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1.Introduction




>50 years of Anderson Localization
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Absence of Diffusion in Certain Random Lattices

P, W, ANprrson
Bell Taeplone Laboratories, Mwrray Till, New Sersey

{Received October 10, 1937)

This paper presents a simple model for such processes as spin difuslon or conduction in the “impurity
hand.” These processes invalve tmnsport in a lattice which 15 in some senge randoem, and in them diffusion
s expected to take place via quantum jumps between localized sites, In this simple model the esential
rendomness 15 introdeced by requiring the snergy to vary mndemly from site to site. I is shown that at low
enpugh densities no diffusion at all can take place, and the crterin for transport Lo ootwr are gaven.
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Einstein (1905): <r2> = Dt

Random walk
u [ diffusion constant

always diffusion
as long as the system has no memory

Anderson(1958): It might be that

For quantum <r2> —> const
particles 5_0
u —
not always!

Quantum interference = memory



Einstein Relation (1905)




Einstein Relation (1905)

[ Conductivity Density of states ]

Diffusion Constant ]

No diffusion - no conductivity

Localized states - insulator
Extended states - metal

Metal - insulator transition



Localization of single-electron wave-functions:
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Nobel Lecture

p hi | ip W. An derSDn Mobel Lecture, December 8, 1977

5 The Nobel Prize in Physics 1977

Local Moments and Localized States

| was cited for work both. in the field of magnetism and in that of
disordered systems, and | would like to describe here one development
In each held which was specifically mentioned in that citation. The two
theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which. were very much in the air at
the time, and it had rapid and permanent acceptance because of its
timeliness and its relative simplicity. What mathematical difficulty it
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and
even fewer saw its importance; among those who failed to fully
understand it at first was certainly its author. It has yet to receive
adequate mathematical treatment, and one has to resort to the indignity
of numerical simulations to settle even the simplest questions about it .



Spin Diffusion

Feher, G., Phys. Rev. 114, 1219 (1959); Feher, G. & Gere, E. A., Phys. Rev. 114, 1245 (1959).

Light
Wiersma, D.S., Bartolini, P., Lagendijk, A. & Righini R. “Localization of light in a disordered
medium”, Nature 390, 671-673 (1997).

Scheffold, F,, Lenke, R., Tweer, R. & Maret, G. “Localization or classical diffusion of light”,
Nature 398,206-270 (1999).

Schwartz, T., Bartal, G., Fishman, S. & Segev, M. “Transport and Anderson localization in
disordered two dimensional photonic lattices”. Nature 446, 52-55 (2007).

C.M. Aegerter, M.Storzer, S.Fiebig, W. Bihrer, and G. Maret : JOSAA, 24, #10, A23, (2007)

Microwave
Dalichaouch, R., Armstrong, J.P., Schultz, S.,Platzman, P.M. & McCall, S.L. “Microwave
localization by 2-dimensional random scattering”. Nature 354, 53, (1991).

Chabanov, A.A., Stoytchev, M. & Genack, A.Z. Statistical signatures of photon localization.
Nature 404, 850, (2000).

Pradhan, P., Sridar, S, “Correlations due to localization in quantum eigenfunctions od
disordered microwave cavities”, PRL 85, (2000)

Sound
Weaver, R.L. Anderson localization of ultrasound. Wave Motion 12, 129-142 (1990).



VoLumE 85, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEpTEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and 8. Sridhar

Department of Plivsics, Norvtheastern University, Boston, Massachusents 02115
(Received 28 February 2000)

f=3.04 GHz f=7.33 GHz

(b)

(a)
Localized State Extended State
Anderson Insulator Anderson Metal



Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453,
891- 894 (2008).

Roati et al. “Anderson localization of a non-interacting
Bose-Einstein condensate”. Nature 453, 895-898 (2008).

Q: What about electrons ?

