Polariton Condensation

Marzena Szymanska

WARWICK

University of Warwick

Windsor 2010

Collaborators

Theory

J. Keeling P. B. Littlewood F. M. Marchetti

Macroscopic Quantum Coherence

Macroscopic Quantum Coherence

Outline

Lecture 1: Introduction: BEC-BCS, excitons, polaritons, experiments

✓ Lecture 2:

Part1: Quantum condensation in non-equilibrium dissipative systems

non-equilibrium field theory

probes of dissipative BEC

Part2: Superfluid properties

Bose-Einstein Condensation

BEC = macroscopic occupation of a single quantum (ground) state of massive particles at thermal equilibrium

$$N = \int d\epsilon \frac{D(\epsilon)}{e^{\beta(\epsilon-\mu)} - 1}$$

Bose-Einstein condensation * 1925

Satyendra Nath Bose

Albert Einstein

Bose-Einstein Condensation and Interactions

Macroscopic Phase Coherence

= macroscopic wave function
which arises from interactions

 $\psi e^{i\phi}$

Superfluidity - linear sound mode with dispersion and hence a superfluid stiffness c $\omega = cq$

Excitons in Semiconductors

✓ Electron-hole pairs created by optical excitations ...

...at low densities can bind to form excitons (analogue of hydrogen)

✓ Binding is weak and radius is large

e.g. in GaAs $(m^* \sim 0.1 m_e, \epsilon = 13)$ Binding energy = 5 meV (13.6 eV for Hydrogen) Bohr radius = 7 nm (0.05 nm for Hydrogen)

i.e. large compared to inter-atomic distances

Exciton Condensation

- \checkmark At low densities ($n_{\text{exc}}a_0^d \ll 1$) tightly bound excitons
 - capacity to undergo Bose-Einstein condensation¹ Exciton mass is small, critical temperature $k_{\rm B}T_{\rm c}^{3D} \sim \frac{n_{\rm exc}^{2/3}\hbar^2}{m_{\rm exc}}$

BEC-like phase of excitons

 \checkmark At high densities ($n_{\text{exc}}a_0^d \sim 1$) electrons and holes unbind

capacity to `condense' into excitonic
 insulator phase² (two-component BCS)

BCS-like instability of Fermi surfaces

¹Keldysh and Kozlov '68 ²Keldysh and Kopaev '64

BCS-BEC crossover

Keldysh and Kopaev '64 Eagles '69, Leggett '80

Same $|\Psi\rangle$ can describe BEC of bosons at low density strong interaction and BCS state of fermions at high density weak interactions.

$$\Psi_{\text{BCS}} \rangle = \prod_{k} \left[u_k + v_k a_{k\uparrow}^{\dagger} a_{-k\downarrow}^{\dagger} \right] |\text{vac}\rangle \qquad \begin{array}{l} v_k / u_k = \phi_k \\ \text{Pair wave-function} \end{array}$$

Why? It is a coherent state $|\Psi\rangle = e^{\sum_{k} \phi_{k} a_{k\uparrow}^{\dagger} a_{-k\downarrow}^{\dagger}} |vac\rangle$ Gap equation Density equation

Mean-field Theory of Exciton Condensation

Keldysh and Kopaev '64

BCS-BEC crossover driven by change in excitonic density

Experiments towards BEC of Excitons

✓ Early attempts

- \cdot Cu₂O dipole-forbidden excitons
- Biexcitons in CuCl

✓ New promising candidates

• Indirect excitons in coupled quantum wells Butov et al PRL (2001), Nature (2002), Snoke et al, Nature (2002);

- bias across QWs leads to long-lived spatially indirect excitons
- coherence of excitons would show in photoluminescence

Obstacle: Auger recombination

Experiments towards BEC of Excitons

✓ Early attempts

- \cdot Cu₂O dipole-forbidden excitons
- Biexcitons in CuCl

✓ New promising candidates

• Indirect excitons in coupled quantum wells Butov et al PRL (2001), Nature (2002), Snoke et al, Nature (2002);

