} / T_{d}, \mu$ is the chemical potential. Correct as long as

$$
|\mu| \gg n g, E_{*} \Longleftrightarrow t \sqrt{\gamma} \gg 1
$$

multiple
 $$
\mathbf{n}^{N(\varepsilon) \sim} \frac{T}{\varepsilon}
$$

4. Characteristic energies $\varepsilon \sim|\mu|$

$$
\gg n g, E_{*}
$$

We are still dealing with the high energy states

Intermediate temperatures: $\gamma^{-1 / 2} \ll t \ll \gamma^{-1}$

$$
|\mu|=T^{2} / T_{d} \gg n g, E_{*} \quad T \ll T_{d}
$$

Bose-gas is degenerated; typical energies ~ $|\mu| \gg T \Longrightarrow$ occupation numbers $\gg 1 \Longrightarrow$ matrix elements are enhanced

$$
\kappa_{c}(t) \propto t^{2 / 3} \gamma^{1 / 3} \quad \sqrt{\gamma} \ll t \gamma \ll 1
$$

Low temperatures: $t \ll \gamma^{-1 / 2}$ Start with $\mathbf{T}=\mathbf{0}$

Suppose $K \equiv E_{*}|n g \gg 1 \Longrightarrow| \mu \mid \ll E_{*} \quad$ Bosons occupy only

Low temperatures: $t \ll \gamma^{-1 / 2}$ Start with $\boldsymbol{T}=\mathbf{0}$

Suppose $\kappa \equiv E_{\|}\left|n g>1-|\mu| \ll E_{\quad \text { Bosons occupy only }} \quad\right.$. appose $\kappa=E_{*} / n g \gg 1 \longrightarrow|\mu| \ll E_{*} \Longrightarrow$ small fraction of low

Localization length ς_{*}
Occupation \#: $\left(\mu-\varepsilon_{i}\right) \varsigma_{*} / g$
Dos:

$$
\begin{aligned}
& \left(\mu-\varepsilon_{i}\right) \varsigma_{*} / g \\
& v(\varepsilon)=\left(E_{*} \varsigma_{*}\right)^{-1}
\end{aligned} n=\frac{\mu^{2}}{2 g E_{*}} \Longrightarrow \mu=E_{*} / \sqrt{\kappa}
$$

$$
l(\kappa)=\varsigma_{*} \sqrt{\kappa} \gg \varsigma_{*}
$$

O) Occupation

$$
\xrightarrow[X]{\longrightarrow} n l(\kappa) / \varsigma_{*}=\gamma^{-1 / 2} \gg 1
$$

Low temperatures: $t \ll \gamma^{-1 / 2}$

$$
\kappa \equiv E_{*} / n g \gg 1 \Longrightarrow \text { "lakes" }
$$

Occupation

$$
n l(\kappa) / \varsigma_{*}=\gamma^{-1 / 2} \gg 1
$$

Distance
$l(\kappa)=\varsigma_{*} \sqrt{\kappa} \gg \varsigma_{*}$

$$
l(\kappa) \gg \varsigma_{*} \Longrightarrow \begin{gathered}
\text { Strong } \\
\text { insulator }
\end{gathered}
$$

$\kappa \rightarrow \kappa_{c}$
$l(\kappa) \ll \varsigma_{*}$
Insulator - Superfluid transition in a chain of "Josephson junctions"

Low temperatures: $t \ll \gamma^{-1 / 2}$

$$
\kappa \equiv E_{*} / n g \gg 1 \Longrightarrow
$$

Strong insulator

$$
\Longrightarrow \kappa_{c} \sim 1 \text { for } t \ll \gamma^{-1 / 2}
$$

$T=0$ transition $\kappa_{c} \sim 1$

Disordered interacting bosons in two dimensions

Disordered interacting bosons in two dimensions

1. At $\mathbf{T}=\mathbf{0}$ normal state is unstable with respect to either insulator or superfluid.

Justification:

2. At finite temperature in the vicinity of the critical disorder the insulator can be thought of as a collection of "lakes", which are disconnected from each other. The typical size of such a "lake" diverges. This means that the excitations in the insulator state are localized but the localization length can be arbitrary large. Accordingly the many -body delocalization is unavoidable at an arbitrary low but finite T.

