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Radiation pressure

Nichols and Hull, 1901
Lebedev, 1901

Nichols and Hull, Physical Review 13, 307 (1901)



Radiation forces

•Optical tweezers
•Optical lattices

Trapping and cooling
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Optomechanics on different 
length scales

LIGO – Laser Interferometer 
Gravitational 
Wave Observatory

Mirror on cantilever – 
Bouwmeester lab, Santa Barbara

4 km

1014 atoms
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Basic physics: Statics

fixed mirror

cantileverinput laser

oscillating mirror

radiation

pressure

Frad

x

x

Vrad(x)

Veff = Vrad + VHO

Frad(x) = 2I(x)/c
λ

2F λ/2

Static behaviour

A. Dorsel, J. D. McCullen, P. Meystre,
E. Vignes and H. Walther:

Experimental proof of static bistability:

Phys. Rev. Lett. 51, 1550 (1983)

hysteresis



Basic physics: dynamics

finite cavity ring-down rate γ
⇒ delayed response to cantilever motion

sweep x

F

Dynamics: Delayed light response

quasistatic
finite sweep!rate

0

∮

Fdx

< 0 > 0

heatingcooling
x

F

C. Höhberger!Metzger and K. Karrai, Nature 432, 1002 (2004)

(with photothermal force instead of radiation pressure)

(amplification)

finite optical ringdown time        –
delayed response to cantilever motion 

Höhberger-Metzger and Karrai, 
Nature 432, 1002 (2004):
300K to 17K [photothermal force]



The zoo of optomechanical 
(and analogous) systems

Karrai
(Munich)

Mavalvala
(MIT)

Aspelmeyer (Vienna)

Bouwmeester
(Santa Barbara)

LKB group
(Paris)

Vahala (Caltech)
Kippenberg (MPQ), 

Carmon, ...

Wineland (NIST)

Schwab (Cornell)

Harris (Yale)

Lehnert (NIST)

Stamper-Kurn (Berkeley)

cold atoms
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Optomechanics: general outlook

Fundamental tests of quantum 
mechanics in a new regime:
entanglement with ‘macroscopic’ objects, 
unconventional decoherence?
[e.g.: gravitationally induced?] 

Precision measurements 
[e.g. testing deviations from Newtonian 
gravity due to extra dimensions]

Optomechanical circuits & arrays
Exploit nonlinearities for classical and 
quantum information processing, storage, 
and amplification; study collective
dynamics in arrays

Mechanics as a ‘bus’ for connecting 
hybrid components: superconducting 
qubits, spins, photons, cold atoms, ....

Tang lab (Yale)

Kapitulnik lab (Stanford)

Bouwmeester
(Santa Barbara/Leiden)



Towards the quantum regime of 
mechanical motion

Schwab and Roukes, Physics Today 2005

• nano-electro-mechanical systems

• optomechanical systems

Superconducting qubit coupled to nanoresonator: Cleland & Martinis 2010



Optomechanics (Outline)

Nonlinear dynamics

Introduction

Quantum theory of cooling

Towards Fock state detection

BathSystem

Coupling to the motion of a single atom

Linear optomechanics

Displacement detection

Interesting quantum states
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Optical displacement detection

input laser
optical
cavity

cantilever

reflection 
phase shift



Thermal fluctuations of a 
harmonic oscillator

Classical equipartition theorem:

•Direct time-resolved detection
•Analyze fluctuation spectrum of x

Possibilities:
extract 

temperature!
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Fluctuation spectrum

“Wiener-Khinchin theorem”



Fluctuation spectrum

“Wiener-Khinchin theorem”

area yields 
variance of x:



Fluctuation-dissipation theorem

General relation between noise spectrum and linear 
response susceptibility

susceptibility

(classical limit)



Fluctuation-dissipation theorem

General relation between noise spectrum and linear 
response susceptibility

susceptibility

for the damped oscillator:

(classical limit)



Displacement spectrum

Experimental curve:
Gigan et al., Nature 2006

T=300 K



Measurement noise



Measurement noise

meas

Two contributions to 
1. measurement imprecision
2. measurement back-action: 
fluctuating force on system

phase noise of
laser beam (shot 

noise limit!)

noisy radiation 
pressure force



“Standard Quantum Limit”

true spectrum
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“Standard Quantum Limit”

true spectrum

+ imprecision
noise

+ backaction
noise

(measured)
(measured)

coupling to detector
(intensity of measurement beam)

imprecision
noise bac

kac
tio

n

no
ise

intrinsic fluctuations

full noise

Best case allowed by quantum mechanics:

...as if adding the zero-point fluctuations a 
second time: “adding half a photon”

“Standard quantum limit 
(SQL) of displacement 
detection”



Notes on the SQL

“weak measurement”: integrating the signal 
over time to suppress the noise

trying to detect slowly varying “quadratures of 
motion”:

SQL means: detect        down to          on a 
time scale 

Heisenberg is the reason for SQL!

Impressive:                      ! 

no limit for instantaneous 
measurement of x(t)!



Enforcing the SQL (Heisenberg) 
in a weak optical measurement

N photons arrive in time t
fluctuations:

Poisson distribution for 
a coherent laser beam

1. Uncertainty in phase estimation:

reflection phase shift:
(here: free space)

2. Fluctuating force: momentum transfer

HeisenbergUncertainty product:
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Equations of motion

input laser optical
cavity

cantilever



Equations of motion

input laser optical
cavity

cantilever

mechanical
frequency

equilibrium
position

mechanical
damping

detuning
from resonance

cavity
decay rate

laser
amplitude

radiation
pressure



Linearized optomechanics

(solve for arbitrary            )

Effective 
optomechanical 
damping rate

Optomechanical 
frequency shift
(“optical spring”)
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Cooling by damping

Thompson, Zwickl, Jayich, Marquardt, Girvin, Harris, 
Nature 72, 452 (2008)

T=300 K
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Self-induced oscillations
finite cavity ring-down rate γ
⇒ delayed response to cantilever motion

sweep x

F

Dynamics: Delayed light response

quasistatic
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C. Höhberger!Metzger and K. Karrai, Nature 432, 1002 (2004)

