

Departments of Physics and Applied Physics, Yale University

Circuit QED:

Lecture 3: Multi-qubit entangled states Bell Inequality Violations Grover Search Algorithm Quantum phases of interacting polaritons

Steven Girvin Yale University

KECK FOUNDATION PACKARD FOUNDATION

Outline

Lecture 1: ATOMIC PHYSICS: Superconducting Circuits as artificial atoms -charge qubits

Lecture 2: QUANTUM OPTICS Circuit QED -- microwaves are particles! --many-body physics of microwave polaritons

Lecture 3: QUANTUM COMPUTATION Multi-qubit entanglement and a quantum processor -Bell inequalities -GHZ states

-Grover search algorithm

Quantum Bits and Information

A quantum system with two distinct states 0,1 can exist in an Infinite number of physical states *intermediate* between 0 and 1.

Quantum Bits and Information

 $= |0\rangle \qquad = |1\rangle \qquad \longrightarrow = |0\rangle + |1\rangle \qquad = |0\rangle - |1\rangle$ quantum superpositions

Classical storage register:

- 0 0000000
- 1 0000001
- 2 00000010
- 3 00000100
- 4 00000101
- 5 00000110
- 6 00000111

N bit register can be in

 2^N states; i.e. it holds N bits.

Quantum Bits and Information $= |0\rangle$ $= |1\rangle$ $= |0\rangle + |1\rangle$ $= |0\rangle - |1\rangle$ quantum superpositions

Quantum storage register can be in a superposition of all 2^N states at once:

 $|\Psi\rangle = |0000\rangle \pm |0001\rangle \pm |0010\rangle \pm |0011\rangle \pm |0100\rangle \pm |0101\rangle \pm |0110\rangle \pm \dots$

N bit register can be in

 $2^{2^{N}}$ superposition states; i.e. it holds 2^{N} bits!

<u>Expts:</u> Majer et al., *Nature* 2007 (Charge qubits / Yale) Sillanpaa et al., *Nature* 2007 (Phase qubits / NIST)

transmon qubits

How do we entangle two qubits? $R_{Y}(-\pi/2)$ rotation on each qubit yields superposition: $|\Psi\rangle = \frac{1}{2}(|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)$ $= \frac{1}{2}(|00\rangle + |10\rangle + |01\rangle + |11\rangle)$

'Conditional Phase Gate' entangler:

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |10\rangle + |01\rangle - |11\rangle)$$

No longer a product state!

How do we entangle two qubits?

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle) = \frac{1}{\sqrt{2}} (|0 \rightarrow \rangle + |1 \leftarrow \rangle)$$

 $R_{Y}(-\pi/2)$ rotation on RIGHT qubit yields:

$$|\text{Bell}\rangle = \frac{1}{\sqrt{2}} (|\mathbf{00}\rangle + |\mathbf{11}\rangle)$$

Other 3 Bell states similarly achieved.

Entanglement on Demand

How do we realize the conditional phase gate?

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle)$$

Use control lines to push qubits near a resonance:

A controlled z-z interaction also à la NMR

Key is to use 3rd level of transmon (outside the logical subspace)

Coupling turned off.

Coupling turned on: Near resonance with 3^{rd} level

 $\omega_{01} \approx \omega_{12}$

Energy is shifted if and only if both qubits are in excited state.

Adiabatic Conditional Phase Gate

Use large on-off ratio of ζ to implement 2-qubit phase gates.

$$\int \zeta(t) \, \mathrm{d}t = (2n+1)\pi$$

Strauch et al. PRL (2003): proposed use of excited states in phase qubits

Adjust timing so that amplitude for both qubits to be excited acquires a minus sign:

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{2} (|00\rangle + |10\rangle + |01\rangle - |11\rangle)$$

Entanglement on Demand

Bell state	Fidelity	Concurrence
$ 00\rangle + 11\rangle$	91%	88%
$ 00\rangle - 11\rangle$	94%	94%
$ 01\rangle + 10\rangle$	90%	86%
$ 01\rangle - 10\rangle$	87%	81%

See also: UCSB: Steffen *et al.,* Science (2006) ETH: Leek *et al.,* PRL (2009)

Measuring the Two-Qubit State

Total of 16 msmts.: $I, Y_{\pi}^{L}, X_{\pi/2}^{L}, Y_{\pi/2}^{L}$ $I, Y_{\pi}^{R}, X_{\pi/2}^{R}, Y_{\pi/2}^{R}$

and combinations

Measuring the Two-Qubit State

Apply π -pulse to invert state of right qubit

One qubit excited: $|\psi\rangle = |01\rangle = |\uparrow\downarrow\rangle$

$$\left\langle \boldsymbol{\sigma}_{\mathrm{L}}^{z} \right\rangle = +1$$
$$\left\langle \boldsymbol{\sigma}_{\mathrm{R}}^{z} \right\rangle = \left\langle \boldsymbol{\sigma}_{\mathrm{L}}^{z} \boldsymbol{\sigma}_{\mathrm{R}}^{z} \right\rangle = -1$$

Measuring the Two-Qubit State Now apply a two-qubit gate to *entangle* the qubits

Entangled state: $|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$

Clauser, Horne, Shimony & Holt (1969)

Witnessing Entanglement X' CHSH operator = entanglement witness CHSH = XX' - XZ' + ZX' + ZZ'

> If variables take on the values ±1 and exist even independent of measurement then

 $CHSH = \frac{X(X' - Z') + Z(X' + Z')}{\text{Either:}} = 0 = \pm 2$ $Or: = \pm 2 = 0$

Classically:

Clauser, Horne, Shimony & Holt (1969)

Separable bound:

 $|CHSH| \leq 2$

Bell's violation but loopholes abound

state is clearly highly entangled! (and no likelihood req.)

