Functional RG for interacting electrons

Part III: Impurities in Luttinger liquids

- 1. Luttinger liquids
- 2. Impurity effects
- 3. Microscopic model
- 4. Flow equations
- 5. Results

Phys. Rev. B **70**, 075102 (2004) Phys. Rev. B **71**, 155401 (2005) Phys. Rev. B **73**, 045125 (2006)

- S. Andergassen, T. Enss (Stuttgart)
- V. Meden, K. Schönhammer (Göttingen)
- U. Schollwöck (Aachen)

1. Luttinger liquids

One-dimensional interacting Fermi systems without correlation gaps are Luttinger liquids.

(1D counterpart of Fermi liquid in 2D or 3D)

One-dimensional electron systems:

- Complex chemical compounds containing chains
- Quantum wires (in heterostructures)
- Carbon nanotubes
- Edge states

(Dekker's group)

Electronic structure of 1D systems:

Dispersion relations:

 $\epsilon_k = k^2/2m$ (low carrier density) $\epsilon_k = -2t\cos k$ (tight binding)

"Fermi surface": 2 points
$$\pm k_F$$

-k_F 0 k_F k

Dispersion relation near Fermi points:

approx. linear:

$$\xi_k = \epsilon_k - \epsilon_F = v_F \left(|k| - k_F \right)$$

Electron-electron interaction:

has stronger effects than in 2D and 3D systems:

no fermionic quasi-particles, Fermi liquid theory not valid.

Fermi liquid replaced by Luttinger liquid:

- only bosonic low-energy excitations (collective charge/spin density oscillations)
- power-laws with non-universal exponents
- \Rightarrow Luttinger liquid theory

Textbook: T. Giamarchi: Quantum physics in one dimension (2004)

Bulk properties of Luttinger liquids:

• Bosonic low-energy excitations with linear dispersion relation

 $\xi_q^c = u_c q$, $\xi_q^s = u_s q$ (charge and spin channel)

- \Rightarrow specific heat $c_V \propto T$
- DOS for single-electron excitations:

$$D(\epsilon) \propto |\epsilon - \epsilon_F|^{\alpha}$$
vanishes at Fermi level ($\alpha > 0$)
$$\epsilon_F \qquad \epsilon$$

DOS in principle observable by photoemission or tunneling.

• Density-density correlation function N(q):

finite for $q \rightarrow 0$ (compressibility)

divergent as $|q-2k_F|^{-\alpha_{2k_F}}$ for $q \to 2k_F$

 $(\alpha_{2k_F} > 0 \text{ for repulsive interactions})$

 \Rightarrow enhanced back-scattering $(2k_F)$ from impurity.

For spin-rotation invariant (and spinless) systems all exponents can be expressed in terms of one parameter K_{ρ} .

Asymptotic low energy behavior (power-laws) of Luttinger liquids described by Luttinger model:

 $H_{\rm LM} =$ linear ϵ_k + forward scattering interactions

It is exactly solvable and scale-invariant (fixed point).

For spinless fermions only one coupling constant, parametrizing interaction between left- and right-movers:

$$H_I = g \int dx \, n_+(x) \, n_-(x)$$

2. Impurity effects

How does a single non-magnetic impurity (potential scatterer) affect properties of a Luttinger liquid?

Non-interacting system:

Impurity induces Friedel oscillations (density oscillations with wave vector $2k_F$)

DOS near impurity finite at Fermi level

Conductance reduced by a finite factor (transmission probability)

Kane, Fisher '92: impurity in interacting system (spinless Luttinger liquid)

• Weak impurity potential:

Backscattering amplitude V_{2k_F} generated by impurity grows as $\Lambda^{K_{\rho}-1}$ for decreasing energy scale Λ .

 $(K_{\rho} < 1 \text{ for repulsive interactions}; V_{2k_F} \text{ is "relevant" perturbation of pure LL})$

 \Rightarrow Low energy probes see high barrier even if (bare) impurity potential is weak!