(with photothermal force instead of radiation pressure)

total



Self-induced oscillations

Beyond some laser input power threshold:  instability

Amplitude A

Cantilever displacement x

Time t

finite cavity ring-down rate γ
⇒ delayed response to cantilever motion

sweep x

F

Dynamics: Delayed light response

quasistatic
finite sweep!rate

0

∮

Fdx

< 0 > 0

heatingcooling
x

F

C. Höhberger!Metzger and K. Karrai, Nature 432, 1002 (2004)

(with photothermal force instead of radiation pressure)

total



Self-induced oscillations

tric mirrors as part of a high-finesse optical cavity at low
temperatures. With modest adjustments to the dimensions
of [22], it should be possible to realize cantilevers with
spring constant !1 N=m, mass m! 10"10 kg, and me-
chanical Q! 105 supporting a mirror capable of achieving
a cavity finesse of !=T ! 105 (with l! 10 cm), and use
them at an input power of Pin ! 20 nW at T ! 0:3 K. For
the Yale (Caltech [25,26]) setups, our dimensionless units
are scaled by "x # 3 pm (3.5 pm), "t $ #"1 # 10 $s
(19 ns), and we have ! # 10"5 (5:4% 10"4) and !0 #
1&0:65'. For Pin # 20 nW (5 mW), we find P # 1&9:5',
and j%j2 $ 1 corresponds to an energy of 0.8 pJ (0.4 nJ) or
2% 106 (3% 109) photons inside the cavity. An energy
U $ 1 or ~T $ 1 (see below) equals 0.6 K (105 K). Note
that in the Munich experiment [9] the optical resonances
overlap and P ! 10"18 ( ! precludes the multistability.

The cavity resonance peak %&x' $ 1=&1" 2ix' gives
rise to a barrier in the effective static cantilever potential
obtained by integrating the right-hand-side (rhs) of Eq. (2),
Veff&x' $ !2

0
2 &x" x0'2 " P

2 arctan&2x'. There can be two
local minima of Veff , leading to static bistability [6,7].
However, it is known [5] that the time lag generated by
the finite cavity ring-down time #"1 introduces additional
damping or antidamping when x is to the left or right of the
barrier, respectively. Here we will focus on the regime
where the antidamping leads to an instability discovered
previously [2,16,17,27], which destroys the stable solution
_x $ 0. Then the system settles into self-sustained oscilla-
tions, whose full nonlinear dynamics we explore here.

Dynamics in the unstable regime.—For the parameters
from above, the effects of radiation during one cycle are
weak, such that x&t' carries out approximately sinusoidal
oscillations at the unperturbed frequency: x&t'# "x)
Acos&!0t'. This fact is the basis of our analytical theory.
For very high P this approximation breaks down and
chaotic motion may result (as was observed in [25] for
P ! 6000), which will not be analyzed here. The dynam-
ics of the light amplitude %&t' resembles that of a driven
damped oscillator which is swept through resonance non-
adiabatically (see Fig. 2). The exact solution for a given
sinusoidal x&t' can be written as a Fourier series, %&t' $
ei’&t'

P
n%nein!0t, with

%n $
1

2

Jn&" A
!0
'

in!0 ) 1
2 " i "x

; (3)

and a global phase ’&t' $ &A=!0' sin&!0t', where Jn is the
Bessel function of the first kind. The output light intensity
is [28] given by Pinj1" 2%j2, and the Fourier transform of
%&t' directly yields the sideband spectrum.

Dynamical multistability.—The possible attractors ( "x; A)
have to fulfill two conditions resulting from Eq. (2) for any
periodic motion. The total time-averaged force h #xi has to
vanish, and the net power input via the radiation pressure
force (due to the Doppler shift caused by the moving
mirror) must equal the power dissipated through friction,
h #x _xi $ 0:

P hj%&t'j2i $ !2
0& "x" x0'; (4)

Prad $ P hj%&t'j2 _xi $ Pfric $ !h _x2i: (5)

The dependence on "x; A, and !0 follows from the coeffi-
cients of Eq. (3):

hj%j2i $
X
n
j%nj2; (6)

~P rad $ hj%j2 _xi $ A!0 Im
X
n
%*
n%n)1: (7)

We note that a force following the light intensity with a
time lag & (e.g., photothermal forces [9]) would enter
Eq. (2) in the form P&"1

Rt
"1 dt0j%j2&t0' exp+"&t"

t0'=&,, and leads to a factor &1) i!0&'"1, inside the
imaginary part on the rhs of Eq. (7).

The power balance equation can be recast into the form

~Prad& "x; A'
~Pfric&A'

$ !

P
; (8)

with ~Pfric&A' $ !2
0A

2=2. Stable attractors are those where
the ratio decreases for increasing A.

After solving the force balance Eq. (4) for "x $ "x&x0; A',
we can plot the contour lines of the left-hand side of Eq. (8)
in the &x0; A' plane. These yield the possible equilibrium
values of the oscillation amplitude A as a function of x0,
see Fig. 3. The red dots show the results of a simulation of
the initial equations of motion, Eqs. (1) and (2).

This diagram may be observed experimentally by
sweeping x0, either via tuning the laser frequency or by
applying some force to the cantilever. After initial tran-
sients, the system settles into one of the attractors (specific
amplitude A), which may be identified either via its distinct
pattern of light emission from the cavity (see Fig. 2) or by
the total power loss due to friction, Pin " "Pout $
Pin!A2!2

0=2, or by obtaining x&t' from interferometry
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FIG. 2 (color online). Left: Oscillations of the light energy
stored inside the cavity, @!Lnmaxj%j2, and the output light
intensity Pout $ Pinj1" 2%j2, for given sinusoidal cantilever
motion (with !0 $ 1, "x $ x0 $ 5, A $ 20). See text for real
units. Right: Dynamical potential U&A', for P $ 1 and ! $
10"4; 10"3; 10"2; 10"1 (bottom to top curve). Insets show the
time evolution of the cavity intensity j%j2 (thick line) and the
output intensity j1" 2%j2 (thin line, scaled down by a factor
0.1), obtained for oscillations corresponding to the dynamical
attractors a,b,c,d [minima in U&A']. Note the additional oscil-
lation in j%j2 for each subsequent attractor.

