Functional RG for interacting electrons

Part Il: Functional RG for Fermi systems

A natural way of dealing with many energy scales in interacting electron systems

and a powerful source of new approximations.

e applicable to microscopic models (not only field theory)
e no adjustable parameters

e RG treatment of infrared singularities built in

1. Generating functionals
2. Exact flow equations

3. Truncations



1. Generating functionals

Interacting Fermi system with bare action

S, 0] = — (¥, Gy ') + V[, 9]
¢K,15K Grassmann variables, K = quantum numbers + Matsubara frequency

G bare propagator, V[1,)] interaction
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Spin-3 fermions with momentum k and spin orientation o: K = (kg, k, o)

Bare propagator in case of translation and spin-rotation invariance:
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Two-particle interaction:
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Generating functional for connected Green functions
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Connected m-particle Green function
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connected average




Legendre transform of G[n, 7]: effective action
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generates one-particle irreducible (1P1) vertex functions I'(""")
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Reciprocity relations at finite source fields:
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where T'Y) and G are matrices of second derivatives . ..



(¥ _#6 \

| *g 0% (W) (Prctbr)
\ Onkongr  Ongdng:
0°T O°T \

\ Dindv Gordi )



2. Exact flow equations

Impose infrared cutoff at energy scale A > 0, e.g. a momentum cutoff

Gé}(k‘g,k) — @A(k>

ok ey with 0% (k) = O(|&| — A)

Momentum space region around
the Fermi surface excluded by a
sharp momentum cutoff in a 2D

lattice model

Cutoff regularizes divergence of Go(ko, k) in kg =0, & = 0 (Fermi surface)

Other choices: smooth cutoff, frequency cutoff,

mixed momentum-frequency cutoff @A(\/ﬁﬁ + k%)



Cutoff excludes "soft modes” below scale A from functional integral.
A-dependent functionals G*[n, 7] and T[4, 1)].

Functionals G and 1" recovered for A — 0.



Exact flow equation for I':
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Wetterich '93, Morris '94, Salmhofer + Honerkamp '01

(derivation later)



Expansion in fields:

DAy, ] = (GA) 71 = Ty, ]
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>A4h, 1] contains all contributions to T'™MA[4), )] which are at least
quadratic in the fields.
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here $4 — —grQAGH = L A "single scal tor”
where = -G"Q, =X ‘2 A fived single scale propagator

Expand I'*[1), 1] in powers of 7 and 1), compare coefficients =



Flow equations for self-energy ¥ = Q) — ')A two-particle vertex I'(?)4,
and many-particle vertices T34, DA - etc.
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Hierarchy of 1-loop diagrams; all one-particle irreducible



Initial conditions:

340 = bare single-particle potential (if any)
I'(2)%0 = antisymmetrized bare two-particle interaction

r(m)Ao — (0 for m >3



Derivation of flow equation:

oG ] _ / Hdwm S B.QYY) — V] (7,8)+ ()
Take A-derivative on both sides =
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=  Flow equation for gA
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Legendre transform
Py, 9] = G ™ 7] + (9, 0") + (@, 9)
Note that n™* and 7 are A-dependent functions of ) and .
d _ - _
T, Y] = —AGA[nA,nA] + (1, 0an") + (0a", )

The total derivative acts also on the A—dependence of n* and 7.
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Insert flow equation for G* and use reciprocity relations
between derivatives of G* and T'*

= Flow equation for I'*
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Alternative functional RG versions:

e Polchinski flow equations

e \Wick ordered flow equations



3. Truncations
Infinite hierarchy of flow equations usually unsolvable.

Two types of approximation:
e Truncation of hierarchy at finite order

e Simplified parametrization of effective interactions

Truncations can be justified for weak coupling or small phase space.



Simple truncations in one-particle irreducible fRG:

o Set I'®A = 0, neglect self-energy feedback in flow of I'(2)4 ;

diAGg Unbiased stability analysis
iF(Z)A _ ) at weak coupling;
dA / \ d-wave superconductivity
Go in 2D Hubbard model

e Compute flow of self-energy with bare interaction (neglecting flow of ['?)4):
sh Captures properties

of isolated impurities
d A r® o
Lo in 1D Luttinger liquid



Power counting:
Which interaction terms are important at low energy?

Conventional power counting procedure:
rescale momenta, frequencies and fields after mode elimination
such that quadratic part of action remains invariant;

see how iInteraction terms scale.

Consider 1D chiral Fermi system with
linear dispersion &, = vk at1T =0

Effective action

A
SH = /dk’o /_A dk (iko — vk) Vg xWrg. ke — V[0, Y]



Mode elimination reduces A: A" =A/s, s > 1
Rescale momentum and frequency: k = k'/s, kg = ky/s = |kK'| <A
dko dk (iko — vk) = [dk{ dk’ (ik}y — vk')]/s"

Compensate by rescaling fields ¢ = s3/%, ) = s3/%)/

Now see scaling of interaction terms:

2-particle interaction: /H dkjod j &Z Y invariant, "marginal”
46

k-dependence of g:  ¢g(k) = g(0) + Zvjkj +...  irrelevant”

3-particle interaction:  (s72)% (s3/2)6 = 571 irrelevant if g3(0) finite

Usually ¢3(0) of order A= | Not irrelevant !



Power counting in d > 1 cannot be done (easily) by scaling, since
quadratic term cannot be restored by homogeneous scaling of momenta!

Better look directly at behavior of Feynman diagrams.

Interactions generally "less relevant” in d > 1
due to stronger phase space restrictions.



