
Electronic properties of graphene, 
from ‘high’ to ‘low’ energiesfrom high  to low  energies.

Vladimir Falko, Lancaster University

Graphene for beginners: tight-binding model.
Berry phase π electrons in monolayers.  
Trigonal warping. Stretched graphene. 

PN junction in graphene. PN junction in graphene. 

Berry phase 2π electrons in bilayer graphene.
Landau levels & QHE.  Interlayer asymmetry gap. y y y g p

Lifshitz transition and magnetic breakdown in BLG.  Stretched BLG.  
Renormalisation group theory for interaction and spontaneous 

symmetry breaking in BLGsymmetry breaking in BLG.



hybridisation forms strong directed bonds 2sp
4 electrons in the outer s-p shell of carbon

which determine a honeycomb lattice structure.
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Graphene: gapless semiconductor
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Bloch function amplitudes (e.g., in the valley 
K) on the AB sites (‘isospin’) mimic spinK) on the AB sites ( isospin ) mimic spin 

components of a massless relativistic particle.
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Also, one may need to take into account an additional real spin degeneracy of all states
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Electronic states in graphene observed using ARPES
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Mucha-Kruczynski, Tsyplyatyev, Grishin, McCann, 
VF, Boswick, Rotenberg - PRB 77, 195403 (2008)

ARPES of heavily doped grapheney p g p
synthesized on silicon carbide

Bostwick et al - Nature Physics, 3, 36 (2007)
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A. Bostwick et al – Nature Physics 3, 36 (2007)
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Slightly stretched monolayer graphene
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shift of the Dirac point in the momentum space, 
opposite in K/K’ valleys Ando - J. Phys. Soc. Jpn. 75, 124701 (2006)
shift of the Dirac point in the momentum space, 
opposite in K/K’ valleys,  like a vector potential

Foster, Ludwig - PRB 73, 155104 (2006)
Morpurgo, Guinea - PRL 97, 196804 (2006)zeff ruB )]([ 
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Monolayer graphene: two-dimensional gapless semiconductor 
with Berry phase π electrons
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Due to the ‘isospin’ conservation, 
A-B symmetric perturbation does 
not backward scatter electrons, )(w

Ando, Nakanishi, Saito 
J. Phys. Soc. Jpn 67, 2857 (1998)
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Potential which is smooth at the 
scale of lattice constant (A-B 
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PN junctions in the usual gap-full semiconductors are non-
transparent for incident electrons  therefore  they are highly resistivetransparent for incident electrons, therefore, they are highly resistive.

PN junctions in in graphene are different.



Transmission of chiral electrons through the PN junction in graphene
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Due to the isospin conservation  A-B symmetric potential 

)(1 rUpvH  

Due to the isospin conservation, A B symmetric potential 
cannot backward scatter electrons in monolayer graphene.

For graphene PN junctions: Cheianov VF PR B 74 041403 (2006)For graphene PN junctions:   Cheianov, VF - PR B 74, 041403 (2006)
‘Klein paradox’:  Katsnelson, Novoselov, Geim, Nature Physics 2, 620 (2006)



Transmission of chiral electrons through the PN junction in graphene
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Transmission of chiral electrons through the PN junction in graphene
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Due to transmission of electrons with a small 
incidence angle,   θ<1/pFd ,  a PN junction in graphene 
should display a finite conductance (no pinch-off). dhL 

eIII )1( 2
1

should display a finite conductance (no pinch off).

A characteristic Fano factor in the shot noise: )( 2

Cheianov, VF - PR B 74, 041403 (2006)



PN junctions should be 
taken into consideration in 

t t i l d i  two-terminal devices, 
since metallic contacts 

dope graphene, due to the p g p
work function difference. 

Heersche et al - Nature Physics (2007)
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PNP junction with a suspended gate: an almost ballistic regime:  w~l.

A Young and P Kim - Nature Physics 5, 222 (2009)



Wishful thinking about graphene microstructures
Focusing and Veselago lens for electrons in ballistic graphene

Cheianov, VF, Altshuler - Science 315, 1252 (2007) 
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The effect we’ll discuss would be the strongest in sharp PN junction,     
ith  d λwith  d~λF .
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Graphene bipolar transistor: Veselago lens for electrons

ww

w2



Electronic properties of graphene, 
from ‘high’ to ‘low’ energies.

Graphene for beginners: tight-binding model.
Berry phase π electrons in monolayers.  
Trigonal warping  Stretched graphene  Trigonal warping. Stretched graphene. 

PN junction in graphene. 

Berry phase 2π electrons in bilayer grapheneBerry phase 2π electrons in bilayer graphene.
Landau levels & QHE.  Interlayer asymmetry gap. 

Lifshitz transition and magnetic breakdown in BLG.  Stretched BLG.  
R li ti   th  f  i t ti  d t  Renormalisation group theory for interaction and spontaneous 

symmetry breaking in BLG.