PRL 96, 103901 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
17 MARCH 2006

103901-2

0
Time

FM, Harris, Girvin,
PRL 96, 103901 (2006)



Self-induced oscillations
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FIG. 2 (color online). Left: Oscillations of the light energy
stored inside the cavity, @!Lnmaxj%j2, and the output light
intensity Pout $ Pinj1" 2%j2, for given sinusoidal cantilever
motion (with !0 $ 1, "x $ x0 $ 5, A $ 20). See text for real
units. Right: Dynamical potential U&A', for P $ 1 and ! $
10"4; 10"3; 10"2; 10"1 (bottom to top curve). Insets show the
time evolution of the cavity intensity j%j2 (thick line) and the
output intensity j1" 2%j2 (thin line, scaled down by a factor
0.1), obtained for oscillations corresponding to the dynamical
attractors a,b,c,d [minima in U&A']. Note the additional oscil-
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PRL 96, 103901 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
17 MARCH 2006

103901-2

cavity intensity oscillations:

2. power balance: 

1. force balance: 

[analytical
solution]

Two equations for two unknowns:

0
Time

FM, Harris, Girvin,
PRL 96, 103901 (2006)
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First experimental observation of 
attractor diagram

Time-delayed 
bolometric force:

Low optical finesse – 
light intensity follows
instantaneously:

Ludwig, Neuenhahn, Metzger, Ortlieb, Favero, Karrai, FM, 
Phys. Rev. Lett. 101, 133903 (2008)



Comparison theory/experiment
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Figure 3: (Color online) Experiment vs. theory. The trans-
mitted light intensity (left) and the amplitude of self-induced
cantilever oscillations (right), from a simulation of the theo-
retical model (red full curves) and from the experiment (blue
data points), at increasing input power levels (top to bottom).
Theoretical “transmission” curves display the (rescaled) time-
averaged circulating light intensity from the simulation. “Am-
plitude” curves are obtained from the power in the intensity
sidebands at the fundamental mechanical mode of the can-
tilever (see main text). For clarity, the hysteresis observed
upon sweeping x0 up or down has been shown only in the mid-
dle panel. The region of instability (shaded interval) grows
with increasing input power. Simultaneous self-induced oscil-
lations of the first two mechanical modes set in at the highest
power displayed (in the two intervals indicated in the plot).
The calculated amplitude of the second mode is shown as a
dashed line.

down.

Beginning at Iin = 0.57 I0, a second interval of self-

oscillatory behaviour appears to the left of the resonance,

growing stronger and wider with increasing laser power.

This initially completely unexpected result may be ex-

plained by invoking the influence of higher mechanical

modes. These may be excited by the radiation as well,

leading to coupled (multimode) nonlinear dynamics with

richer features than discussed up to now.

In order to describe the behaviour in that case, we now

take into account the second mode as well. The total

displacement is x(t) = x0 +x1(t)+x2(t), and we have to

employ a set of equations:

ẍi = −ω2
i xi − Γiẋi + F bol

i [x(t)]/mi , (9)

where xi denotes the coordinate of the i-th mechanical

mode with frequency ωi, mechanical damping rate Γi,

and effective mass mi (where ω1/2π = 8.7 kHz, ω2/2π =

60 kHz, Γ1 = 30.0 Hz, Γ2 = 150Hz). We neglected the ra-

diation pressure force, as this is much smaller anyway for

the parameters of this setup. The mechanical modes are

now coupled indirectly by the bolometric force. For the

present setup, this force changes sign when going to the

second mode. Choosing F bol
2 m1/F bol

1 m2 = −28.8 as an

adjustable parameter, we have found the numerical sim-

ulation of these coupled nonlinear equations for the first

two modes to be in surprisingly good agreement with the

experiment (Fig. 3). We have to note that the relation

between the measured “amplitude”, i.e. first harmonic of

I(t) at frequency ω1, and the actual amplitude A1 does

not hold exactly if both modes are excited simultane-

ously.

At maximum laser power, there are actually two inter-

vals with simultaneous excitation of both modes (indi-

cated in Fig. 3). Specifically, the onset of such a regime

at x0 ≈ λ/8 can be interpreted as follows: Taking into ac-

count F bol
2 /F bol

1 < 0, we see that the second mode gains

its energy from dipping into the resonance at x = λ/2,

while the first is still provided with energy due to the

resonance at x = 0.

Numerical evidence shows that the steady-state mo-

tion consists of sinusoidal oscillations in x1,2 at the re-

spective eigenfrequencies, of nearly constant amplitudes

and without phase locking (for the parameters explored

here). Thus x(t) ≈ x0 +
�2

i=1[Ai + δAi(t)] cos(ωit + φi),

where δAi(t)/Ai � 1, and the φi are arbitrary phases.

Higher input powers will lead to excitations of additional

modes, and the system might go into a chaotic regime of

motion.

Conclusions. - We have analyzed the nonlinear dy-

namics of an optomechanical system, by measuring and

explaining its attractor diagram. The comparison of

data and theoretical predictions have revealed the on-

set of multi-mode dynamics at large optical power, with

two mechanical modes of the cantilever participating in

the radiation-driven self-sustained oscillations. These ef-

fects could find applications in highly sensitive force or

displacement detection [23]. In the future, it would be

interesting to observe the attractor diagram in systems

of a high optical finesse [21, 22] (with delayed radiation

dynamics), or the self-excitation of multiple mechanical

modes of sub-wavelength mechanical resonators interact-

ing with the radiation field inside a cavity [14, 29]. The

whole field of quantum nonlinear dynamics in systems of

this kind also remains to be explored.
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Metzger et al., 
PRL 2008
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Figure 3: (Color online) Experiment vs. theory. The trans-
mitted light intensity (left) and the amplitude of self-induced
cantilever oscillations (right), from a simulation of the theo-
retical model (red full curves) and from the experiment (blue
data points), at increasing input power levels (top to bottom).
Theoretical “transmission” curves display the (rescaled) time-
averaged circulating light intensity from the simulation. “Am-
plitude” curves are obtained from the power in the intensity
sidebands at the fundamental mechanical mode of the can-
tilever (see main text). For clarity, the hysteresis observed
upon sweeping x0 up or down has been shown only in the mid-
dle panel. The region of instability (shaded interval) grows
with increasing input power. Simultaneous self-induced oscil-
lations of the first two mechanical modes set in at the highest
power displayed (in the two intervals indicated in the plot).
The calculated amplitude of the second mode is shown as a
dashed line.

down.

