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1. Energy scales in correlated electron systems

Interaction between (valence) electrons in solids ⇒

• Spontaneous symmetry breaking (magnetic order, superconductivity)

• Correlation gaps without symmetry-breaking

(e.g. Mott metal-insulator transition)

• Kondo effect

• Exotic liquids (Luttinger liquids, quantum critical systems)

• . . .

The most striking phenomena involve electronic correlations beyond

conventional mean-field theories (Hartree-Fock, LDA etc.).



Scale problem:

Very different behavior on different energy scales

Collective phenomena, coherence, and composite objects often emerge at

scales far below bare energy scales of microscopic Hamiltonian

=⇒ PROBLEM

• for straightforward numerical treatments of microscopic systems

• for conventional many-body methods which treat all scales at once and

within the same approximation (e.g. summing subsets of Feynman diagrams)



Example: High temperature superconductors

La2−xSrxCuO4

Common structural element:

CuO2-planes
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Generic HTSC phase diagram:
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• antiferromagnetism

in undoped compounds

• d-wave superconductivity

at sufficient doping

• Pseudo gap, non-Fermi liquid

in ”normal” phase at finite T

Vast hierarchy of energy scales:

Magnetic interaction and

superconductivity generated

from kinetic energy and

Coulomb interaction
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Effective single-band model for CuO2-planes in HTSC:

2D Hubbard model (Anderson ’87, Zhang & Rice ’88)

t

t’

U

Hamiltonian H = Hkin +HI

Hkin =
∑

i,j

∑

σ

tij c
†
iσcjσ =

∑

k,σ

εk nkσ

HI = U
∑

j

nj↑nj↓

Antiferromagnet at half-filling for sufficiently large U (easy to understand)

Superconductivity?

Phase diagram and other properties extremely hard to compute !



2. Perturbation theory and infrared divergences

Physical properties of interacting electron (and other) systems follow from

Green functions

G(m)(K1, . . . ,Km;K ′1, . . . ,K
′
m) = −〈ψK1 . . . ψKmψ̄K′m . . . ψ̄K′1〉c

with multi-index K containing single-particle quantum numbers and

(Matsubara) frequency variable, e.g. K = (k0,k, σ);

G(m) yields expectation values of m-body operators, m-particle excitation

spectra, response functions, G = G(1) yields also thermodynamics.

Expansion of G(m) (or one-particle irreducible vertex functions Γ(m))

in powers of coupling constant ⇒



Perturbative contributions described by Feynman diagrams

etc.

lines ←→ bare propagator G0(k0,k) =
1

ik0 + µ− εk
vertices ←→ interaction

Propagator singular for k0 = 0, εk = µ (non-interacting Fermi surface)

⇒ infrared divergences



Infrared divergence in particle-particle bubble:

For vanishing total momentum (Cooper channel)

at T = 0

pp-bubble ∝
∫

dk0

∫

ddk
1

ik0 − ξk
1

−ik0 − ξ−k

ξ−k = ξk=

∫

dk0

∫

ddk
1

k2
0 + ξ2

k
=

∫

dk0

∫

dξ
N(ξ)
k2

0 + ξ2

logarithmically divergent in any dimension if N(0) 6= 0

⇒ Cooper instability, superconductivity

Note: Propagator divergent on (d−1)-dimensional manifold,

embedded in (d+1)-dimensional space (spanned by k0 and k)

⇒ codimension always two !



3. Renormalization group idea

Strategy to deal with hierarchy of energy scales and infrared divergences ?

Main idea (Wilson):

Treat degrees of freedom with different energy scales successively,

descending step by step from the highest scale.

In practice, using functional integral representation:

Integrate degrees of freedom (bosonic or fermionic fields) successively,

following a suitable hierarchy of energy scales.

⇒ One-parameter family of effective actions SΛ, interpolating smoothly

between bare action and final effective action (for Λ→ 0) from which all

physical properties can be extracted.



Renormalization group map: SΛ 7→ SΛ′ with Λ′ < Λ

Discrete version: Λ′ = Λ/b with b > 1

Continuous version: Λ′ = Λ− dΛ

The final effective action is obtained by iterating the RG map, which

amounts to solving a differential flow equation ∂ΛSΛ = βΛ[SΛ] in the

continuous version.

Advantage:

Small steps from Λ to Λ′ easier to control than going from highest scale Λ0

to Λ = 0 in one shot. Easier for:

• rigorous estimates

• controlled approximations (regular perturbative expansions et al.)



Effective actions SΛ can be defined for example by integrating only fields

with momenta satisfying |ξk| > Λ, which excludes a momentum shell around

the Fermi surface.
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Momentum space region around

the Fermi surface excluded by a

sharp momentum cutoff in a 2D

lattice model



History of RG for Fermi systems:

Long tradition in 1D systems, starting in 1970s (Solyom, ...);

mostly field-theoretical RG with few couplings.

RG work for 2D or 3D Fermi systems with renormalization of interaction

functions started in 1990s and can be classified as

• rigorous:

Feldman, Trubowitz, Knörrer, Magnen, Rivasseau, Salmhofer;

Benfatto, Gallavotti; ...

• pedagogical:

Shankar; Polchinski; ...

• computational:

Zanchi, Schulz; Halboth, Metzner; Honerkamp, Salmhofer, Rice; ...


