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The Insulating State

Covalent Insulator

Characterized by energy gap: absence of low energy electronic excitations

The vacuumAtomic Insulator
e.g. solid Ar

Dirac 
Vacuum

Egap ~ 10 eV

e.g. intrinsic semiconductor

Egap ~ 1 eV
3p

4s

Silicon

Egap = 2 mec2

~ 106 eV

electron

positron ~ hole



The Integer Quantum Hall State
2D Cyclotron Motion, Landau Levels

Quantized Hall conductivity :
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Energy gap, but NOT an insulator
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Topology 
The study of geometrical properties that are insensitive to smooth deformations
Example:  2D surfaces in 3D

A closed surface is characterized by its genus, g = # holes
g=0 g=1

g is an integer topological invariant that can be expressed in terms of the 
gaussian curvature κ that characterizes the local radii of curvature
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Gauss Bonnet Theorem :
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A good math book :   Nakahara, ‘Geometry, Topology and Physics’



Band Theory of Solids
Bloch Theorem :   

( ) ( ) ( ) ( )n n nH u E u=k k k k

 
 dT

∈

=

k Brillouin Zone  
   Torus, 

Topological Equivalence :  adiabatic continuity

( ) ( )n nE uk k(or equivalently to   and  )

Band structures are equivalent if they can be continuously deformed 
into one another without closing the energy gap

Band Structure :   
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E
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( ) iT eψ ψ⋅= k RRLattice translation symmetry ( )ie uψ ⋅= k r k

Bloch Hamiltonian ( )Η i iH e e− ⋅ ⋅= k r k rk

A mapping



Berry Phase
Phase ambiguity of quantum mechanical wave function

( )( ) ( )iu e uφ→ kk k
Berry connection : like a vector potential ( ) ( )i u u= − ∇kA k k

( )φ→ +∇kA A k

Berry phase : change in phase on a closed loop C C C
dγ = ⋅∫ A k

Berry curvature :  = ∇ ×kF A 2
C S

d kγ = ∫ F

Famous example :  eigenstates of 2 level Hamiltonian
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Topology in one dimension : Berry phase and electric polarization
Electric Polarization

+Q-Q
1D insulator

The end charge is not completely determined by the bulk polarization P
because integer charges can be added or removed from the ends  : 

Polarization as a Berry phase : ( )
2
eP A k dk
π

= ∫
P is not gauge invariant under “large” gauge transformations. 
This reflects the end charge ambiguity 

( )( ) ( )i ku k e u kφ→P P en→ + ( / ) ( / ) 2a a nφ π φ π π− − =

see, e.g. Resta, RMP 66, 899 (1994)

Changes in P, due to adiabatic variation are well defined and gauge invariant
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Su Schrieffer Heeger Model model for polyacetalene
simplest “two band” model

† †
1( ) ( ) . .Ai Bi Ai Bi
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Provided symmetry requires dz(k)=0, the states with δt>0 and δt<0 are topologically distinct.
Without the extra symmetry, all 1D band structures are topologically equivalent.

A,i
B,i

δt>0 :  Berry phase 0
P = 0

δt<0 :  Berry phase π
P = e/2

Gap 4|δt|

Peierl’s instability → δt

A,i+1



Domain Wall States
An interface between different topological states has topologically protected midgap states

Low energy continuum theory :
For small δt focus on low energy states with k~π/a xk q q i

a
π

→ + → − ∂  ;   

( )vF x x yH i m xσ σ= − ∂ +

0tδ > 0tδ <

Massive 1+1 D Dirac Hamiltonian

“Chiral” Symmetry :

2v   ;  F ta m tδ= =

{ , } 0    z z E EHσ σ ψ ψ−= → =

0
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Egap=2|m|Domain wall
bound state ψ0

m>0

m<0

2 2( ) ( )vFE q q m= ± +

Zero mode : topologically protected eigenstate at E=0
(Jackiw and Rebbi 76, Su Schrieffer, Heeger 79)

Any eigenstate at +E 
has a partner at -E



Thouless Charge Pump

t=0

t=T

P=0

P=e
( , ) ( , )H k t T H k t+ =

( )( , ) ( ,0)
2
eP A k T dk A k dk ne
π

∆ = − =∫ ∫ 
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t=0
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The integral of the Berry curvature defines the first Chern number, n, an integer 
topological invariant characterizing the occupied Bloch states, ( , )u k t

In the 2 band model, the Chern number is related to the solid angle swept out by
which must wrap around the sphere an integer n times.
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The integer charge pumped across a 1D insulator in one period of an adiabatic  cycle 
is a topological invariant that characterizes the cycle.