• Weak link:

t_{wl}

DOS at boundary of LL vanishes as $|\epsilon - \epsilon_F|^{\alpha_B} \Rightarrow$

Tunneling amplitude t_{wl} between two weakly coupled chains scales to zero as Λ^{α_B} with $\alpha_B = K_{\rho}^{-1} - 1 > 0$ at low energy scales. $(t_{wl} \text{ is "irrelevant" perturbation of split chain})$

Hypothesis (Kane, Fisher):

Any impurity effectively "cuts the chain" at low energy scales and physical properties obey weak link or boundary scaling. \Rightarrow

DOS near impurity:

 $D_i(\epsilon) \propto |\epsilon - \epsilon_F|^{\alpha_B}$ for $\epsilon \to \epsilon_F$ at T = 0

Conductance through impurity:

 $G(T) \propto T^{2 \alpha_B}$ for $T \to 0$

supported within effective bosonic field theory by:

refermionization (Kane, Fisher '92) QMC (Moon et al. '93; Egger, Grabert '95) Bethe ansatz (Fendley, Ludwig, Saleur '95)

3. Microscopic model

Spinless fermion model:

nearest neighbor hopping tnearest neighbor interaction U

 $H_{\rm sf} = -t \sum_{j} \left(c_{j+1}^{\dagger} c_{j} + c_{j}^{\dagger} c_{j+1} \right) + U \sum_{j} n_{j} n_{j+1}$

Properties (without impurities):

- exactly solvable by Bethe ansatz
- Luttinger liquid except for |U| > 2t at half-filling
- charge density wave for U > 2t at half-filling

Impurity potential added to bulk hamiltonian $H_{\rm sf}$:

general form: $H_{imp} = \sum_{j,j'} V_{j'j} c_{j'}^{\dagger} c_j$

"site impurity":

 $H_{\rm imp} = V n_{j_0}$ (j₀ impurity site)

"hopping impurity":

 $H_{\rm imp} = (t - t') \left(c_{j_0+1}^{\dagger} c_{j_0} + c_{j_0}^{\dagger} c_{j_0+1} \right)$

Later also double barrier (two site or hopping impurities)

4. Flow equations

Starting point (for approximations):

Exact hierarchy of differential flow equations for 1-particle irreducible vertex functions with infrared cutoff Λ :

$$G^{\Lambda} = \left[(G_0^{\Lambda})^{-1} - \Sigma^{\Lambda} \right]^{-1} \qquad S^{\Lambda} = \left[1 - G_0^{\Lambda} \Sigma^{\Lambda} \right]^{-1} \frac{dG_0^{\Lambda}}{d\Lambda} \left[1 - \Sigma^{\Lambda} G_0^{\Lambda} \right]^{-1}$$

Cutoff:

At T = 0 sharp frequency cutoff: $G_0^{\Lambda} = \Theta(|\omega| - \Lambda) G_0$

At finite T (discrete Matsubara frequencies) soft cutoff with width $2\pi T$

 G_0 bare propagator without impurities and interaction

Approximations:

Scheme 1 (first order):

Approximate $\Gamma^{\Lambda} \approx \Gamma^{\Lambda^{0}}$ (ignore flow of 2-particle vertex) $\Rightarrow \Sigma^{\Lambda}$ tridiagonal matrix in real space

Flow equation very simple; at T = 0:

$$\frac{d}{d\Lambda} \Sigma_{j,j}^{\Lambda} = -\frac{U}{2\pi} \sum_{s=\pm 1} \sum_{\omega=\pm \Lambda} \tilde{G}_{j+s,j+s}^{\Lambda} (i\omega)$$

 $(\psi) \qquad \frac{d}{d\Lambda} \Sigma^{\Lambda}_{j,j\pm 1} = \frac{U}{2\pi} \sum_{\omega=\pm\Lambda} \tilde{G}^{\Lambda}_{j,j\pm 1}(i\omega)$

 $\frac{d}{d\Lambda}\Sigma^{\Lambda} =$

where $\tilde{G}^{\Lambda}(i\omega) = [G_0^{-1}(i\omega) - \Sigma^{\Lambda}]^{-1}$.

Kane/Fisher physics already qualitatively captured !