Phomoness comductance

$$
\begin{gathered}
\text { Many-6ody Localization } \\
\text { of fermions }
\end{gathered}
$$

Definitions:

$\begin{array}{rcrc}\text { Insulator } & \sigma=0 & \text { Metal } & \sigma \neq 0 \\ \text { not } & d \sigma / d T<0 & \text { not } d \sigma / d T>0\end{array}$

Many body Anderson-like Model

: many particles, $\%$ several levels $\%$ Basis: $|\mu\rangle$

 per site,- onsite disorder
- local interaction

$$
\mu=\left\{n_{i}^{\alpha}\right\}
$$

Hamiltonian:

$$
\sim n^{\alpha}-01 \text { occupation }
$$

$$
\hat{H}=\hat{H}_{0}+\hat{V}_{1}+\hat{V}_{2}
$$

$$
\begin{aligned}
& \hat{V}_{1}=\sum_{\mu,(\mu)} I|\mu\rangle\langle v(\mu)| \\
& |v(\mu)\rangle=\left|. ., n_{i}^{\alpha}-1, . ., n_{j}^{\beta}+1, . .\right\rangle, \quad i, j=n . n .
\end{aligned}
$$

$$
\hat{V}_{2}=\sum_{\mu, \eta(\mu)} U|\mu\rangle\langle\eta(\mu)|
$$

$$
|v(\mu)\rangle=\left|. ., n_{i}^{\alpha}-1, . ., n_{i}^{\beta}-1, . ., n_{i}^{\gamma}+1, . ., n_{i}^{\delta}+1, . .\right\rangle
$$

Conventional
 Anderson Model

Basis: |i>

i labels
sites

$$
\begin{aligned}
\hat{H}= & \sum_{i} \varepsilon_{i}|i\rangle\langle i|+ \\
& \sum_{i, j=n . n .} I|i\rangle\langle j|
\end{aligned}
$$

Many body Andersonlike Model
Basis: $|\mu\rangle, \mu=\left\{n_{i}^{\alpha}\right\}$

$$
i \underset{\text { sites }}{\text { labels }} \quad \alpha_{\text {levels }}^{\text {labels }} \begin{gathered}
n_{i}^{\alpha}=0,1 \\
\text { occupation }
\end{gathered}
$$ $\hat{H}=\sum_{\mu} E_{\mu}|\mu\rangle\langle\mu|+$ numbers

Anderson's recipe:

1. take descrete spectrum \boldsymbol{E}_{μ} of \boldsymbol{H}_{0}
2. Add an infinitesimal Im part i η to \boldsymbol{E}_{μ} 3. Evaluate $\operatorname{Im} \Sigma_{\mu}$

metal 5. "What we really need to know is the probability distribution of $\operatorname{Im} \Sigma$, not its average..."

Probability Distribution of $\Gamma=\operatorname{Im} \Sigma$

$\propto \eta$
Look for:
$\lim _{\eta \rightarrow+0} \lim _{V \rightarrow \infty} P(\Gamma>0)=\left\{\begin{array}{cc}>0 ; & \text { metal } \\ 0 ; & \text { insulator }\end{array}\right.$

Stability of the insulating phase: NO spontaneous generation of broadening

$$
\Gamma_{\alpha}(\varepsilon)=0
$$

is always a solution

$$
\varepsilon \rightarrow \varepsilon+i \eta
$$

$$
\frac{\Gamma}{\left(\varepsilon-\xi_{\alpha}\right)^{2}+\Gamma^{2}} \rightarrow \pi \delta\left(\varepsilon-\xi_{\alpha}\right)+\frac{\Gamma}{\left(\varepsilon-\xi_{\alpha}\right)^{2}}
$$

