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1.Introduction



>50 years of Anderson Localization

q.p.

One quantum 
particle

Random potential 
(e.g., impurities) 
Elastic scattering 



Einstein (1905):
Random walk

always diffusion

Dtr =2

diffusion constant

Anderson(1958):
For quantum 

particles

not always!

constr t  → ∞→
2

It might be that

0=D

as long as the system has no memory

Quantum interference        memory
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Density of statesConductivity

Einstein Relation (1905)

Diffusion Constant

No diffusion – no conductivity

Metal – insulator transition

Localized states – insulator
Extended states - metal



Localization of single-electron wave-functions:
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I was cited for work both. in the field of magnetism and in that of 
disordered systems, and I would like to describe here one development 
in each held which was specifically mentioned in that citation. The two 
theories I will discuss differed sharply in some ways. The theory of local 
moments in metals was, in a sense, easy: it was the condensation into a 
simple mathematical model of ideas which. were very much in the air at 
the time, and it had rapid and permanent acceptance because of its 
timeliness and its relative simplicity. What mathematical difficulty it 
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and 
even fewer saw its importance; among those who failed to fully 
understand it at first was certainly its author. It has yet to receive 
adequate mathematical treatment, and one has to resort to the indignity 
of numerical simulations to settle even the simplest questions about it . 



Spin Diffusion
Feher, G., Phys. Rev. 114, 1219 (1959); Feher, G. & Gere, E. A., Phys. Rev. 114, 1245 (1959).
Light
Wiersma, D.S., Bartolini, P., Lagendijk, A. & Righini R. “Localization of light in a disordered 
medium”, Nature 390, 671-673 (1997).
Scheffold, F., Lenke, R., Tweer, R. & Maret, G. “Localization or classical diffusion of light”,   
Nature 398,206-270 (1999).
Schwartz, T., Bartal, G., Fishman, S. & Segev, M. “Transport and Anderson localization in 
disordered two dimensional photonic lattices”. Nature 446, 52-55 (2007).
C.M. Aegerter, M.Störzer, S.Fiebig, W. Bührer, and G. Maret : JOSA A, 24, #10,  A23, (2007)
Microwave
Dalichaouch, R., Armstrong, J.P., Schultz, S.,Platzman, P.M. & McCall, S.L. “Microwave 
localization by 2-dimensional random scattering”. Nature 354, 53, (1991).
Chabanov, A.A., Stoytchev, M. & Genack, A.Z. Statistical signatures of photon localization. 
Nature 404, 850, (2000).
Pradhan, P., Sridar, S, “Correlations due to localization in quantum eigenfunctions od 
disordered microwave cavities”, PRL 85, (2000)

Sound
Weaver, R.L. Anderson localization of ultrasound. Wave Motion 12, 129-142 (1990).

Experiment



Localized State
Anderson Insulator

Extended State
Anderson Metal

f = 3.04 GHz f = 7.33 GHz



Billy  et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature  453, 
891- 894 (2008).

Localization of cold atoms

87Rb

Roati et al. “Anderson localization of a non-interacting 
Bose-Einstein condensate“. Nature 453, 895-898 (2008).

Q: What about electrons ?

A: Yes,… but electrons interact with each other



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij ={-W < εi <W
uniformly distributed

I < Ic I > IcInsulator 
All eigenstates are localized

Localization length ξ
Metal

There appear states extended
all over the whole system

Anderson  Transition

I   i and j are nearest 
neighbors

0 otherwise

( ) WdfIc ∗=



Q:
Why arbitrary 
weak hopping I is 
not sufficient for 
the existence of 
the diffusion

?
Einstein (1905): Marcovian (no memory) 

process g diffusion

j i
Iij

Quantum mechanics is not marcovian 
There is memory in quantum propagation!
Why?
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von Neumann & Wigner “noncrossing rule”
Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467

What about the eigenfunctions ?
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Off-resonance
Eigenfunctions are 

close to the original on-
site wave functions

Resonance
In both eigenstates the 
probability is equally 

shared between the sites



Anderson insulator
Few isolated resonances

Anderson metal
There are many resonances 

and they overlap

Transition: Typically each site is in the 
resonance with some other one



Condition for 
Localization:

i j typ
Wε ε= − =

energy mismatch
# of n.neighborsI<

energy 
mismatch

2d=# of nearest  
neighbors

A bit more precise: 

Logarithm is due to the resonances, which are not nearest neighbors



Condition for Localization:

Is it correct?Q:
A1:For low dimensions – NO.         for               

All states are localized. Reason – loop trajectories 
cI = ∞ 1,2d =

O
Phase accumulated 
when traveling 
along the loop

The particle 
can go around 
the loop in 
two directions

Memory!