CHSH operator = entanglement witness $\langle CHSH \rangle = \langle XX' \rangle - \langle XZ' \rangle + \langle ZX' \rangle + \langle ZZ' \rangle$ XX' - XZ' + ZX' + ZZ'XX' + XZ' - ZX' + ZZ'

no entanglement!

Using entanglement on demand to run first quantum algorithm on a solid state quantum processor

DiCarlo et al., *Nature* **460**, 240 (2009)

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find x₀!"

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find x₀!"

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find x₀!"

$$f(x) = \begin{cases} -1, \ x \neq x_0 \\ 1, \ x = x_0 \end{cases}$$

"Find x₀!"

Classically, takes on average 2.25 guesses to succeed...

Use QM to "peek" under all the cards, find queen on first try!

Grover's Algorithm

"unknown"
unitary
operation:
$$\rightarrow O |\psi\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} |\psi\rangle$$

Challenge: Find the location of the -1 !!! (= queen)

Previously implemented in NMR: Chuang et al., 1998 Ion traps: Brickman et al., 2003

10 pulses w/ nanosecond resolution, total 104 ns duration

Grover Step-by-Step

 $|\psi_{\text{ideal}}\rangle = |10\rangle$

Final 1-qubit rotations reveal the answer:

The binary representation of "2"!

The correct answer is found >80% of the time!

Grover with Other Oracles

Fidelity $F = \langle \psi_{\text{ideal}} | \rho | \psi_{\text{ideal}} \rangle$ to ideal output

(average over 10 repetitions)

Part II: Producing and detecting 3-Qubit entanglement

- Fast conditional-phase gates
- A novel high-fidelity joint readout
- Three-qubit state tomography
- GHZ state
- Violation of Mermin-Bell inequalities

Making GHZ with GHz

Violation of Mermin-Bell inequality

•
$$\langle M \rangle = \langle XXX \rangle - \langle XYY \rangle - \langle YXY \rangle - \langle YYX \rangle$$

O $\langle M \rangle = \langle YYY \rangle - \langle YXX \rangle - \langle XYX \rangle - \langle XXY \rangle$

Mermin, PRL (1990) Tóth & Gühne, PRA (2005) Roy, PRL (2005) Quantum error correction:
 Repetition code

 $\begin{bmatrix} \alpha |0\rangle + \beta |1\rangle \end{bmatrix} |0\rangle |0\rangle$ $\rightarrow \alpha |000\rangle + \beta |111\rangle$

 $\langle M \rangle \leq 2$ **B** separable bound Separable bound:

- Genuine 3-qubit entanglement
- Bi-separable bound coincides with the Local Hidden Variable bound. But again, not foolproof test of local realism.

FUTURE DIRECTIONS

Topological Protection

Local Perturbations do not lift topological degeneracies

Topologically protected quantum bits using Josephson junction arrays

L. B. loffe*†, M. V. Feigel'man†, A. loselevich†, D. lvanov‡, M. Troyer‡ & G. Blatter‡

Superconducting nanocircuits for topologically protected qubits

Sergey Gladchenko¹, David Olaya¹, Eva Dupont-Ferrier¹, Benoit Douçot², Lev B. loffe¹ and Michael E. Gershenson^{1*}

Quantum dimer models

Kitaev models

Moore-Read non-abelian QHE states.....

Superfluid–Mott Insulator Transition of Light in the Jaynes-Cummings Lattice

Jens Koch and Karyn Le Hur

Departments of Physics and Applied Physics, Yale University, PO Box 208120, New Haven, CT 06520, USA (Dated: May 25, 2009)

Self-Kerr in dispersive regime or 'photon blockade' in vacuum Rabi regime leads to 'Mott Insulator' for photons

ARTICLES

Quantum phase transitions of light

ANDREW D. GREENTREE1*, CHARLES TAHAN^{1,2}, JARED H. COLE¹ AND LLOYD C. L. HOLLENBERG¹

Figure 1 A proposed implementation of the photonic condensed-matter analogue. a, Schematic diagram showing a two-dimensional array of photonic bandgap cavities, with each cavity containing a single two-level atom (spheres). The

Fermionized photons in an array of driven dissipative nonlinear cavities

I. Carusotto,^{1,2} D. Gerace,^{2,3} H. E. Türeci,² S. De Liberato,^{4,5} C. Ciuti,⁴ and A. Imamoğlu²

arXiv:0812.4195

Future Possibilities

Cavity as quantum bus for two qubit gates (See R. Schoelkopf talk)

Cavities to cool and manipulate single molecules? (DeMille, Schoelkopf Zoller, Lukin....)

