Electronic properties of graphene, from 'high' to 'low' energies.

Vladimir Falko, Lancaster University

Graphene for beginners: tight-binding model. Berry phase π electrons in monolayers. Trigonal warping. Stretched graphene. PN junction in graphene.

Berry phase 2π electrons in bilayer graphene.
 Landau levels & QHE. Interlayer asymmetry gap.
 Lifshitz transition and magnetic breakdown in BLG. Stretched BLG.
 Renormalisation group theory for interaction and spontaneous symmetry breaking in BLG.

4 electrons in the outer s-p shell of carbon

 sp^{2} hybridisation forms strong directed bonds which determine a honeycomb lattice structure.

 $P^{z}(\pi)$ orbitals determine conduction properties of graphite

Graphene: gapless semiconductor

Wallace, Phys. Rev. 71, 622 (1947) Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Transfer integral on a hexagonal lattice

$$\mathcal{H}_{AB} = \langle \Phi_A | H | \Phi_B \rangle$$

Tight binding model of a monolayer

Saito *et al*, "Physical Properties of Carbon Nanotubes" (Imperial College Press, London, 1998): Chapter 2.

Eigenfunction

$$\Psi_{j}(\mathbf{k}, \mathbf{r}) = \sum_{i=1}^{2} C_{ji}(\mathbf{k}) \Phi_{i}(\mathbf{k}, \mathbf{r})$$

Transfer integral matrix Overlap integral matrix Column vector $\mathcal{H}_{ij} = \langle \Phi_i | H | \Phi_j \rangle$ $S_{ij} = \langle \Phi_i | \Phi_j \rangle$ $C_j = \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix}$

Eigenvalue equation

$$\mathcal{H}C_{j} = \varepsilon_{j}SC_{j}$$

Wallace, Phys. Rev. 71, 622 (1947) Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Transfer integral on a hexagonal lattice

 $\mathcal{H}_{AB} = <\!\!\Phi_A |H| \Phi_B \!>$

Tight binding model of a monolayer Saito *et al*, "Physical Properties of Carbon Nanotubes"

$$\hat{H} \approx \begin{pmatrix} 0 & \gamma_0 f(\vec{k}) \\ \gamma_0 f^*(\vec{k}) & 0 \end{pmatrix}$$

$$\mathcal{E} = \pm |\gamma_0 f|$$

Reciprocal lattice

$$\varepsilon(\vec{k} + \vec{G}_{N_1N_2}) = \varepsilon(\vec{k})$$

$$\vec{G}_{N_1N_2} = N_1\vec{G}_1 + N_2\vec{G}_2$$

Also, one may need to take into account an additional real spin degeneracy of all states

Electronic properties of graphene, from 'high' to 'low' energies.

Graphene for beginners: tight-binding model. Berry phase π electrons in monolayers. Trigonal warping. Stretched graphene. PN junction in graphene.

Berry phase 2π electrons in bilayer graphene.
 Landau levels & QHE. Interlayer asymmetry gap.
 Lifshitz transition and magnetic breakdown in BLG. Stretched BLG.
 Renormalisation group theory for interaction and spontaneous symmetry breaking in BLG.

$$H = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v \vec{\sigma} \cdot \vec{p}$$

$$\vec{p} = (p\cos\theta, p\sin\theta)$$
$$\pi = p_x + ip_y = pe^{i\theta}$$
$$\pi^+ = p_x - ip_y = pe^{-i\theta}$$

 $\begin{array}{l} \text{sublattice 'isospin'} \, \vec{\sigma} \, \text{is} \\ \text{linked to the direction} \\ \text{of the electron} \\ \text{momentum} \quad \vec{\sigma} \end{array}$

$$\vec{\sigma} \cdot \vec{n} = 1, \varepsilon = vp$$

$$\vec{n} = -1, \varepsilon = -vp$$
valence band \vec{p}

conduction hand

Berry phase

$$\pi = i \int_{0}^{2\pi} d\vartheta \, \psi^{+} \frac{d}{d\vartheta} \psi$$

$$\psi \to e^{2\pi \frac{i}{2}\sigma_{3}} \psi = e^{i\pi\sigma_{3}} \psi = -\psi$$

Electronic states in graphene observed using ARPES

A. Bostwick *et al* – Nature Physics 3, 36 (2007)

Slightly stretched monolayer graphene

$$\gamma_0 e^{-i\frac{2\pi}{3}} + \gamma_0 + \gamma_0 e^{i\frac{2\pi}{3}} = 0$$

$$\hat{H} = \zeta v \vec{p} \cdot \vec{\sigma} + \vec{u} \cdot \vec{\sigma} \equiv \zeta v [\vec{p} + \frac{\zeta}{v} \vec{u}] \cdot \vec{\sigma}$$

shift of the Dirac point in the momentum space, opposite in K/K' valleys, like a vector potential

$$B_{eff} = \zeta [\nabla \times \vec{u}(\vec{r})]_z$$

Ando - J. Phys. Soc. Jpn. 75, 124701 (2006)

Foster, Ludwig - PRB 73, 155104 (2006) Morpurgo, Guinea - PRL 97, 196804 (2006)

Electronic properties of graphene, from 'high' to 'low' energies.