∫= rdp ϕ 21ϕ ϕ=



O

For d=1,2 all states are localized. 

Phase accumulated 
when traveling 
along the loop

The particle 
can go around 
the loop in 
two directions

Memory!

∫= rdp ϕ 21ϕ ϕ=

Weak Localization:
The localization length    can be large

Inelastic processes lead to dephasing, which is 
characterized by the dephasing length

If             , then only small corrections to a 
conventional metallic behavior  

ς

Lϕ

Lϕς >>



Condition for Localization:

Is it correct?Q:
A1:For low dimensions – NO.         for               

All states are localized. Reason – loop trajectories 
cI = ∞ 1,2d =

A2:Works better for larger dimensions 2d >

A3:Is exact on the Cayley tree

,
lnc
WI K

K K
=

is the 
branching 
number

2K =



Anderson Model on a Cayley tree



extended

localized

Eigenfunctions

Does anything interesting 
happen with the spectrumQ: ?



Density of States

energy

Density of States

energy
W− W # I# I−

0I = 0W =

Density of States

energy

0; 0I W≠ ≠

extendedLifshits tail Lifshits tail

Mobility edge Mobility edge



localized and extended 
never coexist!

DoS DoS

all states are
localized

I < IcI > Ic

Anderson  Transition

- mobility edges (one particle)

extended



Chemical
potential

Temperature dependence of the conductivity 
one-electron picture

DoS DoSDoS

( ) 00 >→Tσ ( ) T
E Fc

eT
ε

σ
−

−
∝ ( ) TT ∀= 0σ



Assume that all the 
states 

are localized;
e.g. d = 1,2 DoS

( ) TT ∀= 0σ

Temperature dependence of the conductivity 
one-electron picture



Inelastic processes
transitions between localized states

α

β energy
mismatch

(any mechanism)00 =⇒= σT



Phonon-assisted hopping

Any bath with a continuous spectrum of delocalized 
excitations down to ω = 0 will give the same exponential

α

β

Variable Range 
Hopping
N.F. Mott (1968)

Optimized
phase volume

Mechanism-dependent
prefactor

βα εεω −=
ω

( ) 00 ==Tσ



Lecture1.
2. Phononless conductivity  

in Anderson insulators 
with e-e interaction



1. All one-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Given:

DC conductivity σ(T,ω=0)
(zero or finite?)

Find:

Can hopping conductivity 
exist without phonons ?

Common 
belief:

Anderson 
Insulator 
weak e-e 
interactions

Phonon assisted
hopping transport



A#1:   Sure

Q: Can e-h pairs lead to phonon-less variable range 
hopping in the same way as phonons do ?

1. Recall phonon-less 
AC conductivity:
Sir N.F. Mott (1970)

2. Fluctuation Dissipation Theorem: 
there should be Johnson-Nyquist noise

3. Use this noise as a bath instead of phonons

4. Self-consistency (whatever it means)



A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Can e-h pairs lead to phonon-less variable range 
hopping in the same way as phonons do ?

A#1:   Sure

is contributed by 
rare resonances

δ
α

βγ

R ∞→

⇒∞→R
matrix 
element 
vanishes

0

Except maybe Coulomb interaction in 3D



No 
phonons

No 
transport T∀

???

Problem:
If  the localization 
length exceeds    , 
then – metal.
In a metal e–e 
interaction leads to    
a finite

Lϕ

Lϕ

} At high enough 
temperatures   
conductivity should 
be finite even 
without phonons



A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Can e-h pairs lead to phonon-less variable range 
hopping in the same way as phonons do ?

A#1: Sure

A#3: Finite temperature Metal-Insulator Transition
(Basko, Aleiner, BA (2006))

insulator

Drude
metal

σ = 0



insulator

Drude

metal
Interaction 
strength

Localization
spacing( ) 1−

≡ dνζδζ

Many body 
localization!

