Electronic properties of graphene,
from ‘high’ to ‘low’ energies.

Vladimir Falko, Lancaster University

Graphene for beginners: tight-binding model.
Berry phase = electrons in monolayers.
Trigonal warping. Stretched graphene.

PN junction in graphene.

Berry phase 2w electrons in bilayer graphene.
Landau levels & QHE. Interlayer asymmetry gap.
Lifshitz transition and magnetic breakdown in BLG. Stretched BLG.
Renormalisation group theory for interaction and spontaneous
symmetry breaking in BLG.



4 electrons in the outer s-p shell of carbon

szhybridisation forms strong directed bonds
which determine a honeycomb lattice structure.
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Graphene: gapless semiconductor



Transfer integral on a hexagonal lattice
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Wallace, Phys. Rev. 71, 622 (1947)
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Tight binding model of a monolayer

Saito et al, "Physical Properties of Carbon Nanotubes"
(Imperial College Press, London, 1998): Chapter 2.
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Wallace, Phys. Rev. 71, 622 (1947)
Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Transfer integral on a hexagonal lattice Tight binding model of a monolayer
Saito et al, "Physical Properties of Carbon Nanotubes"
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Reciprocal lattice
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Bloch function amplitudes (e.g., in the valley
K) on the AB sites (‘isospin’) mimic spin
components of a massless relativistic particle.

Brillouin
zone

p, +1p, 0
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McClure, PR 104, 666 (1956) — )/oa 108 i) K-points



valley index
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Also, one may need to take into account an additional real spin degeneracy of all states



Electronic properties of graphene,
from ‘high’ to ‘low’ energies.

Berry phase & electrons in monolayers.
Trigonal warping. Stretched graphene.
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Electronic states in graphene observed using ARPES
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Mucha-Kruczynski, Tsyplyatyev, Grishin, McCann,
VF, Boswick, Rotenberg - PRB 77, 195403 (2008)

ARPES of heavily doped graphene

synthesized on silicon carbide
Bostwick ef al - Nature Physics, 3, 36 (2007)
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Slightly stretched monolayer graphene
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shift of the Dirac point in the momentum space, /
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Monolayer graphene: two-dimensional gapless semiconductor

with Berry phase = electrons

DA
Due to the ‘isospin’ conservation,
A-B symmetric perturbation does

w(&) not backward scatter electrons,
Ando, Nakanishi, Saito
Rg J. Phys. Soc. Jpn 67, 2857 (1998)
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H=vG p+1-U(X)

ZW Potential which is smooth at the
' scale of lattice constant (A-B
symmetric) cannot scatter Berry
phase = electrons in exactly

W, backward direction.
2 2 2
Wf’—>—l3 — Zl/jl = Z[l/ja—m +l//b—>a] — ZO =0
I (a,b) (a,b)

1Zo,
Wasn = Ae '’ Wﬁ _ Alzo, _
| D Ve =W =Y,

Berry phase 7 electrons



PN junctions in the usual gap-full semiconductors are non-
transparent for incident electrons, therefore, they are highly resistive.

Diode Bipolar Transistors
| | |
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N|— N|— P
| P N

PN junctions in in graphene are different.



Transmission of chiral electrons through the PN junction in graphene

eU =

conduction band electrons . o —
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Due to the isospin conservation, A-B symmetric potential
cannot backward scatter electrons in monolayer graphene.

For graphene PN junctions: Cheianov, VF - PR B 74, 041403 (2006)
‘Klein paradox’: Katsnelson, Novoselov, Geim, Nature Physics 2, 620 (2006)



Transmission of chiral electrons through the PN junction in graphene
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Due to the ‘isospin’ conservation, 1

electrostatic potential U(x) which %
smooth on atomic distances cannot ™)
scatter electrons in the exactly 2»
backward direction. G




Transmission of chiral electrons through the PN junction in graphene

Due to transmission of electrons with a small 9 )
incidence angle, #<1/p.d, aPN junction in graphene g np € p|:
should display a finite conductance (no pinch-off). o

L 7zh \V d
A characteristic Fano factor in the shot noise: <| - | > =(1- \/%) el

Cheianov, VF - PR B 74, 041403 (2006)



b PN junctions should be
taken into consideration In
two-terminal devices,
since metallic contacts
experiments. The electrodes consist of a Ti/Al bilayer, with the Tutatnium in contact with graphen.(b) WO rk fU nction d |ffe rence.

Large graphene layer deposited on top of a Si/Si0z substrate by controlled exfoliation of a single
graphite erystal. graphe
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Heersche et al - Nature Physics (2007)
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PNP junction with a suspended gate: an almost ballistic regime: w~I.

AYoung and P Kim - Nature Physics 5, 222 (2009)



Wishful thinking about graphene microstructures

Focusing and Veselago lens for electrons in ballistic graphene

Cheianov, VF, Altshuler - Science 315, 1252 (2007)

(lj) Fermi

momentum

momentum

Py

The effect we’ll discuss would be the strongest in sharp PN junction,
with d~Ap.



p,=p, = P.sing, =-p,sing, PN junction

Snell’s law with
negative
refraction index
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Graphene bipolar transistor: Veselago lens for electrons
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Berry phase 2 electrons in bilayer graphene.
Landau levels & QHE. Interlayer asymmetry gap.
Lifshitz transition and magnetic breakdown in BLG. Stretched BLG.
Renormalisation group theory for interaction and spontaneous
symmetry breaking in BLG.