- bias across QWs leads to long-lived spatially indirect excitons
- coherence of excitons would show in photoluminescence
- fragmentation pattern observed requires non-linear (stimulated) process¹

¹L. S. Levitov et al, Phys. Rev. Lett. **94**, 176404 (2005)

Obstacle: Auger recombination

Polaritons

Strong exciton-photon interaction - polariton

✓ **Polaritons** [J.J. Hopfield *Phys Rev* **112**, 1555 (1958)]

= mixed modes of excitonic polarisation and light

Microcavity Polaritons

Experimentally realised: C. Weisbuch et al. PRL 69, 3314 (1992)

Early Experiments - towards BEC

• Nonlinear growth of emission without bleaching of polariton line much below the population inversion not a photon laser!

Pau et al, *PRA* **54**, 1789 (1996); Dang et al. *PRL* **81**, 3920 (1998); Senellart et al, *PRL* **82**, 1233 (1999), Savvidis et al. PRL 84 1547 (2000), Stevenson et al. PRL 85 3680 (2000)

- Decrease of the second order coherence function $g^{(2)}$ coherence?
- Narrowing of the N(θ) photon distribution spatial coherence? Deng et al. *Science* **298** 199 (2002), *PNAS* **100** 15318 (2003)
- Interference fringes

Richard et al. Phys. Rev. Lett. 94, 187401 (2005)

Different Pumping Schemes Incoherent

Different Pumping Schemes Parametric

Bosonic Stimulation

Incoherent

Parametric

Senellart & Bloch, PRL 82, 1233 (1999)

Stevenson et al. PRL 85 3680 (2000)

Evidences of Condensation in CdTe

State of the Art

Vortices and half vortices

K. G. Lagoudakis et al, Nature Physics (2008)

Science 326, 974 (2009)

Bogoliubov Excitation Spectrum

S. Utsunomiya et al, Nature Physics (2008)

State of the Art

Flow via obstacle

Persistent Quantised Currents

Amo, Sanvitto, et al, Nature 2009

[Sanvitto, Marchetti, Szymanska *et al., Nat. Phys.* 2010 arxiv/0907.2371]

GaN Polariton Lasing - room temperature effects

S. Christopoulos et al, PRL 98, 126405 (2007)

Polaritons' Special Features

- ✓ 2D system but ... finite size
- Internal polariton structure and strong interactions
 - photonic component make polaritons easily overlap
- Phase diagram what is the most important?
 - Kosterlitz-Thouless interactions dominated?
 - "finite size" BEC confinement dominated?
 - something else?
- Continues pump and decay
 - non-equilibrium steady-state condensation
- Excitonic and Photonic disorder

The Phase Diagram

 $\checkmark \text{Mean-field} \\ |\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod a_{\alpha}^{\dagger} |0\rangle = e^{\lambda \psi_0^{\dagger}} \prod \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$

Two coupled order parameters

 $\left\{ egin{array}{ll} {
m Coherent \ photon \ field \ } \langle \psi
ight
angle \ {
m Exciton \ condensate \ } \sum \langle a^{\dagger}_{lpha} b_{lpha}
angle
ight
angle$

Mean-field + fluctuations : BEC-BCS-BEC crossover with changing density

Fluctuation Spectrum and Collective Modes

Keeling et al. Phys. Rev. Lett. 93, 226403 (2004)

Fluctuations about mean field - greens functions for photon response

Uncondensed Spectra: polariton dispersion

Condensed Spectra: phase and amplitude modes

Beyond mean field: Interaction driven or dilute gas?

How to Estimate Density?

How to Estimate Temperature?

Data on the Phase Diagram

F.M. Marchetti et al, *Phys. Rev. B* 77, 235313 (2008) Experiments on CdTe in the crossover between a fluctuation dominated WIBG and a mean-field-like collective state.

 \checkmark Not easy to move away from this regime:

T polaritons different from T lattice

Condensation in Dissipative Systems

✓ Open systems in contact with environment

Concepts: BEC in novel conditions, robustness to dephasing