Optomechanics light and motion in the nanoworld

Florian Marquardt [just moved from: Ludwig-Maximilians-Universität München]

University of Erlangen-Nuremberg and Max-Planck Institute for the Physics of Light (Erlangen)

Radiation pressure

(Comet Hale-Bopp; by Robert Allevo)

Radiation pressure

Johannes Kepler De Cometis, 1619

Radiation pressure

Nichols and Hull, 1901 Lebedev, 1901

A PRELIMINARY COMMUNICATION ON THE PRESSURE OF HEAT AND LIGHT RADIATION.

BY E. F. NICHOLS AND G. F. HULL.

MAXWELL,¹ dealing mathematically with the stresses in an electro-magnetic field, reached the conclusion that "in a medium in which waves are propagated there is a pressure normal to the waves and numerically equal to the energy in unit volume."

Nichols and Hull, Physical Review **13**, 307 (1901)

Radiation forces

Trapping and cooling

- Optical tweezers
- Optical lattices

Optomechanics on different length scales

LIGO – Laser Interferometer Gravitational Wave Observatory

Optomechanics on different length scales

LIGO – Laser Interferometer Gravitational Wave Observatory

$$\omega_M \sim 1 \text{kHz} - 100 \text{MHz}$$

$$m \sim 10^{-12} - 10^{-10} \text{kg}$$

$$x_{\text{ZPF}} \sim 10^{-16} - 10^{-14} \text{m}$$

$$x_{\text{ZPF}} = \sqrt{\hbar/(2m\omega_M)} \checkmark$$

Mirror on cantilever – Bouwmeester lab, Santa Barbara

Optomechanical systems

Optomechanical systems

 $\hat{H} = \hbar \omega_R (1 - \hat{x}/L) \hat{a}^{\dagger} \hat{a} + \hbar \omega_M \hat{b}^{\dagger} \hat{b} + \dots$ $\hat{x} = x_{\text{ZPF}} (\hat{b}^{\dagger} + \hat{b})$

$$F_{\text{rad}}(x) = 2I(x)/c$$

$$\frac{\lambda}{2\mathcal{F}} \qquad \lambda/2$$

$$V_{\text{rad}}(x)$$

$$V_{\text{rad}}(x)$$

$$V_{\text{eff}} = V_{\text{rad}} + V_{\text{HO}}$$

$$x$$

Experimental proof of static bistability: A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes and H. Walther: Phys. Rev. Lett. 51, 1550 (1983)

Basic physics: dynamics

The zoo of optomechanical (and analogous) systems

Optomechanics: general outlook

Fundamental tests of quantum mechanics in a new regime: entanglement with 'macroscopic' objects, unconventional decoherence?

[e.g.: gravitationally induced?]

Mechanics as a 'bus' for connecting hybrid components: superconducting qubits, spins, photons, cold atoms,

Precision measurements

[e.g. testing deviations from Newtonian gravity due to extra dimensions]

Optomechanical circuits & arrays Exploit nonlinearities for classical and quantum information processing, storage, and amplification; study collective dynamics in arrays

Towards the quantum regime of mechanical motion

🌌 PHYSICS TODAY

The quantum mechanic's toolbox

Putting Mechanics into Quantum Mechanics

Nanoelectromechanical structures are starting to approach the ultimate quantum mechanical limits for detecting and exciting motion at the nanoscale. Nonclassical states of a mechanical resonator are also on the horizon.

Keith C. Schwab and Michael L. Roukes

everything moves! In a world dominated by electronic devices and instruments it is easy to forget that all measurements involve motion, whether it be the motion of electrons through a transistor, Cooper pairs or quasiparticles through a superconducting quantum interference device (SQUID), photons through an optical interferometer-or the simple displacement of a mechanical element

achieved to read out those devices, now bring us to the realm of quantum mechanical systems.

The quantum realm

What conditions are required to observe the quantum properties of a mechanical structure, and what can we learn when we encounter them? Such questions have received

Schwab and Roukes, Physics Today 2005

nano-electro-mechanical systems
 Superconducting qubit coupled to nanoresonator: Cleland & Martinis 2010

optomechanical systems

Optomechanics (Outline)

Optical displacement detection

Thermal fluctuations of a harmonic oscillator

Classical equipartition theorem:

$$\frac{m\omega_M^2}{2} \langle x^2 \rangle = \frac{k_B T}{2} \Rightarrow \langle x^2 \rangle = \frac{k_B T}{m\omega_M^2}$$
extract temperature!