After \boldsymbol{n} iterations of the equations of the Self Consistent Born Approximation

$$
P_{n}(\Gamma) \propto \frac{\eta}{\Gamma^{3 / 2}}\left(\operatorname{const} \frac{\lambda T}{\delta_{\zeta}} \ln \frac{1}{\lambda}\right)^{n}
$$

first $n \rightarrow \infty$ then $\eta \rightarrow 0$

$$
(\ldots)<1 \text { - insulator is stable ! }
$$

Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop
It is maybe correct at low temperatures, but the higher the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical number of pairs created $\boldsymbol{n}_{\boldsymbol{c}}$ (i.e. the number of hops) increases. Thus phonons create cascades of hops.
 length

Physics of the transition: cascades

Conventional wisdom:

For phonon assisted hopping one phonon - one electron hop
It is maybe correct at low temperatures, but the higher the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical number of pairs created $\boldsymbol{n}_{\boldsymbol{c}}$ (i.e. the number of hops) increases. Thus phonons create cascades of hops.

At some temperature $T=T_{c} \quad n_{c}(T) \rightarrow \infty$. This is the critical temperature. Above T_{c} one phonon creates infinitely many pairs, i.e., phonons are not needed for charge transport.

Many-body mobility edge

$T \uparrow$
T_{c}

mobility
 edge

Many-body mobility edge

T 个 Large E (high T): extended states
(good metal)
$\delta_{\zeta} / \lambda^{2}-$ Fermi Golden Rule
hopping (bad metal)
δ_{ζ} / λ mobility
T_{c} transition! edge

Finite T normal metal - insulator transition is another

example of the many-body localization

Definition:

We will call a quantum state $|\mu\rangle$ ergodic if it occupies the number N_{μ} of sites N_{μ} on the Anderson lattice, which is proportional to the total number of sites N :

nonergodic

ergodic

Localized states are obviously not ergodic: $N_{\mu} \xrightarrow[N \rightarrow \infty]{ }$ const

Q: Is each of the extended state ergodic ?
A: In 3D probably YES, for $d>4$ - probably NO

Nonergodic states

W

$I \approx \frac{W}{K} \Rightarrow N_{\mu} \approx \ln N \ll N$

 nonergodic

nonergodic

Main postulate of the Gibbs StatMechequipartition (microcanonical distribution):
In the equilibrium all states with the same energy are realized with the same probability.
Without interaction between particles the equilibrium would never be reached - each one-particle energy is conserved.
Common believe: Even weak interaction should drive the system to the equilibrium.

Is it always true?

Lecture 3.
4. Speculations

Q:
What happens in the classical limit $\hbar \rightarrow 0$?
Speculations: 1. No transition $T_{c} \rightarrow 0$
2. Bad metal still exists

Reason: Arnold diffusion

Arnold diffusion

Each point in the space of the integrals of motion corresponds to a torus and vice versa

$d=2$ All classical trajectories correspond to a finite motion

d >2 Most of the trajectories correspond to a finite motion

However small fraction of the trajectories goes infinitely far

Arnold diffusion

1. Most of the tori survive - KAM
2. Classical trajectories do not cross each other

space

real space
phase space
energy shell
tori
$d=2 \Rightarrow d_{\text {en.shell }}-d_{\text {tori }}=1 \quad d=2 \Rightarrow d_{\text {en.shell }}-d_{\text {tori }}=1$
Each torus has "inside" and "outside"
inside

\# of dimensions

d

A torus does not have "inside" and "outside" as a ring in >2 dimensions

Speculations:

1. Arnold diffusion \Longleftrightarrow Nonergodic (bad) metal
2. Appearance of the transition (finite \boldsymbol{T}_{c}) quantum localization of the Arnold diffusion

Conclusions

Anderson Localization provides a relevant language for description of a wide class of physical phenomena - far beyond conventional Metal to Insulator transitions.

Transition between integrability and chaos in quantum systems
Interacting quantum particles + strong disorder. Three types of behavior:

$$
\begin{aligned}
& \text { ordinary ergodic metal } \\
& \text { "bad" nonergodic metal } \\
& \text { "true" insulator }
\end{aligned}
$$

A closed system without a bath can relaxation to a microcanonical distribution only if it is an ergodic metal

