Circuit QED:

Lecture 3:
 Multi-qubit entangled states
 Bell Inequality Violations
 Grover Search Algorithm
 Quantum phases of interacting polaritons

Steven Girvin
 Yale University

KECK
PACKARD FOUNDATION FOUNDATION

Outline

Lecture 1: ATOMIC PHYSICS:

Superconducting Circuits as artificial atoms
-charge qubits

Lecture 2: QUANTUM OPTICS

Circuit QED -- microwaves are particles!
--many-body physics of microwave polaritons
Lecture 3: QUANTUM COMPUTATION
Multi-qubit entanglement
and a quantum processor
-Bell inequalities
-GHZ states
-Grover search algorithm

Quantum Bits and Information

A quantum system with two distinct states 0,1 can exist in an Infinite number of physical states intermediate between 0 and 1.

$$
\downarrow=|0\rangle \quad \uparrow=|1\rangle \quad \longrightarrow=|0\rangle+|1\rangle \quad \longleftarrow=|0\rangle-|1\rangle
$$

Quantum Bits and Information

$$
\downarrow=|0\rangle \quad \uparrow=|1\rangle \quad \longrightarrow=|0\rangle+|1\rangle \quad \underset{ }{\text { quantum superpositions }}
$$

Classical storage register:
000000000
100000001
200000010
300000100
400000101
N bit register can be in
2^{N} states; i.e. it holds N bits.
500000110
600000111

Quantum Bits and Information

$$
\downarrow=|0\rangle \quad|=| 1\rangle \quad \longrightarrow=|0\rangle+|1\rangle \quad \longleftarrow=|0\rangle-|1\rangle
$$

Quantum storage register can be in a superposition of all $\quad 2^{N}$ states at once:

$$
\Psi\rangle=|0000\rangle \pm|0001\rangle \pm|0010\rangle \pm|0011\rangle \pm|0100\rangle \pm|0101\rangle \pm|0110\rangle \pm . .
$$

N bit register can be in
$2^{2^{N}}$ superposition states; i.e. it holds 2^{N} bits!

Qubits Coupled with a Quantum Bus

use microwave photons guided on wires!

Expts: Majer et al., Nature 2007 (Charge qubits / Yale) Sillanpaa et al., Nature 2007 (Phase qubits / NIST)

A Two-Qubit Processor

$\mathrm{T}=10 \mathrm{mK}$

transmon qubits

How do we entangle two qubits?

$R_{Y}(-\pi / 2)$ rotation on each qubit yields superposition:

$$
\begin{aligned}
& |\Psi\rangle=\frac{1}{2}(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle) \\
& =\frac{1}{2}(|00\rangle+|10\rangle+|01\rangle+|11\rangle)
\end{aligned}
$$

‘Conditional Phase Gate' entangler:

$$
\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)|\Psi\rangle=\frac{1}{2}(|00\rangle+|10\rangle+|01\rangle-|11\rangle)
$$

No longer a product state!

How do we entangle two qubits?

$$
\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0
\end{array}\right)|\Psi\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle-|11\rangle)=\frac{1}{\sqrt{2}}(|0 \rightarrow\rangle+|1 \leftarrow\rangle)
$$

$R_{Y}(-\pi / 2)$ rotation on RIGHT qubit yields:

$$
\mid \text { Bell }\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Other 3 Bell states similarly achieved.

Entanglement on Demand

Entangler

L'état quantique c'est Moi!

How do we realize the conditional phase gate?

$$
\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)|\Psi\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle-|11\rangle)
$$

Use control lines to push qubits near a resonance:

A controlled z-z interaction
also à la NMR

Key is to use $3^{\text {rd }}$ level of transmon (outside the logical subspace)

Coupling turned off.
Coupling turned on:
Near resonance with $3^{\text {rd }}$ level

$$
\omega_{01} \approx \omega_{12}
$$

Energy is shifted if and only if both qubits are in excited state.

Adiabatic Conditional Phase Gate

Use large on-off ratio of ζ to implement 2-qubit phase gates.

$$
\int \zeta(t) \mathrm{d} t=(2 n+1) \pi
$$

Strauch et al. PRL (2003): proposed use of excited states in phase qubits

Adjust timing so that amplitude for both qubits to be excited acquires a minus sign:

$$
\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)|\Psi\rangle=\frac{1}{2}(|00\rangle+|10\rangle+|01\rangle-|11\rangle)
$$

Entanglement on Demand

Measuring the Two-Qubit State

Total of 16 msmts .: $I, Y_{\pi}^{L}, X_{\pi / 2}^{L}, Y_{\pi / 2}^{L} \quad$ and combinations

$$
I, Y_{\pi}^{R}, X_{\pi / 2}^{R}, Y_{\pi / 2}^{R}
$$

(almost) raw data

Ground state: $|\psi\rangle=|00\rangle=|\uparrow \uparrow\rangle \quad\left\langle\sigma_{\mathrm{L}}^{z}\right\rangle=\left\langle\sigma_{\mathrm{R}}^{z}\right\rangle=\left\langle\sigma_{\mathrm{L}}^{z} \sigma_{\mathrm{R}}^{z}\right\rangle=1$