•Direct time-resolved detection

Analyze fluctuation spectrum of x

$$\tilde{x}(\omega) = \frac{1}{\sqrt{\tau}} \int_0^\tau dt e^{i\omega t} x(t)$$

$$S_{xx}(\omega) \equiv \left\langle |\tilde{x}(\omega)|^2 \right\rangle =$$

$$\frac{1}{\tau} \int_0^\tau dt_1 \int_0^\tau dt_2 e^{i\omega(t_2 - t_1)} \left\langle x(t_2) x(t_1) \right\rangle$$

$$\approx \frac{1}{\tau} \tau \int_{-\infty}^{+\infty} dt e^{i\omega t} \left\langle x(t) x(0) \right\rangle$$

au

 t_1

$$\left< |\tilde{x}(\omega)|^2 \right> \equiv S_{xx}(\omega)$$

$$\begin{split} \tilde{x}(\omega) &= \frac{1}{\sqrt{\tau}} \int_{0}^{\tau} dt e^{i\omega t} x(t) \\ S_{xx}(\omega) &\equiv \left\langle |\tilde{x}(\omega)|^{2} \right\rangle = \\ \frac{1}{\tau} \int_{0}^{\tau} dt_{1} \int_{0}^{\tau} dt_{2} e^{i\omega(t_{2}-t_{1})} \left\langle x(t_{2})x(t_{1}) \right\rangle \\ &\approx \int_{-\infty}^{+\infty} dt e^{i\omega t} \left\langle x(t)x(0) \right\rangle \\ & \text{``Wiener-Khinchin theorem''} \end{split}$$

$$\left< |\tilde{x}(\omega)|^2 \right> \equiv S_{xx}(\omega)$$

$$\tilde{x}(\omega) = \frac{1}{\sqrt{\tau}} \int_{0}^{\tau} dt e^{i\omega t} x(t)$$

$$S_{xx}(\omega) \equiv \langle |\tilde{x}(\omega)|^{2} \rangle =$$

$$\frac{1}{\tau} \int_{0}^{\tau} dt_{1} \int_{0}^{\tau} dt_{2} e^{i\omega(t_{2}-t_{1})} \langle x(t_{2})x(t_{1}) \rangle$$

$$\approx \int_{-\infty}^{+\infty} dt e^{i\omega t} \langle x(t)x(0) \rangle$$
"Wiener-Khinchin theorem"
$$\langle |\tilde{x}(\omega)|^{2} \rangle \equiv S_{xx}(\omega)$$

area yields variance of x: $\int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} S_{xx}(\omega) = \left\langle x^2 \right\rangle$

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

 $\left< \delta x \right> (\omega) = \chi_{xx}(\omega) F(\omega)$ susceptibility

$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \operatorname{Im}\chi_{xx}(\omega)$$
 (classical limit)

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

 $\left< \delta x \right> (\omega) = \chi_{xx}(\omega) F(\omega)$ susceptibility

$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \operatorname{Im}\chi_{xx}(\omega)$$
 (classical limit)

 ω_M

for the damped oscillator:

$$m\ddot{x} + m\omega_{M}^{2}x + m\Gamma\dot{x} = F$$

$$x(\omega) = \frac{1}{m(\omega_{M}^{2} - \omega^{2}) - im\Gamma\omega}F(\omega)$$

$$\chi_{xx}(\omega)$$

Displacement spectrum

T=300 K

Gigan et al., Nature 2006

Measurement noise

Measurement noise

Two contributions to $x_{noise}(t)$

- I. measurement imprecision laser beam (shot noise limit!)
- 2. measurement back-action:
- fluctuating force on system
- noisy radiation pressure force

"Standard Quantum Limit"

"Standard Quantum Limit"

(intensity of measurement beam)

"Standard Quantum Limit"

Best case allowed by quantum mechanics:

 $S_{xx}^{(\text{meas})}(\omega) \ge 2 \cdot S_{xx}^{T=0}(\omega) \quad \text{``Standard quantum limit}_{(SQL) of displacement}$