Scheme 2 (second order):

Neglect $\Gamma^{(3)\Lambda}$; approx. Γ^{Λ} by flowing nearest neighbor interaction U^{Λ} \Rightarrow 1-loop flow for U^{Λ} ; flow of Σ^{Λ} as in scheme 1 with renormalized U^{Λ}

$$\frac{d}{d\Lambda}\Sigma^{\Lambda}_{j,j} = -\frac{U^{\Lambda}}{2\pi} \sum_{s=\pm 1} \sum_{\omega=\pm\Lambda} \tilde{G}^{\Lambda}_{j+s,j+s}(i\omega) \qquad \frac{d}{d\Lambda}\Sigma^{\Lambda}_{j,j\pm 1} = \frac{U^{\Lambda}}{2\pi} \sum_{\omega=\pm\Lambda} \tilde{G}^{\Lambda}_{j,j\pm 1}(i\omega)$$

Works quantitatively even for rather big U

Derivation of flow equation (scheme 1):

Flow equation for self-energy:

 $\frac{d}{d\Lambda} \Sigma^{\Lambda}(1',1) = T \sum_{2,2'} e^{i\omega_2 0^+} S^{\Lambda}(2,2') \Gamma_0(1',2';1,2)$

Single-scale propagator

$$\boldsymbol{S}^{\Lambda} = -G^{\Lambda}[\partial_{\Lambda}(G_0^{\Lambda})^{-1}]G^{\Lambda} = \frac{1}{1 - G_0^{\Lambda}\Sigma^{\Lambda}} \frac{\partial G_0^{\Lambda}}{\partial \Lambda} \frac{1}{1 - \Sigma^{\Lambda}G_0^{\Lambda}}$$

Self-energy and propagator diagonal in frequency: $\omega_1 = \omega_{1'}$ and $\omega_2 = \omega_{2'}$.

 Γ_0 frequency-independent $\Rightarrow \Sigma$ frequency-independent.

Sharp frequency cutoff (T = 0): $G_0^{\Lambda}(i\omega) = \Theta(|\omega| - \Lambda) G_0(i\omega) \Rightarrow$

 $S^{\Lambda}(i\omega) = -\frac{1}{1 - \Theta(|\omega| - \Lambda)G_0(i\omega)\Sigma^{\Lambda}} \,\delta(|\omega| - \Lambda)G_0(i\omega) \frac{1}{1 - \Theta(|\omega| - \Lambda)\Sigma^{\Lambda}G_0(i\omega)}$

 $\delta(.)$ meets $\Theta(.)$: ill defined!

Consider regularized (smeared) step functions Θ_{ϵ} with $\delta_{\epsilon} = \Theta'_{\epsilon}$, then take limit $\epsilon \to 0$, using

$$\int dx \,\delta_{\epsilon}(x-\Lambda) \,f[x,\Theta_{\epsilon}(x-\Lambda)] \stackrel{\epsilon \to 0}{\longrightarrow} \int_{0}^{1} dt \,f(\Lambda,t)$$

proof: substitution $t = \Theta_{\epsilon}$

Integration can be done analytically, yielding

$$\frac{d}{d\Lambda} \sum_{j_1', j_1}^{\Lambda} = -\frac{1}{2\pi} \sum_{\omega = \pm \Lambda} \sum_{j_2, j_2'} e^{i\omega 0^+} \tilde{G}^{\Lambda}_{j_2, j_2'}(i\omega) \Gamma^0_{j_1', j_2'; j_1, j_2}$$

where $ilde{G}^{\Lambda}(i\omega) = [G_0^{-1}(i\omega) - \Sigma^{\Lambda}]^{-1}$

Insert real space structure of bare vertex for spinless fermions with nearest neighbor interaction U:

$$\Gamma^{0}_{j'_{1},j'_{2};j_{1},j_{2}} = U_{j_{1},j_{2}} \left(\delta_{j_{1},j'_{1}} \delta_{j_{2},j'_{2}} - \delta_{j_{1},j'_{2}} \delta_{j_{2},j'_{1}} \right)$$
$$U_{j_{1},j_{2}} = U \left(\delta_{j_{1},j_{2}-1} + \delta_{j_{1},j_{2}+1} \right)$$