Many body  wave functions are 
localized in functional space

Finite temperature Metal-Insulator Transition

σ = 0

Insulator   
not

Definitions:
0σ =

0d dTσ <
Metal   

not
0σ ≠

0d dTσ >



3. Localization beyond  
real space



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov – Arnold – Moser (KAM) theory

Integrable classical Hamiltonian , d>1:

Separation of variables: d sets of 
action-angle variables

Quasiperiodic motion: 
set of the frequencies,           which are 
in general incommensurate. Actions    are 
integrals of motion

1 2, ,.., dω ω ω

1θ
1I

2θ
2I⊗ ⊗…=>

1 1 1 2 2 2, 2 ; ... , , 2 ;..I t I tθ πω θ πω= =

iI
0=∂∂ tIi

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

0Ĥ
0=

tori



space Number of dimensions
real space d

phase space: (x,p) 2d
energy shell 2d-1

tori d

Each torus has measure zero on the energy shell ! 

Integrable dynamics:
Each classical trajectory is quasiperiodic
and  confined to a particular torus, which 
is determined by a set of the integrals of 
motion 



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov – Arnold – Moser (KAM) theory
Integrable classical Hamiltonian , d>1:
Separation of variables: d sets of action-angle 
variables
Quasiperiodic motion: set of the frequencies,   

which are in general incommensurate 
Actions       are integrals of motion

1 2, ,.., dω ω ω

1θ
1I

2θ
2I⊗ ⊗…=>

;..2,;..,2, 222111 tItI πωθπωθ ==

iI 0=∂∂ tIi

Q:Will an arbitrary weak perturbation 
of  the integrable Hamiltonian 

destroy the tori and make the motion 
ergodic (when each point at the energy 
shell will be reached sooner or later)

?
A: Most of the tori survive 

weak and smooth enough 
perturbations

V̂ 0Ĥ

KAM 
theorem

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957

0Ĥ



Andrey 
Kolmogorov 

Vladimir 
Arnold

Jurgen
Moser

Kolmogorov – Arnold – Moser (KAM) theory

Q:Will an arbitrary weak perturbation 
of  the integrable Hamiltonian 

destroy the tori and make the 
motion ergodic (i.e. each point at 
the energy shell would be reached 
sooner or later)

A:Most of the tori survive 
weak and smooth enough 
perturbations

V̂ 0Ĥ

KAM 
theorem

A.N. Kolmogorov, 
Dokl. Akad. Nauk 
SSSR, 1954. 
Proc. 1954 Int. 
Congress of 
Mathematics, North-
Holland, 1957 ?



1I

2I

Each point in the space of the 
integrals of motion corresponds 
to a torus  and vice versa

0ˆ ≠V

1I

2I

Finite motion.
Localization in the space 
of the integrals of motion?

Most of the tori survive weak and 
smooth enough perturbations

KAM 
theorem:



2I

Most of the tori survive weak and 
smooth enough perturbations

KAM 
theorem:

1I

2I 0≠

Ly

Lx

Two integrals of motion

1 1;x yI p I p= =

Rectangular billiard
1I

x
y

x
x L

mp
L
np ππ

== ;



1I

2I

0ˆ ≠V

1I

2I

Most of the tori survive weak and 
smooth enough perturbations

KAM 
theorem:

1I

2I 0≠

Energy shell



νµ ,V̂
νµ

( ) ( ) ( ){ }µµµ
dIII ,...,1=



Matrix element of 
the perturbation

One can speak about localization 
provided that the perturbation 
is somewhat local in the space 
of quantum numbers of the 
original Hamiltonian

( )µµ I


=

AL hops are local – one can distinguish “near” and “far”
KAM perturbation is smooth enough



Glossary
Classical Quantum

Integrable Integrable

KAM Localized
Ergodic – distributed all 
over the energy shell
Chaotic

Extended ?

( )IHH


00 = IEH


== ∑ µµµ
µ

µ ,ˆ
0



Strong disorder localized
Weak disorder extended

Strong disorder localized

Moderate disorder extended

No disorder chaotic extended

No disorder integrable localized

Too weak disorder int.localized           



Consider an integrable system. 
Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of 
quantum numbers. The whole set of the states 
forms a lattice in this space.

A perturbation that violates the integrability 
provides matrix elements of the hopping 
between different sites (Anderson model !?)

Is it possible to tell if the 
states are localized (in some 
unknown basis) or extended.Q: ?



Density of States is not singular 
at the Anderson transition

This applies only to the 
average Density of States !
Fluctuations ?



4. Spectral statistics and  
Localization



Eα - spectrum (set of eigenvalues)
- mean level spacing, 
determines the density of states
- ensemble averaging

- spacing between nearest 
neighbors

- distribution function of nearest 
neighbors spacing between

Spectral Rigidity

Level repulsion

( )

( ) 4211

00

,,=∝<<

==

ββssP

sP

( )sP
1

1

δ
αα EEs −

≡ +

ααδ EE −≡ +11

......