...as if adding the zero-point fluctuations a second time: "adding half a photon"

Notes on the SQL

- "weak measurement": integrating the signal over time to suppress the noise
- trying to detect slowly varying "quadratures of motion": $\hat{x}(t) = \hat{X}_1 \cos(\omega_M t) + \hat{X}_2 \sin(\omega_M t)$ $\left[\hat{X}_1, \hat{X}_2\right] = 2x_{\text{ZPF}}^2$ Heisenberg is the reason for SQL! no limit for instantaneous measurement of x(t)!
- SQL means: detect $\hat{X}_{1,2}$ down to x_{ZPF} on a time scale $1/\Gamma$ Impressive: $x_{\text{ZPF}} \sim 10^{-15} m$!

Enforcing the SQL (Heisenberg) in a weak optical measurement

reflection phase shift: $\theta = 2kx$ (here: free space)

N photons arrive in time t

fluctuations: $\delta N = \sqrt{VarN} = \sqrt{\bar{N}}$ a coherent laser beam

Poisson distribution for

I. Uncertainty in phase estimation:

$$\begin{split} \delta N \cdot \delta \theta &\geq \frac{1}{2} \quad \Rightarrow \quad \delta \theta \geq \frac{1}{2\sqrt{\bar{N}}} \quad \Rightarrow \quad \delta x = \frac{\delta \theta}{2k} \sim \frac{1}{2\sqrt{\bar{N}}2k} \\ \textbf{2. Fluctuating force: momentum transfer } \Delta p &= 2\hbar k \cdot N \\ \delta p &= \sqrt{\mathrm{Var}\Delta p} = 2\hbar k \sqrt{\bar{N}} \\ \textbf{Uncertainty product: } \delta x \delta p \geq \frac{\hbar}{2} \quad \textbf{Heisenberg} \end{split}$$

Optomechanics (Outline)

Equations of motion

Equations of motion

Linearized optomechanics

$$\alpha(t) = \bar{\alpha} + \delta \alpha(t)$$
$$x(t) = \bar{x} + \delta x(t)$$

$$\Rightarrow \dots \Rightarrow$$
(solve for arbitrary $F_{\text{ext}}(\omega)$)

$$\delta x(\omega) = \frac{1}{m(\omega_M^2 - \omega^2) - im\omega\Gamma + \Sigma(\omega)} F_{\text{ext}}(\omega)$$

$$\chi_{xx}^{\text{eff}}(\omega)$$

$$\delta \omega_M^2 = \frac{1}{m} \text{Re}\Sigma(\omega_M)$$

$$\int_{\text{opt}} \text{Optomechanical frequency shift ("optical spring")}}_{\Gamma_{\text{opt}} = -\frac{1}{m\omega_M}} \text{Im}\Sigma(\omega_M)$$
Effective optomechanical damping rate
Linearized dynamics

Linearized dynamics

Cooling by damping

Optomechanics (Outline)

esponse to cantilever motion Self-induced oscillations

esponse to cantilever motion Self-induced oscillations

Beyond some laser input power threshold: instability Cantilever displacement x Amplitude A Time t

Self-induced oscillations

$$x(t) \approx \bar{x} + A\cos(\omega_M t)$$

FM, Harris, Girvin, PRL 96, 103901 (2006)

Self-induced oscillations

0

 $|lpha|^2/|lpha_{
m in}|^2$

Two equations for two unknowns: \bar{x}, A

Color scale: power fed into cantilever

Color scale: power fed into cantilever

Color scale: power fed into cantilever

Color scale: power fed into cantilever

Color scale: power fed into cantilever

First experimental observation of attractor diagram

Time-delayed **bolometric** force:

$$F(t) \propto \int_{-\infty}^{t} e^{-(t-t')/\tau} I(t') \frac{dt'}{\tau}$$

Low optical finesse – light intensity follows instantaneously: I(t) = I[x(t)]

Ludwig, Neuenhahn, Metzger, Ortlieb, Favero, Karrai, FM, Phys. Rev. Lett. **101**, 133903 (2008)

Comparison theory/experiment

Comparison theory/experiment

Metzger et al., PRL 2008

Optomechanics (Outline)

Cooling with light

Current goal in the field: ground state of mechanical motion of a macroscopic cantilever