A: VYes,.. but electrons interact with each other



Anderson « Lattice - tight binding model
I\/I()d e| * Onsite energies & - random

« Hopping matrix elements |ij

| and | are nearest
neighbors

otherwise

Anderson Transition EIESEECIEN

|<Ic | > |

C
Insulator Metal

All eigenstates are localized There appear states extended
Localization length g all over the whole system



Why arbitrary PP
= weak hopping | is ? ® ®®
_not sufficient for : : :

the existence of ™ ®® O

the diffusion &

Einstein (1905): Marcovian (no memory)
process —> diffusion

uantum mechanics is not marcovian
There is memory in quantum propagation a

Why 7
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von Neumann & Wigner “noncrossing rule”

| g, —& << |

Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467

What about the eigenfunctions ?
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I &, —& <<

eigenfunctions ?

d.e: 0,6, < w,E v, E
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Off-resonance

Eigenfunctions are

close to the original on-
site wave functions
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Resonance
In both eigenstates the
probability is equally
shared between the sites
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Anderson insulator
Few Isolated resonances

it
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Anderson metal
There are many resonances
and they overlap

Typically each site is in the
resonance with some other one



0900000008 @R ® ® Condition for
0@ 000008 e@® ® ® . A
220000000 @ o@@ o@ Localization:
s0ssssses s0esveses .
::::::o:: o: :ooo:: |<w
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P D0 00000 ® ® ®
Y XXX EXK! 200 0Q@ Do ® O

Anderson insulator Anderson metal energy _ ‘ g — g.‘ W

Few isolated resonances There are many resonances mismatch ' Vtyp

and they overlap

_ Typically each site is in the # of nearest — 24
resonance with some other one neighbors -

A bit more precise:

Logarithm is due to the resonances, which are not nearest neighbors



Condition for Localization:

L (1) (_ L
W\ 2d Ind
Q:Is it cor'r'ec‘l'?

Al . For low dimensions - NO.|_ = oo for d=12
* All states are localized. Reason - loop trajectories

The particle
can go around
the loop in
two directions

p=$ pdr

Phase accumulated
when traveling
along the loop




For d=1.2 all states are localized.

The particle
can go around
the loop in

Phase accumulated two directions

when traveling
along the loop

Weak Localization:

The localization length & can be large

Inelastic processes lead to dephasing, which is
characterized by the dephasing length L(D

If ¢ >> L(p , then only small corrections to a
conventional metallic behavior



Condition for Localization:

L (1) (_ L
W\ 2d Ind
Q:Is it correc‘l'?

Al . For low dimensions - NO.|_ = oo for d=12
* All states are localized. Reason - loop trajectories

Az * Works better for larger dimensions d > 4

A3 « Is exact on the Cayley tree

W is the
branching

| = ,
° KInK number




1. Phvs, C: Sahd State Phys, Vol 6, 1973, Printed in Grear Britain. & 1973

Anderson Model on a Cayley tree

A selfconsistent theory of localization

R Abou-Chacrat, P W Andersonis and D J Thoulesst
t Depariment of Mathematical Physics, University of Birmingham, Birmimngham, B15 2TT

1 Cavendish Laboratory, Cambridge, England and Bell La®boratories, Murray Hill, MNew
Jersey, 07974, TISA

Beceived 12 Januwary 1973

Abstract. A new basis has been found for the theory of localization of electrons m disordered
swstems, The method 15 based on a s¢lfconsistent solution of the equation for the self energy
in second order perturbation theory, whose sclution may be purely real almost evervwhere
(localized statesd or complex evervwhere {nonlocalized states), The equations used are
exact for a Bethe lattice. The selfconsistency condition gives & nonlinear integral equation
in two variables for the probability distribution of the real and imaginary parts of the self
energy, A simple approximation for the stability himit of localized states gives Anderson's
‘upper limit approximation’. Exact solution of the stability problem in a special case gives
resulis very close to Anderson’s best estimate. A general and simple formula for the stability
Lirmit is dertved; this formula should be valid for smooth distribution of st energies away
from the hand edge. Results of Monte Carle calculations of the selfconsistency problem
are described which confism and go beyond the analytical results, The relation of this
theory to the old Anderson theory 15 exarmined, and it 15 con<luded that the present theory
1% similar buot better.
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Q. Does anything interesting
" happen with the spectrum -



Density of States Density of States

Mobility edge Mobility edge



Anderson Transition

| < |
C C
localized and extended
€ never coexist! 4

F2 all states are
D> e localized
é ..... T TTI I (_:
/ DoS DoS

> >

.. - mobility edges (one particle)




Temperature dependence of the conductivity

one-electron picture

Chemical
potential

i
R,

e,

RN




Temperature dependence of the conductivity

one-electron picture

Assume that all the
states
are localized:

eg.d=1,2




Inelastic processes

transitions between localized states

— T = B — energy
--.-----K-A-“—-- ------ l fﬁ—fa mismatch



Phonon-assisted hopping

I “ e f °F o(T=0)=0
i 1 -
Variable Range o(T) x exp | — % o
Hopping 1
N.F. Mott (1968) i _
Mechanism-dependent Optimized
prefactor phase volume

Any bath with a continuous spectrum of delocalized
excitations down to @ = 0 will give the same exponential



Lecturel.