RANDOM MATRIX THEORY

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

Spectral 
statistics



Orthogonal 
β=1

Poisson – completely 
uncorrelated 
levels

Wigner-Dyson; GOE
Poisson

Gaussian
Orthogonal
Ensemble

Unitary
β=2

Simplectic
β=4



RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary

simplectic

Dyson Ensembles

    β
    1

    2
    

4

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

-W < εi <W
uniformly distributed

Q: What are the spectral statistics 
of a finite size Anderson model ?

Is there much in common between Random Matrices 
and Hamiltonians with random potential ?



I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  Transition

The eigenstates, which  are 
localized at different places 

will not repel each other

Any two extended 
eigenstates repel each other

Poisson spectral statistics Wigner – Dyson spectral statistics

Strong disorder Weak disorder



I0
Localized states 

Insulator
Extended states 

Metal
Poisson spectral

statistics
Wigner-Dyson

spectral statistics

Anderson Localization and
Spectral Statistics

Ic



Consider an integrable system. 
Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of 
quantum numbers. The whole set of the states 
forms a lattice in this space.

A perturbation that violates the integrability 
provides matrix elements of the hopping 
between different sites (Anderson model !?)

Weak enough hopping:
Localization - Poisson

Strong hopping:
transition to Wigner-Dyson



Extended 
states:

Level repulsion, anticrossings, 
Wigner-Dyson spectral statistics

Localized 
states: Poisson spectral statistics

Invariant 
(basis independent)

definition



Many-Body 
Localization

BA, Gefen, Kamenev & Levitov, 1997
Basko, Aleiner & BA, 2005. . .
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1 1 1
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N N N

z z z x x
i i ij i j i i

i i j i i
H B J I H Iσ σ σ σ σ

= ≠ = =

= + + ≡ +∑ ∑ ∑ ∑

1,2,..., ; 1
i

i N N
σ

= >>



Perpendicular 
fieldRandom Ising model 

in a parallel field

- Pauli matrices,

Example: Random Ising model in the perpendicular field 

1
2

z
iσ = ±

Will not discuss today in detail

Without perpendicular field all         
commute with the Hamiltonian, i.e. 
they are integrals of motion

z
iσ



0
1 1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ
N N N

z z z x x
i i ij i j i i

i i j i i
H B J I H Iσ σ σ σ σ

= ≠ = =

= + + ≡ +∑ ∑ ∑ ∑

{ }( )0 iH σ
onsite energy

ˆ ˆ ˆxσ σ σ+ −= +
hoping between 
nearest neighbors

Anderson Model on 
N-dimensional cube

1,2,..., ; 1
i

i N N
σ

= >>



Perpendicular 
fieldRandom Ising model 

in a parallel field

- Pauli matrices

{ }z
iσ determines a site

Without perpendicular field 
all         commute with the 
Hamiltonian, i.e. they are 
integrals of motion

z
iσ



Anderson Model on N-dimensional cube
Usually:
# of dimensions 

system linear size

d const→

L → ∞

Here:
# of dimensions 

system linear size

d N= → ∞

1L =

0
1 1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ
N N N

z z z x x
i i ij i j i i

i i j i i
H B J I H Iσ σ σ σ σ

= ≠ = =

= + + ≡ +∑ ∑ ∑ ∑



6-dimensional cube 9-dimensional cube



insulator metal

interaction 
strength

localization 
spacing( ) 1−

≡ dνζδζMany body 
localization!

σ = 0

Bad metal

Co
nd

uc
tiv

ity
 σ

temperature T
Drude metal

σ > 0

Insulator   
not

Definitions:
0σ =

0d dTσ <
Metal   

not
0σ ≠

0d dTσ >



Many-Body Localization

1D bosons + disorder



Gertsenshtein & Vasil'ev, 
1959

1D Localization

Exactly solved: 
all states are localized

Mott & Twose, 1961Conjectured:. . .

1-particle problem
correct for 
bosons as well 
as for fermions



Bosons without disorder

•Bose - Einstein condensation

•Bose–condensate even at weak enough repulsion

•Even in 1d case at T=0 – “algebraic superfluid”

•Finite temperature – Normal fluid

TNormal fluid



Billy  et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature  453, 
891- 894 (2008).

Localization of cold atoms

87Rb

Roati et al. “Anderson localization of a non-interacting 
Bose-Einstein condensate“. Nature 453, 895-898 (2008).

No interaction !