Classical theory:

Pioneering theory and experiments: **Braginsky** (since 1960s)

 $T_{\rm eff} = T \cdot \frac{\Gamma_M}{\Gamma_{\rm opt} + \Gamma_M}$ $T_{\rm optomechanical damping rate}$

Cooling with light

Current goal in the field: ground state of mechanical motion of a macroscopic cantilever

 $k_B T_{\rm eff} \ll \hbar \omega_M$

Classical theory: quantum limit? $T_{\rm eff} = T \cdot \frac{\Gamma_M}{\Gamma_{\rm opt} + \Gamma_M} \xrightarrow{\rightarrow 0 ?} 0?$ Pioneering theory and experiments: Braginsky (since 1960s)

Cooling with light

Quantum picture: Raman scattering – sideband cooling

Original idea:

Sideband cooling in ion traps – Hänsch, Schawlow / Wineland, Dehmelt 1975

Similar ideas proposed for nanomechanics:

cantilever + quantum dot – Wilson-Rae, Zoller, Imamoglu 2004 cantilever + Cooper-pair box – Martin Shnirman, Tian, Zoller 2004 cantilever + ion – Tian, Zoller 2004 cantilever + supercond. SET – Clerk, Bennett / Blencowe, Imbers, Armour 2005, Naik et al. (Schwab group) 2006

Quantum noise approach

Quantum noise approach

Quantum noise approach

Quantum theory of optomechanical cooling

Spectrum of radiation pressure fluctuations

$$S_{FF}(\omega) = \int e^{i\omega t} \left\langle \hat{F}(t)\hat{F}(0) \right\rangle dt$$
radiation
pressure
 $\hat{F} = \left(\frac{\hbar\omega_R}{L}\right) \hat{a}^{\dagger}\hat{a}$
photon number
$$S_{FF}(\omega) = \left(\frac{\hbar\omega_R}{L}\right)^2 \bar{n}_p \frac{\kappa}{(\omega + \Delta)^2 + (\kappa/2)^2}$$

photon shot noise spectrum

$\frac{dt e^{i\omega t}(\langle \hat{n}(t) \hat{n}(0) \rangle - \bar{n}^{2})}{Q} = \sqrt{n} \frac{1}{Q} \frac{1$

FM, Chen, Clerk, Girvin, PRL **93**, 093902 (2007) *also:* Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL **99**, 093901 (2007); Genes et al, PRA 2008

experiment with $~\kappa/\omega_M\approx 1/20$ Kippenberg group 2007

Cooling rate

$$\Gamma_{\text{opt}} = \frac{x_{\text{ZPF}}^2}{\hbar^2} [S_{FF}(+\omega_M) - S_{FF}(-\omega_M)]$$

Quantum limit for cantilever phonon number

$$\frac{n_{\rm opt} + 1}{n_{\rm opt}} = \frac{S_{FF}(+\omega_M)}{S_{FF}(-\omega_M)}$$
$$\Delta = -\omega_M \Rightarrow n_{\rm opt} = \left(\frac{\kappa}{4\omega_M}\right)^2$$

Ground-state cooling needs: high optical finesse / large mechanical frequency

Towards the ground state

Results from groups at MIT (Mavalvala), LKB (Pinard, Heidmann, Cohadon), Yale (Harris), IQOQI Wien (Aspelmeyer), MPQ Munich (Kippenberg), JILA Boulder (Lehnert), Caltech (Schwab)

Strong coupling: resonances of light and mechanics hybridize

Experiment: Optomechanical hybridization

Aspelmeyer group 2009

Experiment: Optomechanically induced transparency

(Light field transmission of a second, weak probe beam)

Kippenberg group 2010

Optomechanics (Outline)

Squeezed states

Squeezing the mechanical oscillator state

Squeezed states

Squeezing the mechanical oscillator state

Squeezing the mechanical oscillator state

Squeezing the mechanical oscillator state

Squeezing the mechanical oscillator state

Squeezing the mechanical oscillator state

Squeezing the mechanical oscillator state

Squeezing the mechanical oscillator state

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

Measuring quadratures ("beating the SQL")

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Measuring quadratures ("beating the SQL")

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Measuring quadratures ("beating the SQL")

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Optomechanical entanglement

Optomechanical entanglement

Optomechanical entanglement

Proposed optomechanical which-path experiment and quantum eraser

Marshall, Simon, Penrose, Bouwmeester, PRL 91, 130401 (2003)

Optomechanics (Outline)

Electron oscillations in Penning trap: Peil and Gabrielse, 1999

"Membrane in the middle" setup

"Membrane in the middle" setup

Experiment (Harris group, Yale)

Optomechanical cooling from **300K** to **7mK**

1200 Thompson, Zwickl, Jayich, Marquardt, Girvin, Harris, Nature 72, 452 (2008)

Detection of displacement x: not what we need!