2. Phononless conductivity

in Anderson insulators
with e-e interaction



Anderson

Common -
; Insulator Phonon assisted
weak e-e => hopping transport

intferactions

Can hopping conductivity ')
exist 4

Given: 1. All one-electron states are localized

2. Electrons interact with each other

3. Thesystemisc
4. Temperature IS

Find: DC conductivity
(zero or finite?)

osed (no phonons)
ow but finite

o(T,»=0)



Q: Can e-h pairs lead to variable range

hopping In the same way as phonons do ?

A#l: Sure

1. Recall phonon-less i o 5
AC conductivity: _ e’ loc [ Tw 1nd+l 0¢
Sir N.F. Mott (1970) 0 (W) = — e ) | hw

2. Fluctuation Dissipation Theorem:
there should be Johnson-Nyquist noise

3. Use this noise as a bath instead of phonons

4. Self-consistency (whatever it means)



Q: Can e-h pairs lead to variable range

hopping In the same way as phonons do ?

A#1l: Sure

A#2: No way (L. Fleishman. P.W. Anderson (1980))
Except maybe Coulomb interaction in 3D

S Goe (10)" 2414 is contributed by
o (W) = 5 e rare resonances
G

w:“fﬁ—ﬁa:‘f’y—gé

i 1 -
- S\ d+1
o(T) x exp | — (C)

_ T
vahishes _ i

R—ow =



No fds No

phonons transport

>If the localization
length exceeds |_ ,
then - metal. ¢

At high enough
temperatures
conductivity should
be finite even
without phonons

>In a metal e-e
interaction leads to

a finite Lgﬂ




Q: Can e-h pairs lead to variable range

hopping In the same way as phonons do ?

A#1: Sure
A#2: No way (L. Fleishman. P.W. Anderson (1980))

A#3. Finite temperature Metal-Insulator Transition
A (Basko, Aleiner, BA (2006))
o(T)

Drude

< metal

<—insulator—

o=0

v




Finite temperature Metal-Insulator Transition

Many body wave functions are
localized in functional space

Drude

>

Interaction
)\ << 1 strength

metal

5§ — (Vé/d )_1Localization

spacing

>

~_ % T

Definitions:
Insulator o =0 Metal o #0
not do/dT <0 not do/dT >0



3. Localization beyond
real space



Koelmogorov — Arnold — Moser. (KAM) theory.

A.N. Kolmogorov,

Dokl. Akad. Nauk h — O

SSSR, 1954. .

Proc. 1954 Int. Inteqrable classical HamiltonianH,, d>1:

Congress of
Mathematics, North- . )
Holland, 1957 Separation of variables: d sets of

action-angle variables

|, 6, =2zwt; ..., 1,, 0, =27w.t;..

Quasiperiodic motion:

set of the frequencies,w,®,,..,, which are
in general incommensurate. Actions |, are
integrals of motiondl, /ot =0

o5 " ez tE\‘91 E\QZ
| | @ 0% @ X, ..=>

Viadimir

tori



Integrable dynamics:

Each classical trajectory is quasiperiodic
and confined to a particular torus, which

is determined by a set of the integrals of
motion

space Number of dimensions
real space d
phase space: (X,p) 20
energy shell 2d-1
tori d

Each torus has measure zero on the energy shell !



Koelmogoroyv — Arnold — Moser. (KAM) theory

A.N. Kolmogorov, Integrable classical HamiltonianH,, d>1:
Dokl. Akad. Nauk
SSSR, 1954,

Proc. 1954 Int.
Congress of
Mathematics, North-
Holland, 1957

Separation of variables: d sets of action-angle
variables | |0, = 2zwit;.., 1,0, = 27m,t;..
Quasiperiodic motion: set of the frequencies,
w,,w,,..,c0, Which are in general incommensurate

Actions |, are integrals of motion ol /0t =0

o) 0,

Se@e..

Q:

Will an arbitrary weak perturbatiaon f)

Vof the integrable Hamiltonian H
destroy the tori and make the motion =
ergodic (when each C‘::oirn' at the energy
shell will be reached sooner or later)

Most of the tori survive KAM
weak and smooth enough thearem
perturbations



Koelmogoroyv — Arnold — Moser. (KAM) theory

Dokl. Akad. Nauk
SSSR, 1954.