Beginning at Iin = 0.57 I0, a second interval of self-

oscillatory behaviour appears to the left of the resonance,

growing stronger and wider with increasing laser power.

This initially completely unexpected result may be ex-

plained by invoking the influence of higher mechanical

modes. These may be excited by the radiation as well,

leading to coupled (multimode) nonlinear dynamics with

richer features than discussed up to now.

In order to describe the behaviour in that case, we now

take into account the second mode as well. The total

displacement is x(t) = x0 +x1(t)+x2(t), and we have to

employ a set of equations:

ẍi = −ω2
i xi − Γiẋi + F bol

i [x(t)]/mi , (9)

where xi denotes the coordinate of the i-th mechanical

mode with frequency ωi, mechanical damping rate Γi,

and effective mass mi (where ω1/2π = 8.7 kHz, ω2/2π =

60 kHz, Γ1 = 30.0 Hz, Γ2 = 150Hz). We neglected the ra-

diation pressure force, as this is much smaller anyway for

the parameters of this setup. The mechanical modes are

now coupled indirectly by the bolometric force. For the

present setup, this force changes sign when going to the

second mode. Choosing F bol
2 m1/F bol

1 m2 = −28.8 as an

adjustable parameter, we have found the numerical sim-

ulation of these coupled nonlinear equations for the first

two modes to be in surprisingly good agreement with the

experiment (Fig. 3). We have to note that the relation

between the measured “amplitude”, i.e. first harmonic of

I(t) at frequency ω1, and the actual amplitude A1 does

not hold exactly if both modes are excited simultane-

ously.

At maximum laser power, there are actually two inter-

vals with simultaneous excitation of both modes (indi-

cated in Fig. 3). Specifically, the onset of such a regime

at x0 ≈ λ/8 can be interpreted as follows: Taking into ac-

count F bol
2 /F bol

1 < 0, we see that the second mode gains

its energy from dipping into the resonance at x = λ/2,

while the first is still provided with energy due to the

resonance at x = 0.

Numerical evidence shows that the steady-state mo-

tion consists of sinusoidal oscillations in x1,2 at the re-

spective eigenfrequencies, of nearly constant amplitudes

and without phase locking (for the parameters explored

here). Thus x(t) ≈ x0 +
�2

i=1[Ai + δAi(t)] cos(ωit + φi),

where δAi(t)/Ai � 1, and the φi are arbitrary phases.

Higher input powers will lead to excitations of additional

modes, and the system might go into a chaotic regime of

motion.

Conclusions. - We have analyzed the nonlinear dy-

namics of an optomechanical system, by measuring and

explaining its attractor diagram. The comparison of

data and theoretical predictions have revealed the on-

set of multi-mode dynamics at large optical power, with

two mechanical modes of the cantilever participating in

the radiation-driven self-sustained oscillations. These ef-

fects could find applications in highly sensitive force or

displacement detection [23]. In the future, it would be

interesting to observe the attractor diagram in systems

of a high optical finesse [21, 22] (with delayed radiation

dynamics), or the self-excitation of multiple mechanical

modes of sub-wavelength mechanical resonators interact-

ing with the radiation field inside a cavity [14, 29]. The

whole field of quantum nonlinear dynamics in systems of

this kind also remains to be explored.
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Cooling with light

input laser
optical
cavity cantilever

Current goal in the field: ground state of 
mechanical motion of a macroscopic cantilever

Classical theory:

optomechanical damping rate

quantum limit?

Pioneering theory and 
experiments: Braginsky 

(since 1960s )

shot noise!



Cooling with light

input laser
optical
cavity cantilever

Quantum picture: Raman scattering – sideband cooling
Original idea:
Sideband cooling in ion traps – Hänsch, Schawlow / Wineland, Dehmelt 1975

Similar ideas proposed for nanomechanics:
cantilever + quantum dot – Wilson-Rae, Zoller, Imamoglu 2004
cantilever + Cooper-pair box – Martin Shnirman, Tian, Zoller 2004
cantilever + ion – Tian, Zoller 2004
cantilever + supercond. SET – Clerk, Bennett / Blencowe, Imbers,  Armour 2005,
                                            Naik et al. (Schwab group) 2006
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Quantum theory of 
optomechanical cooling

Spectrum of radiation pressure fluctuations

photon shot noise spectrum

radiation 
pressure
force photon number



Photon number:

Detuning laser/cavity resonance: Cavity decay rate:

Radiation pressure force:

Noise spectrum for photon number:
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Cooling rate

Quantum limit for
cantilever phonon number

Ground-state cooling 
needs: high optical finesse / 
large mechanical frequency 

FM, Chen, Clerk, Girvin, 
PRL 93, 093902 (2007)
also: Wilson-Rae, Nooshi, Zwerger, 
Kippenberg, PRL 99, 093901 (2007);
Genes et al, PRA 2008

experiment with 
Kippenberg group 2007

Photon number:

Detuning laser/cavity resonance: Cavity decay rate:

Radiation pressure force:

Noise spectrum for photon number:

Radiation pressure noise spectrum
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Strong coupling: resonances of
light and mechanics hybridize
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Experiment: Optomechanical hybridization

have to lie at sidebands equal to the dressed state frequencies v6

relative to the incoming laser photons of frequency vL, that is, they
have to be emitted at sideband frequencies vL6v1 or vL6v2.
Homodyne detection provides us with direct access to the optical
sideband spectrum, which is presented in Fig. 2a for the resonant case
D<vm. For small optical pump power, that is, in the regime of weak
coupling, the splitting cannot be resolved and one obtains the well-
known situation of resolved sideband laser cooling, in which Stokes
and anti-Stokes photons are emitted at one specific sideband fre-
quency. The splitting becomes clearly visible at larger pump powers,
which is unambiguous evidence for entering the strong coupling
regime. Indeed, at a maximum optical driving power of ,11mW,
we obtain a coupling strength g5 2p3 325 kHz, which is larger than
both k5 2p3 215 kHz and cm5 2p3 140Hz and which corre-
sponds to the magnitude of the level crossing shown in Fig. 2b. As
is expected, for detuningsD off resonance, the normalmode frequen-
cies approach the values of the uncoupled system.