Measuring the Two-Qubit State

Apply π-pulse to invert state of right qubit

One qubit excited: $|\psi\rangle=|01\rangle=|\uparrow \downarrow\rangle$

$$
\begin{aligned}
& \left\langle\sigma_{\mathrm{L}}^{2}\right\rangle=+1 \\
& \left\langle\sigma_{\mathrm{R}}^{2}\right\rangle=\left\langle\sigma_{\mathrm{L}}^{2} \sigma_{\mathrm{R}}^{2}\right\rangle=-1
\end{aligned}
$$

Measuring the Two-Qubit State

Now apply a two-qubit gate to entangle the qubits
Entangled state: $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$

$$
\begin{aligned}
& \left\langle\sigma_{\mathrm{L}}^{z}\right\rangle=\left\langle\sigma_{\mathrm{R}}^{z}\right\rangle=0 \\
& \left\langle\sigma_{\mathrm{L}}^{z} \sigma_{\mathrm{R}}^{z}\right\rangle=+1 \\
& \left\langle\sigma_{\mathrm{L}}^{y} \sigma_{\mathrm{R}}^{y}\right\rangle=+1 \\
& \left\langle\sigma_{\mathrm{L}}^{x} \sigma_{\mathrm{R}}^{x}\right\rangle=-1
\end{aligned}
$$

Witnessing Entanglement

Clauser, Horne, Shimony \& Holt (1969)

CHSH operator = entanglement witness

$$
C H S H=X X^{\prime}-X Z^{\prime}+Z X^{\prime}+Z Z^{\prime}
$$

If variables take on the values ± 1 and exist even independent of measurement then

$$
\begin{array}{ccc}
C H S H=X\left(X^{\prime}-Z^{\prime}\right)+Z\left(X^{\prime}+Z^{\prime}\right) \\
\text { Either: } & =0 & = \pm 2 \\
\text { Or: } & = \pm 2 & =0
\end{array}
$$

Classically:

$$
\mathrm{CHSH} \leq 2
$$

Witnessing Entanglement

Clauser, Horne, Shimony \& Holt (1969)

Separable bound:

$$
|C H S H| \leq 2
$$

Bell's violation but loopholes abound
state is clearly
highly entangled! (and no likelihood req.)

CHSH operator $=$ entanglement witness

$$
\begin{aligned}
\langle C H S H\rangle=\langle & \left.X X^{\prime}\right\rangle \\
& -\left\langle X Z^{\prime}\right\rangle+\left\langle Z X^{\prime}\right\rangle+\left\langle Z Z^{\prime}\right\rangle \\
& \text { - } X X^{\prime}-X Z^{\prime}+Z X^{\prime}+X Z^{\prime}+X Z^{\prime}-Z X^{\prime}+Z Z^{\prime}
\end{aligned}
$$

Angle θ Between Axes (deg)

Control: Analyzing Product States

Clauser, Horne, Shimony \& Holt (1969)
no entanglement!

CHSH operator $=$ entanglement witness

$$
\begin{aligned}
\langle C H S H\rangle=\left\langle X X^{\prime}\right\rangle & -\left\langle X Z^{\prime}\right\rangle+\left\langle Z X^{\prime}\right\rangle+\left\langle Z Z^{\prime}\right\rangle \\
& -X X^{\prime}-X Z^{\prime}+Z X^{\prime}+Z Z^{\prime} \\
& -X X^{\prime}+X Z^{\prime}-Z X^{\prime}+Z Z^{\prime}
\end{aligned}
$$

Using entanglement on demand to run first quantum algorithm on a solid state quantum processor

DiCarlo et al., Nature 460, 240 (2009)

The Search Problem

$$
f(x)=\left\{\begin{array}{r}
-1, \\
1, x \neq x_{0} \\
1, \\
x=x_{0}
\end{array}\right.
$$

"Find x_{0} !"

Position:
0

I

II

III
"Find the queen!"

The Search Problem

$$
f(x)=\left\{\begin{array}{r}
-1, \\
1, x \neq x_{0} \\
1, \\
x=x_{0}
\end{array}\right.
$$

"Find x_{0} !"

Position: 0

I

II

III
"Find the queen!"

The Search Problem

$$
f(x)=\left\{\begin{array}{r}
-1, \\
1 \neq x_{0} \\
1, \\
x=x_{0}
\end{array}\right.
$$

"Find x_{0} !"

Position: 0

I

II

III
"Find the queen!"

The Search Problem

$$
f(x)=\left\{\begin{array}{r}
-1, \\
1, x \neq x_{0} \\
1, \\
x=x_{0}
\end{array}\right.
$$

"Find x_{0} !"

Position:
0

I

II

III
"Find the queen!"

The Search Problem

Classically, takes on average 2.25 guesses to succeed...

Use QM to "peek" under all the cards, find queen on first try!

Position:
0

I

II

III
"Find the queen!"