Proc. 1954 Int.
Congress of
Mathematics, North-
Holland, 1957

" V of the integrable HamiltonianH,

" destroy the tori and make the
motion ergodic (i.e. each point at
the energy shell would be reached”)
sooner or later) .

Most of the tori survive VXY
weak and smooth enough [
perturbations

A




KAM Most of the tori survive weak and
0128 Bl smooth enough perturbations

LA X V #0 @
> |1 > |

Each point in the space of the Finite motion.
integrals of motion corresponds Localization in the space
to a torus and vice versa of the integrals of motion &

1



KAM Most of the tori survive weak and
0128 Bl smooth enough perturbations

_>|1
NN /E0,

00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO

aoasossosnossda—y |
. _ 1
Two integrals of motion . m .
|1 =P,; |l — py X L J y L



KAM Most of the tori survive weak and
0128 Bl smooth enough perturbations




N\

V o
ez Cum® V
Matrix element of g m @ @ @ @ @
the perturbation
00 FOOODOO0

@» P00 QEOOO0 QOO0
20000000 OODOO

} One can speak about localization
1 U provided that the perturbation
Is somewhat local in the space

of quantum numbers of the
original Hamiltonian

AL hops are local - one can distinguish “near” and “far”
KAM perturbation is smooth enough



Classical Quantum
Integrable Integrable
H, = H, 7) L \ﬂ><ﬂ\ uy=|T)
KAM Localized
Ergodic - distributed all
over the energy shell Extended ?

Chaotic




Strong disorder localized
Weak disorder— extended

Strong disorder localized
Moderate disorder extended
No disorder chaotic extended
No disorder integrable localized

Too weak disorder int. localized



Consider an integrable system.
Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of
?uan’rum numbers. The whole set of the states
orms a lattice in this space.

A perturbation that violates the integrability
Er'ovides matrix elements of the hopping
etween different sites (Anderson model 1?)

.states are localized (in some
unknown basis) or extended.

Q Is it possible to tell if the »



Density of States is not singular
at the Anderson transition

This applies only to the I
average Density of States !

Fluctuations 7



4. Spectral statistics and
Localization



RANDOM MATRIX THEORY

ensemble of Hermitian matrices

NxN with random matrix element N — oo
E, - spectrum (set of eigenvalues)

_ . - mean level spacing,
51 o <E“+1 E“> determines the density of states
< ...... > - ensemble averaging
g = E,.—E, - Spacing between nearest

- S neighbors
1

P(S) - distribution function of nearest

neighbors spacing between

Spectral Rigidity RIEEIIETY

ARSI S P(s<<1l)cs? p=1,2,4
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0.2 |

0

Poisson — completel
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ngner Dyson GOE
Poisson

Gaussian
Orthogonal
Ensemble

Unitary

p=2

Orthogonal
p=1

Simplectic
,8—4

= =

0

N

0.5 1 1.5

P(s)
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RANDOM MATRICES

N x N matrices with random matrix elements. N — o0

Dyson Ensembles

Matrix elements Ensemble £  realization

real orthogonal 1  T-Inv potential

2 x 2matrices simplectic 4 T-Inv, but with spin-
orbital coupling



Anderson « Lattice - tight binding model
I\/I()d e| * Onsite energies & - random

« Hopping matrix elements |ij

-W< g <W

uniformly distributed

Is there much in common between Random Matrices
and Hamiltonians with random potential ?

" What are the spectral statistics ?
= Of afinite size Anderson model



Anderson liransition

Strong disorder Weak disorder
1 <1 1> 1
Insulator Metal
All eigenstates are localized There appear states extended

Localization length g all over the whole system

The eigenstates, which are Any two extended
localized at different places eigenstates repel each other
will not repel each other

d J

Poisson spectral statistics Wigner — Dyson spectral statistics



Anderson Localization anc
Spectral Statistics

ocalized states Extended states
\ Insulator Metal ﬁ
Poisson spectral Wigner-Dyson °

statistics spectral statistics



Consider an integrable system.
Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of
?uantum numbers. The whole set of the states
orms a lattice in this space.

A perturbation that violates the integrability
Er'ovides matrix elements of the hopping
etween different sites (Anderson model 1?)