These characteristics of our strongly driven optomechanical sys-
tem are reminiscent of a strongly driven two-level atom, and indeed a
strong and instructive analogy exists. If an atom is pumped by a
strong laser field, optical transitions can only occur between dressed
atomic states, that is, atomic states ‘dressed’ by the interaction with
the laser field. For strong driving, any Rabi splitting that is induced by
strong coupling is effectively of orderG0

ffiffiffiffiffiffiffiffiffi
nLh i

p
(nL, mean number of

laser photons;G0, electric dipole coupling) and one therefore obtains
an equally spaced level splitting, fully analogous to the coupled opto-
mechanical spectrum. From this point of view, the optomechanical
modes can be interpreted in a dressed state approach as excitations of
mechanical states that are dressed by the cavity radiation field. The
origin of the sideband doublet as observed in the output field of the
strongly driven optomechanical cavity corresponds to the resonance
fluorescence spectrum of a strongly driven atom, in which strong

coupling gives rise to the two side-peaks in the so-called Mollow
triplet. It is interesting to note that the analogy even holds for the
single-photon regime, in which both systems are close to their
quantum ground state. For both cases (that is, the atom–cavity sys-
tem and the cavity–optomechanical system), a sufficiently strong
single-photon interaction g0 would allow one to obtain the well-
known vacuum Rabi splitting as well as state-dependent level spa-
cing, which is due to intrinsic nonlinearities in the coupling.

We should stress that normalmode splitting alonedoes not establish
aproof for coherentdynamics, that is, for quantuminterference effects.
With the present experimental parameters, such effects are washed out
by thermal decoherence and normal mode splitting has a classical
explanation in the framework of linear dispersion theory30. Still, the
demonstration of normal mode splitting is a necessary condition for
future quantum experiments.

We finally comment on the prospects for mechanical quantum
state manipulation in the regime of strong coupling. One important
additional requirement in most proposed schemes is the initializa-
tion of the mechanical device close to its quantum ground state.
Recent theoretical results show that both ground state laser cooling
and strong coupling can be achieved simultaneously, provided that
the conditions kBT

BQ =k=vm are fulfilled20,22. Thus, in addition to
operating in the resolved sideband regime, a thermal decoherence
rate that is small compared to the cavity decay rate is required.
Cryogenic experiments have demonstrated thermal decoherence
rates as low as 20 kHz for nanomechanical resonators for a 20mK
environment temperature9. For our experiment, temperatures below
300mK would be sufficient to combine strong coupling with ground
state cooling.

We have demonstrated strong coupling of a micromechanical
resonator to an optical cavity field. This regime is a necessary pre-
condition to obtaining quantum control of mechanical systems.
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Figure 2 | Optomechanical normal mode splitting and avoided crossing in
the normal-mode frequency spectrum. a, Emission spectra of the driven
optomechanical cavity, obtained from sideband homodyne detection on the
strong driving field after its interaction with the optomechanical system (see
Supplementary Information). The power levels from top to bottom (0.6, 3.8,
6.9, 10.7mW) correspond to an increasing coupling strength of g5 78, 192,
260 and 325 kHz (g5 0.4, 0.9, 1.2, 1.5 k). All measurements are performed
close to resonance (D5 1.02vm). For strong driving powers a splitting of the
cavity emission occurs, corresponding to the normal mode frequencies of
true hybrid optomechanical degrees of freedom. This normal mode splitting
is an unambiguous signature of the strong coupling regime. All plots are
shown on a logarithmic scale. Green dashed lines are fits to the data

assuming two independent Lorentzian curves, red solid lines are the sum
signal of these two fits. b, Normalmode frequencies obtained from the fits to
the spectra as a function of detuning D. For far off-resonant driving, the
normalmodes approach the limiting case of two uncoupled systems. Dashed
lines indicate the frequencies of the uncoupled optical (diagonal) and
mechanical (horizontal) resonator, respectively. At resonance, normalmode
splitting prevents a frequency degeneracy, which results in the shown
avoided level crossing. Error bars, s.d. Solid lines are simulations (see
Supplementary Information). For larger detuning values, the second normal
mode peak could no longer be fitted owing to a nearby torsional mechanical
mode. c, Normal mode spectra measured off resonance.
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(Mechanical spectrum under strong illumination)



Experiment: Optomechanically 
induced transparency 9

FIG. 3: Observation of OMIT. a) Theoretically expected intracavity probe power |A−|2, oscillation amplitude X, probe power
transmission |tp|2 and the homodyne signal |thom|2 as a function of the modulation frequency Ω/2π (top to bottom panels). The first
two panels have additionally been normalized to unity. When the two-photon resonance condition is met, the mechanical oscillator is
excited ∆� = 0, giving rise to destructive interference of excitation pathways for an intracavity probe field. The probe transmission
therefore exhibits an inverted dip, which can be easily identified in the homodyne signal. b) Experimentally observed normalized

homodyne traces when the probe frequency is scanned by sweeping the phase modulator frequency Ω for different values of control beam
detuning ∆̄. While the center of the response of the bare optical cavity shifts correspondingly, the sharp dip characteristic of OMIT
occurs always for ∆� = 0. The power of the control beam sent to the cavity is 0.5 mW in these measurements and the He-3 buffer gas

has a pressure of 155mbar at a temperature of 3.8K. The middle panel shows the operating conditions where the control beam is tuned
to the lower motional sideband ∆̄ ≈ −Ωm = −2π · 51.8MHz. The region around the central dip (orange background) is studied in more

detail in a dedicated experimental series (cf. figure 4).