Grover's Algorithm

"unknown" unitary operation:

$$
O|\psi\rangle=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)|\psi\rangle
$$

Challenge:
Find the location of the -1 !!!
(= queen)

Previously implemented in NMR: Chuang et al., 1998 Ion traps: Brickman et al., 2003

10 pulses w/ nanosecond resolution, total 104 ns duration

Grover Step-by-Step

$$
\left|\psi_{\text {ideal }}\right\rangle=|00\rangle
$$

$\sqrt{\Omega}$

Grover Step-by-Step

Grover Step-by-Step

Grover Step-by-Step

$$
\left|\psi_{\text {ideal }}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Some more 1-qubit rotations...

Now we arrive in one of the four Bell states

Grover Step-by-Step

Grover Step-by-Step

$$
\left|\psi_{\text {ideal }}\right\rangle=|10\rangle
$$

Final 1-qubit rotations reveal the answer:

The binary representation of "2"!

The correct answer is found
$>80 \%$ of the time!

Grover with Other Oracles

Oracle

$$
\hat{O}=c U_{00}
$$

$c U_{10}$
$c U_{11}$

$$
\bar{F}=81 \%
$$

80\%

82\%

81\%

Fidelity $F=\left\langle\psi_{\text {ideal }}\right| \rho\left|\psi_{\text {ideal }}\right\rangle$ to ideal output
(average over 10 repetitions)

Part II: Producing and detecting 3-Qubit entanglement

- Fast conditional-phase gates
- A novel high-fidelity joint readout
- Three-qubit state tomography
- GHZ state
- Violation of Mermin-Bell inequalities

Making GHZ with GHz

$$
\overrightarrow{P_{1}} \overrightarrow{P_{2}} \overrightarrow{P_{3}} \quad \overrightarrow{P_{12}} \quad \overrightarrow{P_{13}} \quad \overrightarrow{\overrightarrow{P_{23}}} \quad \overrightarrow{\overrightarrow{P_{123}}}
$$

Violation of Mermin-Bell inequality

$$
\begin{aligned}
& \text { - }\langle M\rangle=\langle X X X\rangle-\langle X Y Y\rangle-\langle Y X Y\rangle-\langle Y Y X\rangle \\
& \text { ○ }\langle M\rangle=\langle Y Y Y\rangle-\langle Y X X\rangle-\langle X Y X\rangle-\langle X X Y\rangle
\end{aligned}
$$

Azimuthal angle ϕ (deg)
e

$M\rangle \leq 2$

Blilseprailable bound Separable bound:

$$
\begin{align*}
& {[\alpha|0\rangle+\beta|1\rangle]|0\rangle|0\rangle} \\
& \rightarrow \alpha|000\rangle+\beta|111\rangle
\end{align*}
$$

- Quantum error correction: -Repetition code
- Genuine 3-qubit entanglement

- Bi-separable bound coincides
with the Local Hidden Variable

Bi-separable bound coincides
with the Local Hidden Variable bound. But again, not foolproof test of local realism. proft of local realism.
-

FUTURE DIRECTIONS

Topological Protection

Local Perturbations do not lift topological degeneracies

Topologically protected quantum bits using Josephson junction arrays
L. B. loffe ${ }^{*} \dagger$, M. V. Feigel'man \dagger, A. loselevich \dagger, D. Ivanov \ddagger, M. Troyer \ddagger
\& G. Blatter
Superconducting nanocircuits for topologically protected qubits

Sergey Gladchenko ${ }^{1}$, David Olaya ${ }^{1}$, Eva Dupont-Ferrier ${ }^{1}$, Benoit Douçot ${ }^{2}$, Lev B. Ioffe ${ }^{1}$ and Michael E. Gershenson ${ }^{1 \star}$

Liquid

Staggered

Quantum dimer models
Kitaev models
Moore-Read non-abelian
QHE states

Self-Kerr in dispersive regime or 'photon blockade' in vacuum Rabi regime leads to 'Mott Insulator' for photons

$$
U_{\text {eff }}= \pm(\sqrt{2}-1) g
$$

ARTICLES

Quantum phase transitions of light

ANDREW D. GREENTREE ${ }^{1 *}$, CHARLES TAHAN1²,2, JARED H. COLE ${ }^{1}$ AND LLOYD C. L. HOLLENBERG ${ }^{1}$

Figure 1 A proposed implementation of the photonic condensed-matter analogue. a, Schematic diagram showing a two-dimensional array of photonic bandgap cavities, with each cavity containing a single two-level atom (spheres). The

See also:

Fermionized photons in an array of driven dissipative nonlinear cavities

I. Carusotto, ${ }^{1,2}$ D. Gerace,,2,3 H. E. Türeci, ${ }^{2}$ S. De Liberato, ${ }^{4,5}$ C. Ciuti, ${ }^{4}$ and A. Imamoğlu ${ }^{2}$

arXiv:0812.4195

Future Possibilities

Cavity as quantum bus for two qubit gates
(See R. Schoelkopf talk)

High-Q cavity as quantum memory

Microwave "photomultiplier" for ADMX axion search
Cavities to cool and manipulate single molecules?
(DeMille, Schoelkopf Zoller, Lukin....)