Weak enough hopping:
Localization - Poisson
Strong hopping:
transition to Wigner-Dyson



Extended Level repulsion, anticrossings,
states:  Wigner-Dyson spectral statistics

Localized

states: Poisson spectral statistics

Invariant
(basis independent)
definition



Many-Body
Localization

BA, Gefen, Kamenev & Levitov, 1997
Basko, Aleiner & BA, 2005



Example: Random Ising model in the perpendicular field

Will not discuss today in detail

N

ZB RN ,aZ+|Z = H +|Z“X

I;tj
[ﬁar"}endlculﬂ
Random Ising model field

in a parallel field

: . 1
- Pauli matrices, o/ =+=

2
1=12,...N: N>>1

Without perpendicular field all O; ‘

commute with the Hamiltonian, i. e.
they are integrals of motion



H = isi&f +3 31,6767 +|i&ﬁ =H, + Ii&ﬁ
=1

i | i=1 i=1

W Perpendicular
field

Random Ising model
in a parallel field

= : : Without, perpendicular field
O; - Pauli matrices c;'ll IG ’ commufehwifh the
. : amiltonian, i.e. they are
1=12,.,N; N>>1 intfegrals of motion

Anderson Model on {Giz} determines a site
N-dimensional cube
HO({Gi }) o'=0c"+0

hoping between
onsite energy nearest neighbors



:i ), ,az+lz HA0+I§:51X
i=1 =1

I-‘/—'j

Anderson Model on N-dimensional cube
Usually: Here:

# of dimensions d — const # of dimensions d=N >

system linear size L — o system linear size L =1
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>

E\(—insulator—x— metal o >( >
= o=0 S. = (Vévd )‘1 localization
é Many body > spacing
localization! j '
- interaction
S A< strength

Al In A

Drude metal
s g

temperature T

[TC Bad metal

Definitions:

Insulator o =0 Metal o #0
not do/dT <0 not do/dT >0




Many-Body Localization

1D bosons + disorder



1D Localization

Exactly solved: Gertsenshtein & Vasil'ev,
all states are localized 1959
Conjectured: Mott & Twose, 1961

. correct for
1-particle problem === bosons as well
as for fermions



Bosons without disorder

Bose - Einstein condensation

‘Bose-condensate even at weak enough repu

sion

//:-Even in 1d case at T=0 - “algebraic superf

*Finite temperature - Normal fluid

R al

Normal fluid

uid”



Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453,
891- 894 (2008).

Roati et al. “Anderson localization of a non-interacting
Bose-Einstein condensate”. Nature 453, 895-898 (2008).

No interaction !



Thermodynamics of ideal

Bose-gas in the presence d
of disorder is a pathological Nee
problem: all particles will — r'epulsion
occupy the localized state

with the lowest energy

Q “ 1D Bosons + disorder ?

" + weak repulsion *



Weakly interacting bosons

‘Bose - Einstein condensation
*Bose-condensate even at weak enough repulsion

Even in 1D case at T=0 - “algebraic superfluid”

1. No interaction 2. No disorder 3. Weak repulsion
disorder disorder
M by
Normal fluid 1 =
FEP C Superfluid- o
energy at : f=
— . 2 insulator
S s transition
@ < | disorder g Superfluid-
<> 1D = insulator
E | localization g)_ transition
-]
7))



T=0 superfluid - Insulator Quantum Phase Transition

_4% disorder

@)

ks

>

7))

§=

o Berezinskii Kosterlitz

e Thouless

I transition in 1+1 dim.

o

>

7p

_ _ relatively

T. Gilamarchi and H. J. Schulz, Phys. Rev., strong
B37, #1(1988). Interaction

E. Altman, Y. Kafri, A. Polkovnikov & G.
Refael, Phys. Rev. Lett., 100, 170402 (2008). weak

G.M. Falco, T. Nattermann, & V.L. Pokrovsky, interaction
Phys. Rev., B80, 104515 (2009).




disorder

?

superfluid Insulator

Normal fluid

Is it a normal fluid at any 'remper'a'rur'e?



There can be no phase transitions

at a finite temperature in 1D
Van Howe, Landau

Thermal fluctuation destroy any
long range correlations in 1D

T=0 Normal flui

Neither normal

fluids nor glasses

(insulators)
exhibit long range
correlations

d - Insulator Phase Transition:

True phase transition:
singularities in

still |transport (rather
than thermodynamic)
properties




What is insulator?

Perfect Zero DC conductivity at
Insulator finite temperatures

Possible if the system is decoupled from any outside bath

Normal Finite (even if very small)
metal DC conductivity at finite
(fluid) temperatures




I W T, o ([T BT Bl bosons = fermions ?