Detection of displacement x: not what we need!

Thompson, Zwickl, Jayich, FM, Girvin, Harris, Nature 72, 452 (2008)

Girvin, Harris, Nature 72, 452 (2008)

Girvin, Harris, Nature 72, 452 (2008)

Signal-to-noise need: higher finesse ratio: $\tau \Delta \omega^2$ smaller mass S_{α} Measured phase shift • T=300mK + number) **Optical freq. shift** optomechanical cooling per phonon: $\Delta \omega = x_{\rm ZPF}^2 \omega''$ to ground state higher reflectivity of phonon membrane: r_c>0.999 Noise power of freq. measurement: κ cavity

Alternative: Phonon shot noise measurement (Clerk, FM, Harris 2010)

Optomechanics (Outline)

Atom-membrane coupling

Note: Existing works simulate optomechanical effects using cold atoms

K.W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, Nature Phys. **4**, 561 (2008).

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science **322**, 235 (2008).

...profit from small mass of atomic cloud

Here: Coupling a single atom to a macroscopic mechanical object

Challenge: huge mass ratio

Coupling a single atom to a heavy object: Why it is hard

Coupling a single atom to a heavy object: Why it is hard

Strong atom-membrane coupling via the light field

existing experiments on "optomechanics with cold atoms": labs of Dan-Stamper Kurn (Berkeley) and Tilman Esslinger (ETH)

collaboration:

LMU (M. Ludwig, FM, P.Treutlein), Innsbruck (K. Hammerer, C. Genes, M. Wallquist, P. Zoller), Boulder (J.Ye), Caltech (H. J. Kimble) Hammerer et al., PRL 2009

Goal:

$$\hat{H} = \hbar \omega_{\rm at} \hat{a}^{\dagger} \hat{a} + \hbar \omega_m \hat{b}^{\dagger} \hat{b} + \hbar G_{\rm eff} (\hat{a}^{\dagger} + \hat{a}) (\hat{b}^{\dagger} + \hat{b})$$

$$\begin{array}{c} \hat{b}^{\dagger} \hat{b} + \hat{b} \\ \text{atom} & \text{membrane} \\ \end{array} \quad \begin{array}{c} \text{atom-membrane coupling} \end{array}$$

Cavity-menated coupling

for each cavity mode: $\hat{H}_{\text{atom-cavity}} = U_0 \sin^2(k\hat{x}_{\text{at}})\hat{C}^{\dagger}\hat{C} = \dots + g_{\text{at}}(\hat{c}^{\dagger} + \hat{c})(\hat{a}^{\dagger} + \hat{a})$ $(\hat{C} = \bar{C} + \hat{c}) \quad \text{(likewise for membrane)}$

atom-membrane coupling via virtual transitions: $G_{\rm eff} = 4 \frac{g_{\rm at}g_{\rm m}}{\Delta} \sim 100 \rm kHz$ $\Delta \gg \omega_m, \kappa$ detuning laser-cavity

Decoherence and decay

Thermal ground-state decay rate:

$$\Gamma_{\rm th} = \bar{n}_{\rm th}\Gamma_m = \frac{k_BT}{\hbar Q}$$

Note:T limited by light absorption,T~IK

Relaxation of atom/membrane motion via driven cavity modes:

$$\Gamma_c \sim \frac{\kappa g^2}{\Delta^2}$$

2

Choose
$$\Delta \gg \omega_m, \kappa$$

Atomic momentum diffusion from photon scattering:

$$\Gamma_{\rm at} \sim \gamma \frac{g_{\rm at}^2}{\Omega^2}$$

Parameter optimization for currently achievable setups: $\Gamma_{\rm at}, \Gamma_c, \Gamma_{\rm at} \sim 0.1 \times G_{\rm eff}$

can reach strong coupling regime!