Kippenberg group 2010

(Light field transmission of a second, weak probe beam)
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Measuring quadratures
(“beating the SQL”)

amplitude-modulated input field

measure only one quadrature, back-action noise affects 
only the other one....need: 

(similar to stroboscopic 
measurement)

Clerk, Marquardt, Jacobs; NJP 10, 095010 (2008)
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Optomechanical entanglement

n=
0

n=
1

n=
2

n=
3

coherent mechanical state

entangled state
(light field/mechanics)



Proposed optomechanical which-path 
experiment and quantum eraser

Marshall, Simon, Penrose, Bouwmeester, PRL 91, 130401 (2003)

x

p

Recover photon 
coherence if interaction 
time equals a multiple of 
the mechanical period!

cf. Haroche experiments in 90s
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Towards Fock state detection of 
a macroscopic object
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Towards Fock state detection of 
a macroscopic object

n=0

n=1

n=2

n=3 Electron oscillations in Penning trap:
Peil and Gabrielse, 1999



“Membrane in the middle” setup

op
tic

al
 fr

eq
ue

nc
y Thompson, Zwickl, Jayich, Marquardt, 

Girvin, Harris, Nature 72, 452 (2008)



“Membrane in the middle” setup

membrane 
transmissionfr

eq
ue

nc
y

membrane displacement

op
tic

al
 fr

eq
ue

nc
y Thompson, Zwickl, Jayich, Marquardt, 

Girvin, Harris, Nature 72, 452 (2008)



Experiment (Harris group, Yale)

50 nm SiN membrane

Mechanical frequency:
ωM=2π⋅134 kHz

Mechanical quality factor:
Q=106÷107

Current optical finesse:
7000÷15000 (5⋅105)

[almost sideband regime]

Optomechanical cooling
from 300K to 7mK

Thompson, Zwickl, Jayich, Marquardt, 
Girvin, Harris, Nature 72, 452 (2008)
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membrane displacement
phase shift of measurement beam:

(Time-average over 
cavity ring-down time)

QND measurement
of phonon number!
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per phonon:
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freq. measurement:

Ground state lifetime:

Thompson, Zwickl, Jayich, FM, 
Girvin, Harris, Nature 72, 452 (2008)

need:
•higher finesse
• smaller mass
•T=300mK + 

optomechanical cooling 
to ground state

•higher reflectivity of 
membrane: rc>0.999

Alternative:
Phonon shot noise measurement (Clerk, FM, Harris 2010)



Optomechanics (Outline)

Nonlinear dynamics

Introduction

Quantum theory of cooling

Towards Fock state detection

BathSystem

Coupling to the motion of a single atom
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Interesting quantum states
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Atom-membrane coupling

Note: Existing works simulate 
optomechanical effects using cold atoms

Here: Coupling a single atom to a 
macroscopic mechanical object

Stamper-Kurn (Berkeley)

cold atoms

K. W. Murch, K. L. Moore, S. Gupta, and 
D. M. Stamper-Kurn,
Nature Phys. 4, 561 (2008).

F. Brennecke, S. Ritter, T. Donner, and T. 
Esslinger, Science 322, 235 (2008).

...profit from small mass of atomic cloud

Challenge: huge mass ratio



Coupling a single atom to a heavy 
object: Why it is hard

1 atom

1014 atoms



Coupling a single atom to a heavy 
object: Why it is hard

1 atom

1014 atoms

coupling term small!

interaction:

freq. shift freq. shiftcoupling



Strong atom-membrane coupling 
via the light field

collaboration:
LMU (M. Ludwig, FM, P. Treutlein),
Innsbruck (K. Hammerer, C. Genes, M. Wallquist, P. Zoller),
Boulder (J. Ye), Caltech (H. J. Kimble)
Hammerer et al., PRL 2009

existing experiments on “optomechanics 
with cold atoms”: labs of Dan-Stamper Kurn 
(Berkeley) and Tilman Esslinger (ETH) 

Goal:

atom membrane atom-membrane coupling



Cavity-mediated coupling

Strong coupling of a mechanical oscillator and a single atom

K. Hammerer1,5, M. Wallquist1,5, C. Genes1, M. Ludwig2, F. Marquardt2, P. Treutlein3, P. Zoller1,5, J. Ye4,5, H. J. Kimble5

1
Institute for Theoretical Physics, University of Innsbruck, and Institute for Quantum Optics and Quantum Information,

Austrian Academy of Sciences, Technikerstrasse 25, 6020 Innsbruck, Austria
2

Department of Physics, Center for NanoScience, and Arnold Sommerfeld Center for Theoretical Physics,

Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 Munich, Germany
3

Max-Planck-Institute of Quantum Optics and Department of Physics,

Ludwig-Maximilians-Universität München, Schellingstr. 4, D-80799 Munich, Germany
4

JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309-0440 USA
5

Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, CA 91125 USA

(Dated: May 7, 2009)

We propose and analyze a setup to achieve strong coupling between a single trapped atom and a mechanical
oscillator. The interaction between the motion of the atom and the mechanical oscillator is mediated by a quan-
tized light field in a laser driven high-finesse cavity. In particular, we show that high fidelity transfer of quantum
states between the atom and the mechanical oscillator is in reach for existing or near future experimental param-
eters. Our setup provides the basic toolbox for coherent manipulation, preparation and measurement of micro-
and nanomechanical oscillators via the tools of atomic physics.

Recent experiments with micro- and nanomechanical oscil-
lators coupled to the optical field in a cavity are approach-
ing the regime where quantum effects dominate [1, 2, 3].
In light of this progress, the question arises to what extent
the quantized motion of a mesoscopic mechanical system
can be coherently coupled to a microscopic quantum object
[4, 5, 6, 7, 8, 9], the ultimate challenge being strong cou-
pling to the motion of a single atom. For a direct mechani-
cal coupling the interaction involves scale factors

�
m/M ∼

10−7 − 10−4 depending on the ratio of the mass of the atom
m to the mass of the mechanical oscillator M [4]. It is there-
fore difficult to achieve a coherent coupling for exchange of
a single vibrational quantum that is much larger than relevant
dissipation rates.

In this Letter we show, however, that strong coupling
can be realized between a single trapped atom and an opto-
mechanical oscillator. The coupling between the motion of
a membrane [10] – representing the mechanical oscillator –
and the atom is mediated by the quantized light field in a laser
driven high-finesse cavity. Remarkably, in this setup a co-
herent coupling for single-atom and membrane exceeding the
dissipative rates by a factor of ten is within reach for present or
near future experimental parameters [11]. Entering the strong
coupling regime provides a quantum interface allowing the
coherent transfer of quantum states between the mechanical
oscillator and atoms, opening the door to coherent manipu-
lation, preparation and measurement of micromechanical ob-
jects via the well-developed tools of atomic physics, and per-
haps the birth of quantum phononics.