Graphene for beginners: tight-binding model. Berry phase π electrons in monolayers. Trigonal warping. Stretched graphene. PN junction in graphene.

Berry phase 2π electrons in bilayer graphene.
 Landau levels & QHE. Interlayer asymmetry gap.
 Lifshitz transition and magnetic breakdown in BLG. Stretched BLG.
 Renormalisation group theory for interaction and spontaneous symmetry breaking in BLG.

Monolayer graphene: two-dimensional gapless semiconductor with Berry phase π electrons

 $\mathcal{E} = vp$

$$H = v\vec{\sigma}\cdot\vec{p} + \hat{1}\cdot U(\vec{r})$$

Due to the 'isospin' conservation, A-B symmetric perturbation does not backward scatter electrons, Ando, Nakanishi, Saito J. Phys. Soc. Jpn 67, 2857 (1998)

 $w(\theta) \sim \cos^2 \frac{\theta}{2} |U_{\vec{p}-\vec{p}'}|^2$

$H = v\vec{\sigma}\cdot\vec{p} + \hat{1}\cdot U(x)$

Potential which is smooth at the scale of lattice constant (A-B symmetric) cannot scatter Berry phase π electrons in exactly backward direction.

$$w_{\vec{p}\to-\vec{p}} = \left|\sum_{i} \psi_{i}\right|^{2} = \left|\sum_{(a,b)} [\psi_{a\to b} + \psi_{b\to a}]\right|^{2} = \left|\sum_{(a,b)} 0\right|^{2} = 0$$

$$\psi_{a \to b} = A e^{i \frac{\pi}{2} \sigma_z} \psi_{\vec{p}}$$

$$\psi_{b \to a} = A e^{i \frac{-\pi}{2} \sigma_z} \psi_{\vec{p}}$$

$$\psi_{a\to b} = e^{i\pi\sigma_z}\psi_{b\to a} = -\psi_{b\to a}$$

Berry phase π electrons

PN junctions in the usual gap-full semiconductors are nontransparent for incident electrons, therefore, they are highly resistive.

PN junctions in in graphene are different.

Transmission of chiral electrons through the PN junction in graphene

Due to the isospin conservation, A-B symmetric potential cannot backward scatter electrons in monolayer graphene.

For graphene PN junctions: Cheianov, VF - PR B 74, 041403 (2006) 'Klein paradox': Katsnelson, Novoselov, Geim, Nature Physics 2, 620 (2006)

Transmission of chiral electrons through the PN junction in graphene

Due to the 'isospin' conservation, electrostatic potential *U(x)* which smooth on atomic distances cannot scatter electrons in the exactly backward direction.

$$w(\theta) = e^{-\pi p_F d \sin^2 \theta} \cos^2 \theta$$

Transmission of chiral electrons through the PN junction in graphene

Due to transmission of electrons with a small incidence angle, $\theta < 1/p_F d$, a PN junction in graphene should display a finite conductance (no pinch-off).

A characteristic Fano factor in the shot noise:

$$\frac{g_{np}}{L_{\perp}} = \frac{2e^2}{\pi h} \sqrt{\frac{p_F}{d}}$$

$$\left\langle I \cdot I \right\rangle = (1 - \sqrt{\frac{1}{2}}) eI$$

Cheianov, VF - PR B 74, 041403 (2006)

Fig. 2. (a) Atomic force microscopy image of a single-layer graphene Josephson junction used in our experiments. The electrodes consist of a Ti/Al bilayer, with the Tutatnium in contact with graphen.(b) Large graphene layer deposited on top of a Si/SiO₂ substrate by controlled exfoliation of a single graphite crystal. graphe

PN junctions should be taken into consideration in two-terminal devices, since metallic contacts dope graphene, due to the work function difference.

Heersche et al - Nature Physics (2007)

PNP junction with a suspended gate: an almost ballistic regime: $w \sim l$.

A Young and P Kim - Nature Physics 5, 222 (2009)

Wishful thinking about graphene microstructures

Focusing and Veselago lens for electrons in ballistic graphene

Cheianov, VF, Altshuler - Science 315, 1252 (2007)

The effect we'll discuss would be the strongest in sharp PN junction, with $d \sim \lambda_F$.

$$p_y = p_y \implies p_c \sin \theta_c = -p_v \sin \theta_v$$
 PN junction

Graphene bipolar transistor: Veselago lens for electrons

Electronic properties of graphene, from 'high' to 'low' energies.

Graphene for beginners: tight-binding model. Berry phase π electrons in monolayers. Trigonal warping. Stretched graphene. PN junction in graphene.

Berry phase 2π electrons in bilayer graphene. Landau levels & QHE. Interlayer asymmetry gap. Lifshitz transition and magnetic breakdown in BLG. Stretched BLG. Renormalisation group theory for interaction and spontaneous symmetry breaking in BLG.