Bosons with infinitely __ .
strong repulsion X Free fermions

Fermions with infinitely

Free bosons =~ strong attraction

Weakly interacting ~ Fermions with strong
bosons ~ attraction

As soon as the occupation numbers become large
the analogy with fermions is not too useful



1D Weakly Interacting Bosons + Disorder

Aleiner, BA & Shlyapnikov, 2010, Nature Physics, to be published
cond-mat 0910.4534

1. No interaction 3. T=g  disgrder

disorder
A

glass
(insulator)

For any
temperature
and any
finite
disorder

1D disorder

localization

glass
(insulator)

“Algebraic
suprfluid”

®

2. No disorder
® >T

Normal fluid




Density of States V(€) in one dimension

No disorder ( ) \/ m
: V\E )=
Quadratic spectrum 232
1 : 27 h°e
2m

J - singularity



Density of States V(€) in one dimension

0
1 Inthe presence

of disorder the

Quadratic spectrum singularity is
smeared

V(E) TV(E)

No disorder




Density of States V() in one dimension

Lifshitz tail:
exponentially
small Density
of States




Weak disorder - random potential U(X)

Random potential U(X):
V(E) Amplitude U,
T Correlation length o

hZ

Short range disorder: U, <<

l

Localization length {>>0

Mo

E




Characteristic scales:

Energy E E(

All states are localized
Localization length:

G =






Finite density Bose-gas with repulsion
Density 1N

Two more energy scales

Temperature of quantum degeneracy T, =

h2n2
m

Interaction energy per particle 110

e /ng Characterizes the

Two strength of disorder

dimensionless

arameters - Characterizes the
P S ng/ Td interaction strength

Strong disorder xk>>1
Weak interaction y <<1



Dimensionless temperature t=T/ng

Critical temperature T t. =t (K, 7/)
Critical disorder K. =K, (t, 7/)

Phase transition line on the {,K - plane




Finite temperature
k=E /ng phase transition in 1D
Insulator (1

— (t27)1/3
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Conventional Anderson Model

‘one particle,

N OO,
enearest neighbor hoping @@@@
Basis:‘i>, ilgﬁglss @@@6
Hamiltonian:l:l = I-AI0 +\7 @@@@

Ao=Xaliil V= TiliKi

I, jJ=n.n.
Transition: happens when the hoping matrix element
exceeds the energy mismatch

The same for many-body localization



Many body Anderson-like Model
e many particles,
e several particles @@@ Basis: ‘,u ‘ >
per site.
e interaction @@@ m




Many body Anderson-like Model
Ceeripaics @@ Basis: |u)
° :anetrersf:\tcet.ion @@@ H = {ni }
@@@ | labels sites i

n, = 0,1, 2, «« numbers

Hamiltonian:
A-f v Ho=XE[u)

/ = ;) [ 0) (1 (1) %%@

‘U(ﬂ)>=‘..,ni —1,..,nj -1,..,n, +1,..,n +1,..>

I, J,K,I =n.n.



Conventional Many body Anderson-

Anderson like Model

Model Basis: ‘ ,Ll>, U = {
Basis: ‘|>

n_a

‘)

n. =0,12,...

| labels sites

i labels occupation numbers
sites
=2l T =S+ 3 11 (v
o 7 v

2 i

i, j=n.n.

“nearest ‘V(,u)> :‘..,ni ~1,..,n;=1.,n +1,..,n +1,..>
neighbors”:

L, J,K,I =n.n.



Transition temperature: RRESNENY

i).3)= k). [1) jjucoenm
transition ‘@% QLJML‘ |>



Transition temperature: RRESNENY

)11 =1k)) jjicocn
transition ‘k>iﬁ> OO JML‘ |>
b =65,
Iij,kl matrix element Decay of a state ‘|>

A typical mismatch
N, typical # of channels

Anderson condition: | typical matrix element

>> A(T )/N( ) extended
I(T)<<A (T)/N,(T) localized




S R CITILTEE T >> T, & t>>y )

Bose-gas is not degenerated:
occupation numbers either O or 1

Matrix element of the transition

| ~9/¢(6=T)~(gE.)/(c.T)

should be compar'ed wi'rh the minimal energy
mismatch (vc) vng 2-|-

E2
Loca!ization Number of OC t tj/ = 1
spacing 5g channels




Intermediate temperatures: 7/‘]/ T 7/_1

1.7 <<Td P t7/<<1

2. Bose-gas is degenerated. occupation numbers
either >>1,

3. Typical energies |u|=T4/T,, u is the chemical

potential. Correct as long as (myltip s fon
‘,U‘ >>ng,E. &= t\/; >>1] occupaftion p