We propose and analyze a setup which combines the recent
advances of micromechanics with membranes in optical cavi-
ties [10] and cavity QED with single trapped atoms [11] (see
Fig. 1a). We consider a membrane placed in a laser driven
high-finesse cavity representing the opto-mechanical system
with radiation pressure coupling. In this setup the motion of
the membrane manifests itself as a dynamic detuning of cav-
ity modes. For a cavity mode driven by a detuned laser this

(c)

(d)
(e)

(b)
cavity 

respon
se

(a)

FIG. 1: (a) Strong coupling of the motion of a single atom to a
vibrational degree of freedom of a micron-sized membrane can be
achieved in a two mode cavity (for details see text). (b) Cavity re-
sponse as a function of frequency. Two cavity modes are driven
by two lasers of frequencies ω1 and ω2, with red and blue detun-
ing respectively. (c) The two frequencies drive two atomic transi-
tions, e.g. the D1,2 lines of Cs, both with red detuning, causing AC
Stark shift of the ground state. (d) (left side) The atom is trapped
in the potential from the two optical lattices (red and blue curves)
u1,2(x) = sin2 (k1,2x) with wave vectors k1 �= k2. (right side)
The membrane is placed at a point of steepest slope of the intensity
profiles u1,2(x) where opto-mechanical coupling is maximal. (e) A
small displacement of the membrane will shift the cavity resonances
[cf. dashed line in (b)] resulting in a spatial shift of the trap potential
for the atom, and thus an effective linear atom-membrane coupling
as in Eq. (1). (Displacements and frequency shifts are not to scale.)

translates into a variation of the intensity of the intracavity
light field. In addition, we assume that this intracavity field
provides an optical lattice as a trap for a single atom. Thus
for the setup of Fig. 1a the motion of the membrane will be
coupled via the dynamics of the optical trap to the motion of
the atom, and vice versa. This coupling is strongly enhanced
by the cavity finesse which is a key ingredient in achieving the
strong coupling regime.

In the following we are interested in a configuration which
- after integrating out the internal cavity dynamics - realizes
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atom-membrane coupling via virtual transitions:

detuning laser-cavity

for each cavity mode:

(likewise for membrane)



Decoherence and decay

Thermal ground-state decay rate:

Note: T limited by light absorption, T~1K

Relaxation of atom/membrane motion via driven cavity modes:

Atomic momentum diffusion from photon scattering:

Parameter optimization for currently achievable setups:

Choose

can reach strong coupling regime!



Example: State transfer
4

Atom
Memb

rane
(a) (b)

Transf
erred S

queezi
ng [dB

]
[   ]

FIG. 2: (a) Wigner functions of atom and membrane (upper and
lower panels, respectively). At t = 0 (left panels) the atom is in
a squeezed state (9 dB) and the membrane in a thermal state with a
mean number of phonons n̄ = 5. An exact solution of the equation of
motion (2) with losses Γ =Γ c, Γm, Γat at rate Γ =0 .1×G shows
that after a time Gt = π

2 (right panels) the states are exchanged,
up to a trivial rotation in phase space by 90◦. (b) Squeezing trans-
ferred to membrane (maximized over time), versus loss rate Γ, for
the indicated values of initial atomic position fluctuations.

α and therefore the absolute timescale of the system are not
fixed by Eqs. (6) to (9). These equations actually impose con-
ditions on the properties of the system at the single photon
level. The necessary cavity amplitude α, and with it the ab-
solute timescale of the dynamics, will finally follow from the
resonance condition ωat = ωm.

Example: We will show now that the interaction between a
single Cs atom and a SiN membrane of small effective mass
M = 0.4 ng mediated by a high-finesse optical micro–cavity
can enter the strong coupling regime. Firstly, we assume a
large cavity finesse of F � 2× 105 which is consistent with a
measured value of Im(n) � 1.5× 10−5 for the absorption in
a SiN membrane inside a cavity [12]. A small cavity waist of
w0 = 10 µm results in a cooperativity parameter of C = 140.
A ratio of ∆

κ � 18 satisfies Eqs. (6) and (8). Secondly, for the
mass ratio of m

M = 6 × 10−13 and an amplitude reflectivity
r = 0.45 we choose a ratio δ

γ � 450 in order to approximately
satisfy condition (7) and at the same time to ease requirements
for condition (9). Thirdly, from the data measured in [13] we
infer a value of kBκth � 10 nW/K for the dimensions of
the membrane (100 µm × 100 µm × 50 nm) = (l × l × d)
required here [20]. A mechanical quality factor of Q = 107

and a resonance frequency ωm = 2π × 1.3 MHz set the left
hand side of Eq. (9) to ∼ 45. Finally, the resonance condition
ωat = ωm demands a circulating power Pc � 850 µW which
will cause heating of � 2.5 K for the given thermal link. In
order to make a statement about the absolute timescales, we
still need to fix the cavity length. For L = 50 µm we find a
cavity mediated coupling G � 2π × 45 kHz and decoherence
rates Γc, Γm, Γat � 0.1×G. It it thus indeed possible to enter
the strong coupling regime with state of the art experimental
parameters.

While being a surprising result on its own, entering the
regime of strong coupling holds promise for diverse appli-
cations, including for preparation and readout of quantum
states of mesoscopic massive oscillators. In the regime ωm =
ωat � G, where the rotating wave approximation can be

applied in Eq. (1), the effective dynamics is described by
HI � G(ama

†
at + h.c.) in the interaction picture. This in-

teraction swaps the state of the atom and the membrane after
a time Gt = π

2 . Thus, states which are easily created on the
side of the atom (e.g., squeezed or Fock states) can be trans-
ferred to the membrane. In Fig. 2 we study such a transfer of a
squeezed state based on the exact solution of the master equa-
tion in Eq. (2). The figure also illustrates the importance of
limiting the loss in order to achieve quantum state transfer or
readout. The general analysis provided here shows that con-
dition (9) is the principal bottleneck for a reduction of losses.
Especially the ratio κthF2

γmM might be further increased by im-
proving material properties and nanostructuring, though there
will always be an apparent tradeoff between good mechani-
cal isolation and a large thermal link. Another rather obvious
route for improvement is to use a small ensemble of N atoms
trapped inside the cavity [14, 15, 16], resulting in a

√
N en-

hancement of the atom-cavity coupling. However, our main
point here is to identify the general conditions for achieving
strong coupling of a single atom to a massive mechanical os-
cillator, and to demonstrate that it is possible to meet these
conditions with state of the art systems.