Integer Quantum Hall Effect :  Laughlin Argument

Adiabatically thread a quantum of magnetic flux through cylinder.
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TKNN Invariant
Thouless, Kohmoto, Nightingale and den Nijs  82

View cylinder as 1D system with subbands labeled by
0
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Distinguishes topologically distinct 2D band structures.  Analogous to Gauss-Bonnet thm.

Alternative calculation:  compute σxy via Kubo formula

C

kx

( )( ) , ( )m
m x x yE k E k k= Φ



Graphene E

k

Two band model 
Novoselov et al. ‘05

www.univie.ac.at

( ) ( )H σ= ⋅k d k 

( ) | ( ) |E = ±k d k

ˆ ( , )x yk kd

Inversion and Time reversal symmetry require ( ) 0zd =k
2D Dirac points at             :   point zeros in ( , )x yd d

( ) vH σ± + = ⋅K q q
Massless Dirac Hamiltonian

= ±k K
-K +K

Berry’s phase π around Dirac point

A
B

†
Ai Bj

ij
H t c c

< >

= − ∑



Topological gapped phases in Graphene

1.   Broken P :  eg  Boron Nitride

( ) v zH mσ σ±± + = +K q q

ˆ# ( )n = d ktimes  wraps around sphere

m m+ −=

Break P or T symmetry :   

2 2 2( ) | |vE m±= ± +q q

Chern number  n=0   :  Trivial Insulator
2.   Broken T : Haldane Model ’88

+K & -K

m m+ −= −

Chern number  n=1   :  Quantum Hall state

+K

-K

+− +− +− +
+− +−+

+− +− +−+

2ˆ ( ) S∈d k

2ˆ ( ) S∈d k



Edge States
Gapless states at the interface between topologically distinct phases

IQHE state
n=1

Egap

Domain wall
bound state ψ0

Fv ( ) ( )x x y y zH i m xσ σ σ= − ∂ + ∂ +

F
0

( ') '/ v

0 ( ) ~

x

y
m x dx

ik yx e eψ
−∫

Vacuum
n=0

Edge states ~ skipping orbits
Lead to quantized transport

Chiral Dirac fermions are unique 1D states :  
“One way” ballistic transport, responsible for quantized 
conductance.  Insensitive to disorder, impossible to localize

Fermion Doubling Theorem : 
Chiral Dirac Fermions can not exist in a purely 1D system. 

0 F( ) vy yE k k=

Band inversion transition : Dirac Equation

ky
E0

x

y

Chiral Dirac Fermions

m<0

m>0

n=1
m−= −m+

n=0
m−= +m+

ψin
|t|=1

disorder



Bulk - Boundary Correspondence

Bulk – Boundary Correspondence :

NR (NL) = # Right (Left) moving chiral fermion branches intersecting EF

∆N = NR - NL is a topological invariant characterizing the boundary.  

∆N = 1 – 0 = 1

∆N = 2 – 1 = 1

E

kyKK’

EF
Haldane Model

E

kyKK’

EF

The boundary topological invariant 
∆N characterizing the gapless modes

Difference in the topological invariants
∆n characterizing the bulk on either side=



Generalizations

Higher Dimensions :  “Bott periodicity”   d → d+2

d=4 :  4 dimensional generalization of IQHE

( ) ( )ij i ju u d= ∇ ⋅kA k k k

d= + ∧F A A A

42

1 [ ]
8

Tr
T

n
π

= ∧ ∈∫ F F 

Boundary states :  3+1D Chiral Dirac fermions

Non-Abelian Berry connection 1-form

Non-Abelian Berry curvature 2-form

2nd Chern number  =  integral of 4-form over 4D BZ

no symmetry
chiral symmetry

Zhang, Hu ‘01



Topological Defects
Consider insulating Bloch Hamiltonians that vary slowly in real space

defect line
s

( , )H H s= k

2nd Chern number : 3 12

1 [ ]
8

Tr
T S

n
π ×

= ∧∫ F F

Generalized bulk-boundary correspondence :
n specifies the number of chiral Dirac fermion modes bound to defect line

1 parameter family of 3D Bloch Hamiltonians

Example : dislocation in 3D layered IQHE

Gc
1

2 cn
π

= ⋅G B

Burgers’ vector

3D Chern number
(vector ┴ layers)

Are there other ways to engineer
1D chiral dirac fermions?

Teo, Kane ‘10
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