<< T

4. Characteristic energies ¢ '”V“ >>ng, E

We are still dealin? with
the high energy states



Intermediate temperatures: PaskbSS PSS
y|=T2/T, >>ng,E. T <<T,

Bose-gas is degenerated; typical energies ~

1|>>T — occupation numbers >>1— matrix
elements are enhanced

g T
P N, ~—3 T - -
008 0000 1 <O ‘9> '_._._t!."ti-—l--l-l--l

-4 B B0 - -ataT By

K (t)oct?y Ly <<ty <<l



Low temperatures: RS/ Start with T=0

Bosons occupy onl?l
ow

K =E,/ng>1—= ‘,U‘ << E, — small fraction of
© ) ENergy states & < U
AVE V(g

(C.E) (.F.)’
5. r\ 1
\:>
&




Low temperatures: RS/ Start with T=0
Bosons occupy onl

K =E,/ng>1—= ‘,U‘ << E, — small fraction of Yow
© ) Energy states & < [
AV(E E

Localization length S g i £

Occupation #=(ﬂ—8i)g*/g _ID e =,IL1:E*/\/;
DoS: v(¢)=(Es.) 2gE.
<—|(K‘) xg* > |(K‘)=g*\/;>>g*

(9) C@) & Occupation
nl (K)/g* =y Y>>

X




Low temperatures: |R S ans e cmation

— Y2
k=Ejng>>1 — “lakes”  MENe =71

Distance

(k) =g.NK >>¢.
<_|(K‘) >< g*>
2 & &
X

Strong
| (K) >2 G« = insulator
KK, Insulator — Superfluid transition In

|(x) <<, = achain of “Josephson junctions”



Low temperatures: [

Strong
Insulator

k=E,/ng>1 =
K. ~1for t<< 7/‘1/2

T =0 transition x, ~1

k=E./ng

Insulator
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Disordered interacting bosons in two dimensions

Fluid

Temperature

-




Disordered interacting bosons in two dimensions

Justification:
1.

2.

4 Disorder ,'

=g =

Fluid

Superfiuid

Temipe rature

[

At T=0 normal state is unstable with respect to either
insulator or superfluid.

At finite temperature in the vicinity of the critical
disorder the insulator can be thought of as a collection
of "lakes”, which are disconnected from each other.
The typical size of such a “lake” diverges. This means
that the excitations in the insulator state are localized
but the localization length can be arbitrary large.
Accordingly the many -body delocalization is unavoidable

at an arbitrary low but finite T.



Phononless conductance

Many-body Localization
of fermions




>

E\(—insulator—x— metal o >( >
= o=0 S. = (Vévd )‘1 localization
é Many body > spacing
localization! j '
- interaction
S A< strength

Al In A

Drude metal
s g

temperature T

[TC Bad metal

Definitions:

Insulator o =0 Metal o #0
not do/dT <0 not do/dT >0




A

Many body Anderson-like Model
LN @O®@®  easis: |u)
. gﬁrsistg%iisorder @@@@ ,U :{ a}

e |ocal

interaction @@@@ . labels , labels
| I sites levels
Haml ’toniaﬁi a occuanOn
Ao Ho= N0 =01 imbers
H, V4V, o= ZEulul




Conventional Many body Anderson-
Anderson like Model

Model Basis:‘,u>, lu:{nia}
is: |1
B-aZIbSe|8‘> i labels -, labels n' =01
| & | ites levels occupatlon
sites N numbers
- o =2 E,|m){u|+
=) & i)i|+ p
o Z | ) (v (1) +
2 (] 7
i, j=n.n.
Z U\u>< (1)]
g, 1)
Two types of v(p))=|...0f —1,..,nf’+1,..>, i, j=nn.
“nearest

neighbors”: 77(#)>= LN =1..n"-1..n" +1.n° +1,..>



Anderson’s recipe:

1. take descrete spectrum Elu of Hy 'g } insulator
2. Add an infinitesimal Im part 177 to ElLl =
3. Evaluate ImZ’u = \ \
_ . £3 N
® T
| @ 47
e s A @ 1) N = o
£ E liMIts 2, 0