Thermodynamics of ideal 
Bose-gas  in the presence 
of disorder is a pathological 
problem: all particles will 
occupy the localized state 
with the lowest energy

Need 
repulsion

1D Bosons + disorder 
+ weak repulsionQ: ?



Weakly interacting bosons

•Bose - Einstein condensation

•Bose–condensate even at weak enough repulsion

•Even in 1D case at T=0 – “algebraic superfluid”

TNormal fluid

2. No disorder1. No interaction
disorder

gl
as

s 
(in

su
la

to
r)

For any 
energy at 

finite 
disorder

1D 
localization

3. Weak repulsion
disorder

in
su

la
to

r
su

pe
rf

lu
id

Superfluid-
insulator 
transition Superfluid-

insulator 
transition



T=0 Superfluid – Insulator Quantum Phase Transition

disorder

in
su

la
to

r
su

pe
rf

lu
id Berezinskii Kosterlitz

Thouless
transition in 1+1 dim. 

T. Giamarchi and H. J. Schulz, Phys. Rev., 
B37, #1(1988).
E. Altman, Y. Kafri, A. Polkovnikov & G. 
Refael, Phys. Rev. Lett., 100, 170402 (2008).
G.M. Falco, T. Nattermann, & V.L. Pokrovsky, 
Phys. Rev., B80, 104515 (2009).

relatively 
strong 
interaction

weak
interaction}



T
Normal fluid

disorder

?in
su

la
to

r
su

pe
rf

lu
id

Is it a normal fluid at any temperature?



Dogma There can be no phase transitions 
at a finite temperature in 1D
Van Howe,  Landau

Reason Thermal fluctuation destroy any 
long range correlations in 1D

Neither normal 
fluids nor glasses 
(insulators) 
exhibit long range 
correlations  

True phase transition: 
singularities in 
transport (rather 
than thermodynamic) 
properties 

T=0 Normal fluid – Insulator Phase Transition:

still



What is insulator?
Perfect 
Insulator

Zero DC conductivity at 
finite temperatures

Possible if the system is decoupled from any outside bath

Normal 
metal 
(fluid)

Finite (even if very small) 
DC conductivity at finite 
temperatures



1D Luttinger liquid: bosons = fermions ?
Bosons with infinitely 
strong repulsion ≈ Free fermions

Free bosons ≈ Fermions with infinitely 
strong attraction

Weakly interacting
bosons ≈ Fermions with strong 

attraction
U

x

b

x

f

f

f

U

b
b

As soon as the occupation numbers become large 
the analogy with fermions is not too useful 



1D Weakly Interacting Bosons + Disorder

disorder

K-T
transition

“A
lg

eb
ra

ic
 

su
pr

flu
id

”
gl

as
s 

(in
su

la
to

r)

3. T=0

T
Normal fluid

2. No disorder

1. No interaction
disorder

gl
as

s 
(in

su
la

to
r)

For any 
temperature 

and any 
finite 

disorder
1D 

localization
disorder

T

?

Aleiner, BA & Shlyapnikov, 2010, Nature Physics, to be published 
cond-mat 0910.4534



Density of States ν(ε) in one dimension 

ν(ε)

ε

No disorder

Quadratic spectrum
2

2
1 p
m

=ε

( )
επ

εν 222 

m
=

- singularity



Density of States ν(ε) in one dimension 

ν(ε) ν(ε)

ε ε

No disorder

Quadratic spectrum

In the presence 
of disorder the 
singularity is 
smeared

( )
επ

εν 222 

m
=



( )
επ

εν 222 

m
=

Density of States ν(ε) in one dimension 

ν(ε)

ε

Lifshitz tail: 
exponentially 
small Density 

of States



Weak disorder – random potential U(x)

ν(ε)

ε

Random potential U(x):
Amplitude U0
Correlation length σ

Short range disorder:
2

2

0 σm
U 

<<

Localization length ζ>>σ



∗E

Characteristic scales:

ν(ε)

ε

Energy

Length

1 34 2
0

2E U mσ
∗

 
≡  

 

1 34

2
0U m

σς
σ∗

 
≡ >> 

 

( ) 1−
∗∗Eς

All states are localized
Localization length:

( )
~

~
E

E
E

ς ε
ς ε ες ε

∗ ∗

∗ ∗
∗

>>
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ε
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Finite density Bose-gas with repulsion