 \Rightarrow Flow equations

$$\frac{d}{d\Lambda} \Sigma_{j,j}^{\Lambda} = -\frac{U}{2\pi} \sum_{s=\pm 1}^{N} \sum_{\omega=\pm \Lambda}^{N} e^{i\omega 0^{+}} \tilde{G}_{j+s,j+s}^{\Lambda}(i\omega)$$
$$\frac{d}{d\Lambda} \Sigma_{j,j\pm 1}^{\Lambda} = \frac{U}{2\pi} \sum_{\omega=\pm \Lambda}^{N} e^{i\omega 0^{+}} \tilde{G}_{j,j\pm 1}^{\Lambda}(i\omega)$$

Convergence factor $e^{i\omega 0^+}$ matters only for $\Lambda
ightarrow \infty$

Initial condition at $\Lambda = \Lambda_0 \rightarrow \infty$:

$$\Sigma_{j_1,j_1'}^{\Lambda_0} = V_{j_1,j_1'} + \frac{1}{2} \sum_{j_2} \Gamma_{j_1',j_2;j_1,j_2}^0$$

where V_{j_1,j'_1} is the bare impurity potential and the second term is due to the flow from ∞ to Λ_0 (!)

Flow equations at finite temperatures T > 0:

Replace $\omega = \pm \Lambda$ by $\omega = \pm \omega_n^{\Lambda}$ in flow equations, where ω_n^{Λ} is the Matsubara frequency most close to Λ .

Calculation of conductance:

Interacting chain connected to semi-infinite non-interacting leads via smooth or abrupt contacts

fRG features:

- perturbative in U (weak coupling)
- non-perturbative in impurity strength
- arbitrary bare impurity potential (any shape)
- full effective impurity potential (cf. Matveev, Yue, Glazman '93: only V_{2k_F})
- cheap numerics up to 10^5 sites for T > 0 and 10^7 sites at T = 0.
- captures all scales, not just asymptotics.

5. Results

Renormalized impurity potential (from self-energy Σ_{jj} at $\Lambda = 0$):

long-range $2k_F$ -oscillations ! (associated with Friedel oscillations of density) $2k_F$ -oscillations also in renormalized hopping amplitude around impurity

Results for local DOS near impurity site:

(half-filling, ground state, U = 1, V = 1.5, 1000 sites)

Strong suppression of DOS near Fermi level

Power law with boundary exponent α_B for $\omega \to 0$, $N \to \infty$

Spectral weight at $\omega = 0$ in good agreement with DMRG for U < 2.

Log. derivative of spectral weight at Fermi level as fct. of system size:

- near boundary (solid lines)
- near hopping impurity (*dashed lines*)

circles: quarter-filling, U = 0.5squares: quarter-filling, U = 1.5

open symbols: fRG filled symbols: DMRG

top panel: without vertex renorm. *bottom panel:* with vertex renorm.

horizontal lines: exact boundary exponents

Friedel oscillations from open boundaries:

(half-filling, ground state)

Excellent agreement between fRG and DMRG

One parameter scaling of conductance (T = 0):

Single impurity, smooth contacts: $G(N) = \frac{e^2}{h} \tilde{G}_K(x)$, $x = [N/N_0(U,V)]^{1-K}$

Conductance at T > 0 — smooth contacts

Asymptotic power law $G(T) \propto T^{2\alpha}$ reached on accessible scales only for sufficiently strong impurities

Resonant tunneling through double barrier:

Treated theoretically by many groups; controversial results !

Model setup:

Resonance peaks in conductance as a function of gate voltage:

At T = 0, width $w \sim N^{K-1}$

T-dependence of $|t(\epsilon)|^2$ important

fRG results for $G_p(T)$ (symmetric double barrier):

Various distinctive power laws, in particular (Furusaki, Nagaosa '93,'98):

- exponent $2\alpha_B$ (looks like independent impurities in series)
- exponent $\alpha_B 1$ ("uncorrelated sequential tunneling")

No indications of exponent $2\alpha_B - 1$ ("correlated sequential tunneling")

Summary

- fRG is reliable and flexible tool to study Luttinger liquids with impurities
- can be applied to microscopic models, restricted to "weak" coupling
- provides simple physical picture
- interplay of contacts, impurities, and correlations
- method covers all energy scales
- resonant tunneling: universal behavior and crossover captured

Extensions

• include spin

(extended Hubbard model: Andergassen et al., PRB 73, 045125 (2006))

• more complex geometries

(Y-junctions: Barnabé-Thériault et al., PRL 94, 136405 (2005))