~~

4. take limit 7 —>0 but only after N —)oog? metal

5. “What we really need to know is the e~

probability distribution of ImZ2, not
its average...” m E




Probability Distribution of 7=Im X

\P(T) 7 is an infinitesimal width (Im
part of the self-energy due to
| \ metal a coupling with a bath) of
1. | one-electron eigenstates
: iInsulator :
I i x 1/m
| o
) | |
| I
| I’
o ()
Look for:

> 0;  metal
lim lim P(I' >0) =
N +0V—oo 0; insulator



Stability of the insulating phase:

NO spontaneous generation of broadening

I’ (¢)=0 E—>e+In
IS always a solution linear stability analysis
I I
>ro(e—C& )+
(6-&,)° +I° &%) (6-&,)°
After N iterations of / \N
the equations of the AT 1

7]
Self Consistent P, (') 3?2 const e In n
Born Approximation \ ’ y,

first m — o0 : :
<l1l- |
then n — O (...) <1-insulator is stable !



Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created Nn_ (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

Typical size —
of the I~
cascade

a

length



Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created N, (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

At some temperature T =T, N, (T)
This is_the critical temperature. -
Above T one phonon creates
infinitely many pairs, i.e., phonons

are not needed for charge transport.




Many-body mobility edge

mobility

fe I® transition ! edge



Many-body mobility edge

1

Large E (high T): extended states

(good metal)

Fermi Golden Rule
hopping (bad metal)

mobility
transition |  edge



Finite T normal metal - insulator transition

is another
example of the many-body localization

g insulator—>i<— metal O'>O >
E o=0 S = (Vé’d )‘1 localization
é Many body | 1 ° =pacing
localization! | ! i i
c interaction
S i A< strength
5 | : :
Te | nonergodic ergodic
)\| INn )\| I
| l I
|

temperature



We will call a quantum state |u)

ergodic if it occupies the number N,
of sites N, on the Anderson lattice,
which is proportional to the total
number of sites N:

N N
Nﬂ —>0 Nﬂ ——>const >0
nonergodic ergodic

Localized states are

i - > const
obviously not ergodic: "~ # No=

Q: Is each of the extended state ergodic ?
A: In 3D probably YES, for d>4- probably NO



Nonergodic states

Cayley tree
(Bethe lattice)

W

| —
° KInK

is the
K branching
number

. <1 <W

Extended but
not ergodic



NﬂzInN << N

nonergodic

N




nonergodic

777

glassy




Main postulate of the Gibbs StatMech-
equipartition (microcanonical distribution):

In the equilibrium all states with the same
energy are realized with the same
probability.

Without interaction between particles the
equilibrium would never be reached - each
one-particle energy is conserved.

Common believe: Even weak interaction
should drive the system to the equilibrium.

Is it always true?



Lecture 3.

4. Speculations



>

Ef—insulator—)(— metal O->O >
S| @ 59 5. = (w;d )—1 localization
é Many body > spacing

localization! i i
c interaction
S Al strength

s
RERBITSY Bad metal Drude metal

temperature 'I;

Q' What happens in the classical limitfy — () ?

Speculations: 1.No transitionT, >
2.Bad metal still exists

Reason: Arnold diffusion



Each point in the space of the
integrals of motion corresponds
to a torus and vice versa

Finite motion !

d _ 2 All classical trajectories
T correspond to a finite motion

d 2 Most of the trajectories
> correspond to a finite motion

However small fraction of the
trajectories goes infinitely far



Arnold diffusion

1. Most of the tori survive - KAM

2. Classical trajectories do not cross each
other

space # of dimensions

real space d

phase space 2d

energy shell 2d-1

tori d

d=2 = den.shell _dtori =1 d=2 = den.shell _dtori =1
Each torus A torus does not have
has "“inside” “inside” and “outside” as

and “outside” a ring in >2 dimensions



Speculations:

1. Arnold diffusion < > Nonergodic (bad)
metal

2. Appearance of the transition (finite T.) -
quantum localization of the Arnold diffusion



Conclusions

Anderson Localization provides a relevant language
for description of a wide class of physical
phenomena - far beyond conventional Metal to
Insulator transitions.

Transition between integrability and chaos in
quantum systems

Interacting quantum particles + strong disorder.
Three types of behavior:

ordinary ergodic metal

"bad” nonergodic metal

“true” insulator

A closed system without a bath can relaxation to a
micr'olcanonical distribution only if it is an ergodic
meta
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