Example: State transfer

Exploit toolbox for single-atom manipulation

- Creation of arbitrary atom states and transfer to membrane
- Transfer of membrane states to atom and measurement

Optomechanics (Outline)

Scaling down

Scaling down

Scaling down

Optomechanical crystals

free-standing photonic crystal structures

from: M. Eichenfield et al., Optics Express 17, 20078 (2009), Painter group, Caltech

tight vibrational confinement: high frequencies, small mass (stronger quantum effects)

tight optical confinement: large optomechanical coupling (100 GHz/nm)

Optomechanical arrays

collective nonlinear dynamics: classical / quantum

cf. Josephson arrays

esponse to candievelimear dynamics of a single optomechanical cell: Self-induced oscillations

esponse to candievelimear dynamics of a single optomechanical cell: Self-induced oscillations

Beyond some laser input power threshold: instability Cantilever displacement x Amplitude A Time t

Attractor diagram

Attractor diagram

Höhberger, Karrai, IEEE proceedings 2004

Carmon, Rokhsari, Yang, Kippenberg, Vahala, PRL 2005

FM, Harris, Girvin, PRL 2006

Metzger et al., PRL 2008

Attractor diagram

An optomechanical cell as a Hopf oscillator

Amplitude fixed, phase undetermined!

An optomechanical cell as a Hopf oscillator

Amplitude fixed, phase undetermined!

Collective dynamics in an array of coupled cells? Phase-locking: synchronization!

Synchronization: Huygens' observation

(Huygens' original drawing!)

Coupled pendula synchronize...

...even though frequencies slightly different ...due to nonlinear effects

Fireflies synchronizing (Source: YouTube)

The Kuramoto model

Kuramoto model:

$$\dot{\varphi}_1 = \Omega_1 + K \sin(\varphi_2 - \varphi_1)$$
$$\dot{\varphi}_2 = \Omega_2 + K \sin(\varphi_1 - \varphi_2)$$

captures essential features
often found as limiting model

Kuramoto 1975, 1984 Acebron et al., Rev. Mod. Phys. 77, 137 (2005)

The Kuramoto model

$$\varphi_1 \\ K \\ \varphi_2$$

 $\dot{\varphi}_1 = \Omega_1 + K\sin(\varphi_2 - \varphi_1)$

 $\dot{\varphi}_2 = \Omega_2 + K\sin(\varphi_1 - \varphi_2)$

 $\varphi_1 = \varphi_2 \quad \Rightarrow$

$$\sin(\varphi_2 - \varphi_1) = \frac{\Omega_2 - \Omega_1}{2K}$$
phase lag

The Kuramoto model

Kuramoto model: Phase-locking transition

infinite-range coupling Kuramoto model displays phase transition

Phase locking of two optomechanical cells

Two optomechanical cells, fixed laser drive, increasing mechanical coupling

Phase locking of two optomechanical cells

Phase locking of two optomechanical cells

Effective Kuramoto model

Frequency locking

Mechanical spectrum in light field intensity fluctuations

 $I(\omega)$

(optom.)

(Hopf)
Desynchronization for increasing drive

Desynchronization for increasing drive

Array with common optical mode

Dynamics in optomechanical arrays

Outlook

•

- 2D geometries
- Information storage and classical computation
- Dissipative quantum many-body dynamics

Optomechanics: general outlook

Fundamental tests of quantum mechanics in a new regime: entanglement with 'macroscopic' objects, unconventional decoherence?

[e.g.: gravitationally induced?]

Mechanics as a 'bus' for connecting hybrid components: superconducting qubits, spins, photons, cold atoms,

Precision measurements

[e.g. testing deviations from Newtonian gravity due to extra dimensions]

Optomechanical circuits & arrays Exploit nonlinearities for classical and quantum information processing, storage, and amplification; study collective dynamics in arrays

Recent review on optomechanics: APS Physics 2, 40 (2009)

Optomechanics

Florian Marquardt and Steven M. Girvin, May 18, 2009

Recent review on quantum limits for detection and amplification: Clerk, Devoret, Girvin, Marquardt, Schoelkopf; RMP 2010