Temperature of quantum degeneracy

nDensity

Two more energy scales

Interaction  energy per particle 
m
nTd

22
≡

ng
Two 
dimensionless 
parameters

E ngκ ∗≡ Characterizes the 
strength of disorder

dng Tγ ≡ Characterizes the 
interaction strength

Strong disorder 1>>κ
1<<γWeak interaction



Dimensionless temperature ngTt =

Critical temperature

( )γκκ ,tcc =
cT ( )γκ ,cc tt =

Critical disorder

Phase transition line on the t,κ - plane



1 γ1 γ1

( )1 32
c tκ γ=

1 3
c tκ =( )c tκ

t T ng≡

E ngκ ∗≡

~ 1cκ

Finite temperature 
phase transition in 1D



Conventional Anderson Model

Basis: ,i i

∑=
i

i iiH ε0
ˆ ∑

=

=
..,

ˆ
nnji

jiIV

Hamiltonian: 0
ˆ ˆ ˆH H V= +

•one particle,
•one level per site, 
•onsite disorder
•nearest neighbor hoping

labels 
sites

Transition: happens when the hoping matrix element 
exceeds the energy mismatch

The same for many-body localization



• many particles,
• several particles 

per site.
• interaction

Many body  Anderson-like Model
Basis:

0,1,2,3,...in =

{ }inµ ≡

occupation numbers

label sitesi



0Ĥ Eµ
µ

µ µ= ∑

Many body  Anderson-like Model
Basis: µ

0,1,2,...in =

Hamiltonian:
0

ˆ ˆH H V= +


{ }inµ =
labels sites

occupation 
numbers

i

( )
( )

,

V̂ I
µ η µ

µ η µ= ∑

( ) .., 1,.., 1,.., 1,.., 1,..

, , , . .
i j k ln n n n

i j k l n n

δη µ = − − + +

=

• many particles,
• several particles 

per site.
• interaction

i

jk

l



Conventional 
Anderson 

Model

Many body  Anderson-
like Model

Basis: i
labels 
sites

, . .

ˆ
i

i

i j n n

H i i

I i j

ε

=

= +∑

∑
( )

( )
,

Ĥ E Iµ
µ µ ν µ

µ µ µ ν µ= +∑ ∑

Basis: ,µ
0,1,2,...in =

{ }inαµ =
labels sites

occupation numbers
i

i

“nearest 
neighbors”:

( ) .., 1,.., 1,.., 1,.., 1,..

, , , . .
i j k ln n n n

i j k l n n

δν µ = − − + +

=



Transition temperature: ( )c cT t ng≡

i

j

lk
, ,i j k l⇒

transition



Transition temperature: ( )c cT t ng≡

i

j

lk
, ,i j k l⇒

transition

,ij kl i j k lε ε ε ε∆ ≡ + − − energy 
mismatch

,ij klI matrix element Decay of a state i

∆ typical mismatch

1N typical # of channels
Anderson condition: I

( ) ( ) ( )
( ) ( )

1

1

T N T
I T

T N T
>>
<<

∆
∆

typical matrix element

extended
localized



Matrix element of the transition 

should be compared with the minimal energy 
mismatch 

High temperatures: dT T>>

Bose-gas is not degenerated; 
occupation numbers either 0 or 1

( ) 1
31

>>∝ γκ tttcNumber of 
channels

( ) ( ) ( )~ ~I g T gE Tς ε ς∗ ∗=

( ) ( ) ( ) 11 2 2 2~n n T Eνς ς ν ς
−−

∗ ∗

Localization 
spacing

ςδ

1t γ −>>

~I g ς



*,ng Eµ >>

Intermediate temperatures:

dTT <<

1 2 1tγ γ− −<< <<

1.

2. Bose-gas is degenerated; occupation numbers  
either >>1.

3. Typical energies |µ|=T2/Td , µ is the chemical  
potential. Correct as long as

4. Characteristic energies  

1tγ <<

1t γ >>

*

~
,

T
ng E

ε µ
<<

>>
We are still dealing with 
the high energy states

multiple 
occupation ( ) ~ TN ε

ε



Intermediate temperatures:

dTT <<

Bose-gas is degenerated; typical energies ~ 
|µ|>>T occupation numbers >>1      matrix 
elements are enhanced

*
2 , EngTT d >>=µ

( ) 13132 <<<<∝ γγγκ tttc

1 2 1tγ γ− −<< <<

( )1 ~ g TIN
ς ε ε



Low temperatures: 1 2t γ −<<

Eµ ∗<<
iε µ<

Suppose 1E ngκ ∗≡ >>
Bosons occupy only 
small fraction of low 
energy states

Start with T=0



Low temperatures: 1 2t γ −<<

Eµ ∗<<

ς∗

iε µ<

( )i gµ ε ς∗−

( ) ( ) 1Eν ε ς −
∗ ∗=

Occupation #:

DoS:

2

2
n

gE
µ

∗

= Eµ κ∗=

Suppose 1E ngκ ∗≡ >>
Bosons occupy only 
small fraction of low 
energy states

Localization length     

x

ς∗( )l κ ( )l κ ς κ ς∗ ∗= >>
Occupation

( ) 1 2 1nl κ ς γ −
∗ = >>

Start with T=0



x

( )l κ
( )l κ ς κ ς∗ ∗= >>

Occupation
( ) 1 2 1nl κ ς γ −

∗ = >>

ς∗

Low temperatures: 1 2t γ −<<

1E ngκ ∗≡ >> “lakes”

( )l κ ς∗>> Strong 
insulator

Distance

( )
c

l
κ κ

κ ς∗

→

<<
Insulator – Superfluid transition in 
a chain of “Josephson junctions”



Low temperatures: 1 2t γ −<<

1E ngκ ∗≡ >> Strong 
insulator

~ 1cκ0T = transition } ~ 1cκ for 1 2t γ −<<





Disordered interacting bosons in two dimensions



Justification:
1. At T=0 normal state is unstable with respect to either 

insulator or superfluid.
2. At finite temperature in the vicinity of the critical 

disorder the insulator  can be thought of as a collection 
of “lakes”, which are disconnected from each other. 
The typical size of such a “lake” diverges. This means 
that the excitations in the insulator  state are localized 
but the localization length can be arbitrary large. 
Accordingly the many –body delocalization is unavoidable 
at an arbitrary low but finite T.

Disordered interacting bosons in two dimensions



Phononless conductance

Many-body Localization 
of  fermions



insulator metal

interaction 
strength

localization 
spacing( ) 1−

≡ dνζδζMany body 
localization!

σ = 0

Bad metal

Co
nd

uc
tiv

ity
 σ

temperature T
Drude metal

σ > 0

Insulator   
not

Definitions:
0σ =

0d dTσ <
Metal   

not
0σ ≠

0d dTσ >



• many particles,
• several levels 

per site, 
• onsite disorder
• local 

interaction

0Ĥ Eµ
µ

µ µ= ∑

Many body  Anderson-like Model
Basis: µ

0,1inα =Hamiltonian:

0 1 2
ˆ ˆ ˆ ˆH H V V= + +

{ }inαµ =
labels 
sites

occupation 
numbers

i labels 
levelsα

I
( ) .., 1,.., 1,.. , , . .i jn n i j n nα βν µ = − + =

( )
( )1

,
V̂ I

µ ν µ

µ ν µ= ∑
1̂V

U
( )

( )2
,

V̂ U
µ η µ

µ η µ= ∑
( ) .., 1,.., 1,.., 1,.., 1,..i i i in n n nα β γ δν µ = − − + +

2̂V



Conventional 
Anderson 

Model

Many body  Anderson-
like Model

Basis: i
labels 
sites

, . .

ˆ
i

i

i j n n

H i i

I i j

ε

=

= +∑

∑

( ) .., 1,.., 1,.. , , . .i jn n i j n nα βν µ = − + =

( )
( )

( )
( )

,

,

Ĥ E

I

U

µ
µ

µ ν µ

µ η µ

µ µ

µ ν µ

µ η µ

= +

+

∑

∑

∑

( ) .., 1,.., 1,.., 1,.., 1,..i i i in n n nα β γ δη µ = − − + +

Basis: ,µ
0,1inα =

{ }inαµ =

labels 
sites occupation 

numbers
i labels 

levelsαi

Two types of 
“nearest 
neighbors”:



2. Add an infinitesimal Im part iη to Eµ

1 2

4 1)
2) 0

N
η

→ ∞
→limits

insulator

metal

1. take descrete spectrum Eµ of H0

3. Evaluate ImΣ µ

Anderson’s recipe:

4. take limit but only after ∞→N
5. “What we really need to know is the    

probability distribution of  ImΣ, not 
its average…” !