Support by the Austrian Science Fund through SFB FO-
QUS, by the Institute for Quantum Optics and Quantum In-
formation, by the European Union through project EuroSQIP,
by NIST and NSF, and by the DFG through NIM, SFB631 and
the Emmy-Noether program is acknowledged. MW, KH, PZ
and JY thank HJK for hospitality at Caltech.
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Squeezing transferred to membrane
(maximized over time)

Transfer of squeezed state 
from atom to membrane

Exploit toolbox for single-atom manipulation
•Creation of arbitrary atom states and transfer to membrane
•Transfer of membrane states to atom and measurement
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Optomechanical arrays



Scaling down

cm
10 µmusual optical cavities

LKB, Aspelmeyer, Harris, 
 Bouwmeester, ....



Scaling down

50 µm

cm
10 µmusual optical cavities

microtoroids

Vahala, Kippenberg, Carmon, ...

LKB, Aspelmeyer, Harris, 
 Bouwmeester, ....



Scaling down

50 µm

cm
10 µm

10 µm

usual optical cavities

microtoroids

optomechanical crystals
optomechanics in
photonic circuits

5 µm
H. Tang et al., Yale

O. Painter et al., Caltech

Vahala, Kippenberg, Carmon, ...

LKB, Aspelmeyer, Harris, 
 Bouwmeester, ....



Optomechanical crystals

from: M. Eichenfield et al., Optics Express 17, 20078 (2009), Painter group, Caltech 

optical modes

vibrational modes

tight vibrational confinement:
high frequencies, small mass 
(stronger quantum effects)

tight optical confinement: 
large optomechanical coupling
(100 GHz/nm)

integrated on a chip

free-standing photonic crystal structures

advantages:



Optomechanical arrays

...

laser drive
cell 1

cell 2
optical mode

mechanical mode

collective nonlinear dynamics:
classical / quantum

cf. Josephson arrays



Nonlinear dynamics of a single 
optomechanical cell: Self-induced oscillations

finite cavity ring-down rate γ
⇒ delayed response to cantilever motion

sweep x

F

Dynamics: Delayed light response

quasistatic
finite sweep!rate

0

∮

Fdx

< 0 > 0

heatingcooling
x

F

C. Höhberger!Metzger and K. Karrai, Nature 432, 1002 (2004)

(with photothermal force instead of radiation pressure)

blue-detuned laser:
anti-damping

red-detuned laser:
damping (cooling)



Nonlinear dynamics of a single 
optomechanical cell: Self-induced oscillations

Beyond some laser input power threshold:  instability

Amplitude A

Cantilever displacement x

Time t

finite cavity ring-down rate γ
⇒ delayed response to cantilever motion

sweep x

F

Dynamics: Delayed light response

quasistatic
finite sweep!rate

0

∮

Fdx

< 0 > 0

heatingcooling
x

F

C. Höhberger!Metzger and K. Karrai, Nature 432, 1002 (2004)

(with photothermal force instead of radiation pressure)

blue-detuned laser:
anti-damping

red-detuned laser:
damping (cooling)
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An optomechanical cell as a Hopf oscillator

Amplitude fixed, phase undetermined!

bifurcation

amplitude

phase

laser
power



An optomechanical cell as a Hopf oscillator

Amplitude fixed, phase undetermined!

... Collective dynamics in an array of 
coupled cells?
Phase-locking: synchronization!

bifurcation

amplitude

phase

laser
power



Synchronization: Huygens’ observation

Coupled pendula synchronize...
...even though frequencies slightly different
...due to nonlinear effects

(Huygens’ original drawing!)



Fireflies synchronizing (Source:  YouTube)



Coupled phase oscillators



Coupled phase oscillators



Coupled phase oscillators



Coupled phase oscillators



The Kuramoto model

Kuramoto model:

•captures essential features
•often found as limiting model

Acebron et al. , Rev. Mod. Phys. 77, 137 (2005)
Kuramoto 1975, 1984



Synchronization:

phase lag

The Kuramoto model



1

0
coupling K

phase locking

The Kuramoto model



Many phase oscillators



Many phase oscillators



Many phase oscillators



Many phase oscillators



Kuramoto model: Phase-locking transition

...

...

infinite-range coupling 
Kuramoto model 
displays phase 
transition

coupling strength



Phase locking of two 
optomechanical cells

laser drive
cell 1

cell 2
...

optical mode
mechanical mode

Two optomechanical cells,
fixed laser drive,
increasing mechanical coupling
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Effective Kuramoto model

Standard Kuramoto model:

Effective Kuramoto model
for coupled Hopf oscillators:

optomech. 
model Hopf model

eff. Kuramoto 
model

sin(δϕ)
1

0

-1
1 2 3 4 5 6 1 2 3 4 5 600

time tδΩ/2πtime tδΩ/2π



Frequency locking
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Desynchronization for increasing drive 
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Desynchronization for increasing drive 
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Array with common optical mode
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Dynamics in optomechanical arrays

Outlook
•2D geometries
• Information storage and classical computation
•Dissipative quantum many-body dynamics
• ...



Optomechanics: general outlook

Fundamental tests of quantum 
mechanics in a new regime:
entanglement with ‘macroscopic’ objects, 
unconventional decoherence?
[e.g.: gravitationally induced?] 

Precision measurements 
[e.g. testing deviations from Newtonian 
gravity due to extra dimensions]

Optomechanical circuits & arrays
Exploit nonlinearities for classical and 
quantum information processing, storage, 
and amplification; study collective
dynamics in arrays

Mechanics as a ‘bus’ for connecting 
hybrid components: superconducting 
qubits, spins, photons, cold atoms, ....

Tang lab (Yale)

Kapitulnik lab (Stanford)

Bouwmeester
(Santa Barbara/Leiden)



Optomechanics

Recent review on optomechanics: 
APS Physics 2, 40 (2009) 

Recent review on quantum limits for detection and amplification:
Clerk, Devoret, Girvin, Marquardt, Schoelkopf; RMP 2010