0→η



Probability Distribution of Γ=Im Σ

metal

insulator

Look for:

V

η is an infinitesimal width (Im
part of the self-energy due to 
a coupling with a bath) of 
one-electron eigenstates



Stability of the insulating phase:
NO spontaneous generation of broadening

0)( =Γ εα
is always a solution

ηεε i+→
linear stability analysis

222 )(
)(

)( α
α

α ξε
ξεπδ

ξε −
Γ

+−→
Γ+−

Γ

After n iterations of 
the equations of the 
Self Consistent  
Born Approximation

n

n
TconstP 











Γ
∝Γ

λδ
λη

ζ

1ln)( 23

first
then (…) < 1 – insulator is stable !



α

β

Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon – one electron hop

It is maybe correct at low temperatures, but the higher 
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical 
number of pairs created nc (i.e. the number of hops) 
increases. Thus phonons create cascades of hops.

Typical size 
of the 
cascade

Localization 
length≈



α

β

Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon – one electron hop

It is maybe correct at low temperatures, but the higher 
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical 
number of pairs created nc (i.e. the number of hops) 
increases. Thus phonons create cascades of hops.

At some temperature 
This is the critical temperature. 
Above    one phonon creates 
infinitely many pairs, i.e., phonons 
are not needed for charge transport.

( ) .∞→= TnTT cc

cT



transition !
mobility 
edge

Many-body mobility edge



Large E (high T): extended states

Fermi Golden Rule 
hopping (bad metal)

transition !
mobility 
edge

(good metal)

Many-body mobility edge



Finite T normal metal – insulator transition 
is another 

example of the many-body localization 

insulator metal

interaction 
strength

localization 
spacing( ) 1−

≡ dνζδζMany body 
localization!

σ = 0

Bad metal

Co
nd

uc
tiv

ity
 σ

temperature T
Drude metal

σ > 0

nonergodic ergodic



Definition: We will call a quantum state      
ergodic if it occupies the number   
of sites     on the Anderson lattice, 
which is proportional to the total 
number of sites : 

µ

µN

N

0 → ∞→NN
Nµ

nonergodic

0> → ∞→ const
N
N

N
µ

ergodic

Localized states are 
obviously not ergodic: constN N  → ∞→µ

µN

Is each of the extended state ergodicQ: ?
A: In 3D probably YES, for d>4 - probably NO



Cayley tree
(Bethe lattice)

Nonergodic states

lnc
WI

K K

K

=

is the 
branching 
number

cI I W< <
Extended but 
not ergodic



lnWI N N N
K µ≈ ⇒ ≈ <<

nonergodic



glassy
???

nonergodic



Main postulate of the Gibbs StatMech-
equipartition (microcanonical distribution): 
In the equilibrium all states with the same 
energy are realized with the same 
probability.
Without interaction between particles the 
equilibrium would never be reached – each 
one-particle energy is conserved.
Common believe: Even weak interaction 
should drive the system to the equilibrium. 

Is it always true?



Lecture 3. 
4. Speculations



insulator metal

interaction 
strength

localization 
spacing( ) 1−

≡ dνζδζMany body 
localization!

σ = 0

Bad metal

Co
nd

uc
tiv

ity
 σ

temperature T
Drude metal

σ > 0

Q: ?What happens in the classical limit 0→

Speculations: 1.No transition
2.Bad metal still exists 

0cT →

Reason: Arnold diffusion



Arnold diffusion

1I

2I

Each point in the space of the 
integrals of motion corresponds 
to a torus  and vice versa

0ˆ ≠V

1I

2I

Finite motion?

2d = All classical trajectories 
correspond to a finite motion 

2d > Most of the trajectories 
correspond to a finite motion 

However small fraction of the 
trajectories goes infinitely far



Arnold diffusion

space # of dimensions
real space d
phase space 2d
energy shell 2d-1

tori d

1. Most of the tori survive – KAM

2. Classical trajectories do not cross each 
other

.2 1en shell torid d d= ⇒ − =

Each torus 
has “inside” 
and “outside” inside

.2 1en shell torid d d= ⇒ − =

A torus does not have 
“inside” and “outside” as 
a ring in >2 dimensions



Speculations:
1. Arnold diffusion         Nonergodic (bad) 

metal

2. Appearance of the transition (finite Tc ) –
quantum localization of the Arnold diffusion



Conclusions
Anderson Localization provides a relevant language 
for description of a wide class of physical 
phenomena – far beyond conventional Metal to 
Insulator transitions.
Transition between integrability and chaos in 
quantum systems
Interacting quantum particles + strong disorder.
Three types of behavior: 

ordinary ergodic metal
“bad” nonergodic metal
“true” insulator

A closed system without a bath can relaxation to a 
microcanonical distribution only if it is an ergodic 
metal
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